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PREFACE

The editor was very honoured and delighted to receive the ;nvita-
tion of the Office of Naval Research to edit the collected edition 0 f Sir
Thomas Havelock's hydrodynamical papers. Since his first introduction
'o hydrodynamical research many years ago, the editor has alway s re-
garded Professor Havelock's work with the greatest admiration and re-
soect. And, for nearly forty years, after aking personal acquaintance
with Professor Havelock, the editor has received much very kind advic!
and assistance from him, which he is very glad to acknowledge here.

Nearly all the mathematical analysis in these papers has been re-
worked, and a number of minor misprints have been found. In one or two
papers more serious changes have been made, either by Professor Have-
lock himself, or with his agreement. The papers are arranged in chrono-
logical order, without reference to their content. The subjeLt receiving
the most attention in the papers is the development of the mathematicel
theory of wave resistance and wave formation for a moving body. The
papers in the following list deal with this and show the development of
the theory from elementary methods to a complete solution for any body,
subject only to the assumption of small wave height, that is, of a lin-
earised potential.

Paper Nos. Pages in this Collection

I to 4 1 to 80
6 94 to 104
7& 8 105 to 131
10 146 to 157
15 to 27 192 to 329
29 to 36 347 to 428
44 500 to 511
46 to 52 520 to 582
59 615 to 616

Paper No. 20 (pages 249 to 264), Paper ';o. 32 (pages 377 to 389),
and paper 51 (pages 563 to 574) give a summary of the practical results
to be deduced from the theory at their respective dates 1925, 1934, and
1951).

All but five of the remaining papers deal with various motions of a
ship by similar methods, i.e., with rolling, pitch and heave, motion in
a seaway, etc., and their individual subjects are sufficiently specified
in their titles in the List of Contents.
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The remamning five papers, nuimbers 5, 9, 12, 13 and 28 deal with cer-

tain mathematic,:, questions which arise in hydrodynamical analysis.
Finally the editor's thanks are due to Professor Lunde of Trondheim

for his kind advice on one diffict.Ž questr:,n., and also to Dr. T. Francis

Ogilvie and to Dr. J. N. Newman, both of the David Taylor Model Basin,
foi their kindness in verifying some of the references to American papers.

Flat 113
6, Charterhouse Square

LONDON E.C.I
C. WIGLEY

11th March, 1963
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§ 1. Introduftions.

The object of this paper is to illustrate the main fe-tures of wave propa-
gation in dispersive media. In the case of surface waves on deep water it
has been remarked that the earlier investigators considered the mere difficult
probem of the propagation of an arbitrary initial disturbance as expressed
by a Fourier integral, ignoring the simpler theory developed subsequently by
considering the propagation of a single element of their integrals, nainely,
an unending train of simple harmonic waves. The point of view on which
stress is laid here consists of a return to the Fourier integral, with the idea
that the elemebt of disturbance is not a simple harmonic wave-train, but a
simple group, an ag:rngate of simple wave-trains clustering around a given
central period. In many cases it is then possible to select 'roei the integral
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the few simple groups that are important, and hence to isolate the chief
regular features, if ajiy, in the phenomena.

In certain of the following sections well -known results appear; the aim

has been to develop these from the present point of view, and so illustrate
the dependence of the phenomena upon the character of the velocity function.
In the other sections it is hoped that progress has been made in the theory

of the propagation of an arbitrary initial group of waves, and also of the
character of the wave pattern diverging from a point impulse travelling on

the surface.
§ 2. Dfinition of Simple Group.

We have to consider the trainsmission of disturbances in a medium for
which the velocity of propagation of homogeneous simple harmionic wave-

trains is a definite function of the wave-length. The kinematically simplest
group of waves is composed of only two simple trains, of wave-lengths X, X',

differing by an infinitesimal amount dA.; then with the usual approximation
we have for the combined effect

y = Acos2-(x-Vt)+Acos- (2 - V't)

d 2A cos -p- Ut) cos 27r (x--Vt), (1)

where U - V-Xd. (2)

The expression (1) may be regarded as representing at any instant a train

of wave-length X, whose amplitude varies slowly with x according to the first

cosine factor. Thus it does not represent a form which moves forward

unchanged ; but it has a certain periodic quality, for the form at any given

instant is repeated after equal i.otervals of time X/(V-U), being displaced
forward through equal distances XU/(V-U). The ratio of these quantities,
namely U, is called the group-velocity. It has also the following significance:
in the neighbourhood of an observer travelling with velocity U the disturb-
ance continues to be approxiinately a train of simple harmonic waves of
length X.

The most general simple, or elementary, group may be defined in the
following manner. Let the central form be a simple harmonic wave of length
27r/Ko, and let the other members be similar waves whose amplitude, wave-

length, and velocity difter but slightly from the central type; then, with

similar approximation, we have

y =EA cos {( (Vc--Vt) +}

= ":A• cos {Ko (I - .Vt)+ (x-Uot) SK.+ ,a}. (3)

2



Propagation of Grojps of Waves in Dispersir,- Media, etc. 400

The range of values of K being infinitesimal, the group as a whole may be
written, as in the previous case, in the form

Y = 0 (x.-Uot) cos {JKo (X-Vot)+1&}, (4)

where 0 is a slowly varying function; and the group-velocity Uo is given by

Vo= d - (KoV0). (5)

The group, to an observer travelling with velocity U0, appears as consisting
of approximately simple waves of length 27r/Ko. The simple group is, in fact,
propagated as an approximately homogeneous simple wave-train ; the impor-
tance of the group-velocity lies in the fact that any slight departure from
homogeneity on a simple wave-train, due to local variation of amplitude or
phase, is propagated with the velocity U.

§ 3. The Fourier Integral regarded as a Collection of Groups.

An arbitrary disturbance can, in general, be analysed by Fourier's method
into a collection of simple wave-tiains ranging over all possible values of K;

thus after a time t the disturbance will be given by an expression of the type

fO'* (K) c,-s K (x-Vt+ a) dK, (6)

where V is a given function of K.

The method adopted with these integrals is based on Lord Kelvin's* treat-

ment of the case, in which the amplitude factor O (K) is a constant, so that

Y = Jcos K(x- Vt) dK.

An integral solution )f this kind is constructed to represent the subsequent
effect of an initial disturbance which is infinitely intense, and concentrated in
a line through the origin; Lord Kelvin's process gives an approximate
evaluation suitable for times and places such that x-Vt is large, and the
argument may be stated in the following manner:-

In the dispersive medium the wave-trains included in each differential
element of the varying period are mutually destructive, except when they are
in the same phase and co cumulative for the time under consideration, this
being when the argument of the undulation is stationary in value. Thus
each differential element as regards period, in the Fourier integral, represents
a disturbance which is very slight except around a certain point which itself
changes with the time.

Now if we apply this method to the more general integral (6), we obtain an

SSir W. Thomson, 'Roy. Soc. Proc.,' vol. 42, p. 80 (1887).

3
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expression for the total disturbance, attending only to its prominent features
and neglecting the rest, provided we assume the change of the amplitude
factor 0 (c) to be gradual. On this hypothesis the resulting expression

contains the amplitude of the component trains simply as a factor; and in

this way the trains for which it is a maximum show predominantly in the
formula, which exhibits the main features of the disturbance as they arise

from place to place through cumulation of synchronous component trains.

The argument shows that in some respects the integral (6) may be more
conveniently regarded as a collection of travelling groups instead of simple

wave-trains; when 4) (K) is a slowly varying function, the groups will be

simple groups of the type (3). The limitations within which this is the case
will appear from the subsequent analysis; one method of procedure would be

graphical : to take a graph of the fluctuating factor and see that the other

factor, which is taken constant, does not vary much within the range that is
important for the integral.

In the cases we shall examine, the effect is due to a limited initial

disturbance, and the salient features are due to the circumstance that 4) (K)

has well-defined maxima; thus the prominent part of the effeAt can be

expressed in the form of simple groups belonging to the neighbourh( od of the

maxima.
Before considering in detail special cases with assigned forms of the velocity

function V, two illustrations of interest may be mentioned.

(a) Damped harmonic waic-train.-If f (x) is a function satisfying the

conditions for the Fourier transformation, we have

f (x) = dKff(w) cos (w,-x) dw.

For an even function of x, this gives

ff)ro2 0 (K) cos Kx dK, where 0 (io) I . co O !0A) 7~)= ~- ((Kcsdwhr (c)= ~f(o) cos~todco. (7)

Now let f(x) be an even function of x, defined for all values, and such
that it is uqual to e-,Acos c'x for x positive ; then we find

2 k K)= + P (8
2¢ A 2-•+ (,_A ,)2 p2+(It+ I,)2' 8

Consider this functi(.n f (x) as the initial value of a disturbance y which
occurs in a dispersive medium; then the value of y at .,iy time can be

expressed, in general, by

Y = A J (K)Ccos A(x- Vt) d(K+B J4(K)cos K (X+t)dK, (9)
4 ,0
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where A, ]3 are constants which need not be specified further in the present.
Col I1nectioll.

These integrals are of the type (6), and repruesent infinite wave-trains
travelling ill the positive and negative directionis respectively. We see froim,
(8) that when u is small, the amplitude factor 0 (K) consists practically of a
single well-defined peak in the neighbourhood of the value K'. Hence, lheni
the daniping coefficient /u is small, the wave-trains in question xiay be
considered as travelling in the form of a group K' of unchanging waves of
this specified structure.

This example serves to illustrate the propagation of a very long train of
simple harlnonic waves subsiding as they travel owing to a small damping
coefficient, and is of interest in connection with Lord Rtayleigh's general
proof that the group-velocity U is the velocity with which energy is being
propagated.* A small damping coefficient )u is introduced by him, so that
the energy transmitted is determined by the energy dissipated ; the argument,
which of course loses its meaning if I. is actually zero, shows that when P is
diminished indefinitely the rate of transmission of energy approaches U as a
limiting value. Similarly, although the Fourier transformation is inapplicable
when tt is actually zero, we infer from the above analysis that when IA is
diminished indefinitely, the disturbance is5 representable as a simple group of
unchanging waves of definite structure.

(b) Interrupted simnple waue-train.-Consider an initial disturbance
defined by

f(x)- 0, (-d < x < (1)

= !- Sinl K' (x-d), (a > d),

C A' sin K' (x + d), (x < --(1).
Then the disturbance is given by an expression of the form (9), in which

20 (K)= 2JfOe -,, sin t< '(w - d) cos Kj dc,

(K+c') eos K d-- gsinl K (K'-K) COs K d-. sinK (1
, + (,C + ,K'):' ', ++ (Kc - K):"

Now suppose It and (I very small, so that the initial disturbance approxi-

mates to an infinite simple harmonic form with a narrow range of
discontinuity ; we see that the graph of the amplitude factor k (K) is then
reduced to a single peak in the vicinity of the Value v'. We infer from this
example that a very long simple harmonic wave-train which is interrupted
for a short interval is kinematically equivalent to a group of unchanging
waves, of detinite structure ranging round the value 27r/K° of the wave-
length.

* Lord Rayleigh, 'Proe. Lond. Math. Soe.,' vol. 9, p. 24 (1877).

5



403 Dr. T. H. Havelock. The Propagation of [Aug. 26,

§ 4. Featurcs of the Integrals Involvid.

The integrals we have to consider in such problems are of the type

S=o (U) cos {f(u)} du. (11)

All such integrals we can treat in the same manner, adopting the method
employed by Lord Kelvin for the particular case referred to above (§ 3).
This method consists in supposing that f(u) is large, so that the cosine factor
is a rapidly varying quantity compared with the first factor; thus, much as in

the Fresnel discussion of the diffraction of light waves, the prominen .art of
the graph of the integral is contained within a small range of u f -hich
f(u) is stationary in valup, so that the elements arc then cumulative. In
other words, we select, from (11) the group or groups of terms ranging round
values '/0 of u which make

j '(u,,) = 0. (12)

In such a group of terms we may put

f(u) = f(uo)+ - (u--uo)2f" (no).

Then if we write a-2 for I (a--uo)f" (uo). the contribution of the group to the
value of (11) is given by

'o= y -0J" (,) cos If(u)o) + a , (13)

where the limits of the integral may be in general extended, as in diffraction
theory, to ± co, provided uo does not coincide with either limit of the integral
(11), and also provided thatf"(uo) is not zero.

Thus we have, from (13),

YO = , ¢r - 0(uo)i[cos {f (uo)}-sin {f(uo)}]

= .f"v } (G'o) cos {I(uo)±+ ¼r}. (14)

This is the sum of the contributions of the constituents of each grcup
around a central value vu given by (12), provided the value uo comes within
the range of values of i in the integral (11).

Iff"(uo) is negative, the corresponding result may be written

= _j, -(,o) {P (u,) cos {f(,,o)- jv}. (15)

We write down ior reference the similar pair of results for a group of terms
from the integral

Y = (u) sin If(u)} d(. (16)

6
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If f" (Uo) is positive,

Yo = f2 } 6 ¢ (uo) COS {f (vo)--4r} ; (17)

and if f" (?o) is negative,

Yo *[- ho} (710) COS {f(UO) + 17r}. (18)

The chief form in whicbl such integrals occur is

Y= J0(Kc) cosic(x-Vt)dx, where V =f(K). (19)

The principal groups are given by the values Ko such that
d x dd-{K(X-Vt)} = 0, or x = (iV) - U. (20)

The aggregate value of the group can be written down from one of the
previous forms ; if @U/lc is negative, we should have

?1 27r i

y0= -- "taulaj 0 (Ko) cos {Ko (x- Vt) + jir}. (21)

As an illustrative example we may suppose a disturbance y to be given at

time t by the expression*

y = cos / (x--Vt) dK. (22)

When x-Vt is large, the elementary waves given by (22) reinforce each

other only for the simple groups given by values /o for which the argument
of the cosine is stationary, so that

x-Ut = 0. (23)

This equation (23) defines a velocity U such that to an observer starting

from the origin and travelling with this velocity the complex disturbance has
the appearance of simple waves of length 27r/K0. Or again, we may regard
(23) as giving the predominant value of Aco at any position and time in terms
of x and t. The features of the disturbance will depend on the form of the

velocity function V ; we proceed to consider some special forms.

§ 5. Initidl Line Displacement on Deep Water.

We consider surface waves on an unlimlitedI sheet of deep water, the only
bodily forces being those due to gravity. IAt the x-axis be in the undisturbed
horizontal surface, and the y-axis be drawn vertically upwards. Let 77 be the
elevation of surface waves of small amplitude with parallel crests and troughs

perpendicular to the xy-plane. It can be shown that for an initial displace-
* Lord Kelvin, loe. cit. iante.

7
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ment given by n = cos K', without initial velocity, the surface form at any
subsequent time is given by

n = cos K Vt cos KT = {cos K (x-Vt) +coS K ("'+ Vt)},

where V = (Q/K)k. (24)

Let f(4) be any even function of x which can be analysed by Fourier's
integral theorem. Then, corresponding to an initial surface displaceiuentf(,),
without initial velocity, there is a surface form given at any subsequent
time by

O= 0 (K) cos K (X -Vt) K± +Ir (K) COS Kx 4-Vt) dK, (25)

where (K) J(0o) cos Kco dwo. (26)

If we suppose the initial elevation to be limited practically to a line

through the origin and assume that xf(x) d.c = 1, so that 0 (K) = 1, we can

use, as an illustration of the procedure, the form

S= cos K (x-- Vt) dK ++1 (X+V t)dK. (27)
0

We select from these integrals the groups which give the chief regular
features at large distances from the original Jisturbance. This cuinulative
group from the first integral is given for a given position and time by the
value of K for which K(x-Vt) is stationary, where V = /(g/K), so that

and, similarly, from the second integral by

K

Thus there are symmetrical groulps of waves proceeding in the two directions
from the origin ; for x positive we need only consider the first integral in
(27), and for x negative the second integral. Thus the predotiniiiant wave-
length at a point x at time t is giv(,n by

K = Yt14x'. (28)

Evaluating this predominant group by means of expression (21), we obtain
the known result

(lit / ' , \
77= YjCOs -fr (29)

At a given position, far enough from the source for the traiii to be taken

8
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as unlimited, this indicates oscillations succeeding each other with continually
increasing frequency and amplitude; also if we follow a group of waves with
given value of x the amplitude varies inversely as 0, or inversely as the
square root of x.4

§ 6. Initial Displacement of Finite Breadth.

If 1 is the range within which the initial displacement is sensible, the
previous results hold with l/x small; further, as Cauchy shcwed, gt2 l/4x'
must be small if the function O(K) of (26) is to be taken as constant.
Prof. Burnsidet has obtained approximate equations for the surface form due
to certain limited initial displacements not confined to an indefinitely
narrow strip. From the present point of view, such results can be recovered
simply by selejting from the integrals the more important groups of waves.

(a) Let the initial displacement be given by

f (x) = c_2/(_2 + X2), (30)
where a may be supposed small.

Then 4) (X) =f - 7 as&a2C + nce2

Hence from (25) the surface form is

7 = ct f' e-e Cos K (x-Vt) d + ijc, e-o cos K (x+ Vt) dic. (31)

For points at some distance from the range in which the original
disturbance was sensible, e-- varies slowly compared with the cosine term;
thus we may consider the integrals as made up of simple groups. For x
positive we need only consi ler the first integral.

The predominant value of s is thus connected with x and t by the same
equation (28) as before. Since the greater awplitudes are associated with
the smaller values of K and these have the greater values of U, it is clear
that, at a particular point, the disturbance dies away from its maximum at a
slower rate than its growth up to it. Using the previous results we can
write down the disturbance involved in the main group form as

9(2_)
I gt2  

_

The following results can be deduced. The cosine term varies rapidly
compared with the other factors, hence we in, . obtain the maximum by
considering the latter alone ; it is easily seen that this occurs when

lt = V/ ).
*Lamb, ' Proc. Lond. Math. Soc,' (2), vol. 2, p. 371 (1904).
t W. Burnside, 'Proc. Lond. Math. Soc.,' vol. 20, p. 22 (1888).
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Thus the maximum is propagated out with uniform velocity; and we see
that in its neighbourhood the predominant wave-length is 47ra.

(h) Let the initial displacement have a constant value A over a range of
breadth 2c, and be zero at all other points; then we have

sinKC
K

Hence the surface elevation is_1*
Af-Sin KC COSd/C+Aj ilI11KC(x s-Vi dcos - Cos x (x + Vt) dc. (33)7r 0o 7r 'Jo K

With the same argument as before, we consider the value of 7 at a point
as due to the most important of a succession of simple groups, that one,
namely, for which the argument is there stationary so that the components
reinforce over a considerable range of K ; and we can write down, from the
previous results, an expression for this group which is valid at least in the
vicinity of the travelling maxima of the disturbance. We have

4A ( x \i • gtgc 2 ) (34)

corresponding to Burnside's result in the paper already cited.
Here we have a succession of maxima given by those of (x4gt 2 )I sin (gt 2]4x2),

that is, at times given by tan -= 20, where 9 = gt2 /c4aO.
The period of the group that is thus cumulative is different for different

localities, and for diffrent times at the same locality; but the accumulation
is very prominent only for those times and localities which give a maximum
value to the amplitude, which has been graphed for the next example in
fig. 1.

The maxima here diminish continually in value, and are propagated each
with uniform velocity, namely, the group)-velocity correspowling to the
predominant wave-length in the neighbourhood.

§ 7. Limittd Train of Sinplh' Oscillations.

Another interesting example is the case of an initial displacement consisting
of a limited length of simtple harmonic oscillations. If f (x) is symmetrical
with respect to the origin, and is zero except for a range of (2n + J) wave-
lengths within which it is A cos K'', we have

+(6) Wa' Cos (21t + • (35)
(K) = 2 IA cos K'e, coO , x3 d, = 2) A (35)

.Iu Ki j

Hence, from (25), we have the surface elevation '7, of which we write down

10
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only the integral necessary for propagation in the direction of x positive,

that is,

If ?i is veyLarge, the main feature consists of the Component wavc s 1.iund

the vleI') tingeneral it is to lie noticed that a serics of subsidiary
comonetsapplears whose eff~ects may he of sufficient miagriitulle to lbe

app~reciable. lPut the compontmnt wvaves are Cumulative only for values of ar
adt such that

K = gI 2 /4a,2

which is the value corresponding to a stationary argument of the Cosine ; thus
the prominent effect at timie t, of amny group of p)arameter 1c, will be at localities
where Kc has the value Ic', or, else, a vatlue belonging to one of the subsidiary
maxima. The result may bie evaluatedl in the sameo manner as before
we find

1 6, X1t Cs( 1+1 7-rq/p2 
Cos ( I 2  

-7r) . (37)
(r) 16 AK'2x'-g 2t4 co 2 ± K 2) 4'2 1 C

*We can obtain the p~romninent travelling groups above referred to, which
this involves, by evaluating the maxima of the amplitude function

t 2 + . y (38)
T6~ ~ ~ 2 +',ý - 1 o 4K',.2*

The forin of this function is -showni by fig. I it is obtained by plotting the
curve

CO 17_4 csra 2, (39)

where a is p~rop~ortional to t, and, further, a equal to 1 corresponds to K equal
to K'.

The Curve represents the variation of the (listurbance at a given point with
the timie, neglepctingr the local variations of tile last cosine factor in (37") ; it
shows the grouped peopagration of an initial displacement Consisting of
44 complete wavc-lengthis of a siimplle Cosine wavie of wave-length 27r/K',

orX.
The main uiiolulat iry disturb ance appears as a simple group around the

p~redlomin~iant wv-ethX', mnoving forward with the corresp)oniding group)-
velocity ý.v/Q'/ K') or ý V. But i,! ad(owenc (if this mnain group of unidulations
there art, two 4or three subsidiary' group,, of sensib~le magnmitu('" with wave-
lengthbs iii the neighihourl omid of 9X/ 2, IPA'4, 9 X/6, mnoving witmi correspondinig
gztujIi-Veboci ties of 3N'/2.v2, MV/4, 3V/2\,/G. Thus in advance of the main

group we h~ave Slighter proipu o~(f lainger wave-lengths mov-ing with group-
Velocities which 1may hie larger than th~e wav-e-velocity of the original dis-
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'ýurbance if it were unlimited. In the rear of the main group we have also
a series (,! alternating groups, following each other much more quickly and
with their wave-lengths and( velocities less separated out than in the front of
the main group. Hence the disturbance in the rear, especially at distances
from the origin not very great, may be expected to consist of small, more

yA

Fia. 1.

irregular, motion resulting from the superposition of this latter system of
groups, thus there will be a more distinctive rear of disturbance nioving
forward with velocity IV. These inferences may be compared with some

results given in Lord Kelvin's later papers. Starting from a solution of the
equ.Itions for an initial elevatioa in the form of a single crest, the results were
c0mbined graphically so as to show in a series of figures the propagation of

12
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ain initial disturbance consisting of fiv~e crests and four hollows 4f lili'(x i-

inotely sinuscidal ,;hapec the following remarks are made:-*1 Immzediately
after the water is left free, thle disturb ance beginis analysing itself jilt) two
groups off waves, seen travelling in contrary directions from the middle linie
of the diagramn. The perceptil Ic fronts of thjese two groups extendi righitwards
and leftwards from the, end of the initi i- static group far beyond the. hype-
thetical fronts,' supposed to travel at half the wave-velocity, which (according
to the dynamics oft ( )sb ome Reynolds and Raylig~h, in their inmportanit anid
interest-ing consideration of the. work required to feed a uniform procession of
water-wavc-s) would lw the actual fronts if the free groups remained -2niiforni.
How far this if' is fromi being realised is illustrated by the diagrams of fig. 35,
which show a great extension outwards in each dlirection far beNyond distances
travelled at halt' the ' wave-velocity-.' W~hile there is this ,reat extension of
the fronts outward fi em thle middle, we see that the two groups, after
emlergencee fromn coexistolic. in the middle, travel with their ýears leavingP a
wi dening space betwoceii themn of water not perceptibly disturbed, but woith
very mninute wavelets in ev-er augnienting numnber f' dlowinr slower and slower
in the rear of each group. The extremxe perceptible rear travels at a speed
closely corresponding to the 'half wave-velocity.'. .. . ....... s the per-
ceptible front travels at speed actually higher than thle wave- velocity, and
this percep~tible front I ecomnes more andl more imxportanxt relatively to the
wvhole group with the. advance, of time....

This extract will serve to emiphasise the importance of strict definition and
Ilse of the word " gre up." A s imiple group, of whatever structure, has asso-
ciated wvith it a definite velocity depending only onl the wave-length, but not

so anl arbitrary limited displacement. Iii variou.i, cases we have found it

conlvenient to analyse such into its important elementary proups, each with
definite velocity ; in special cases the disturbance may be equivalent practi-

cally to one simple grelup.

§ 8. In itial Impulbr oa lie p 11Va/er.

Suip]ose that inlitially the Surface is h~orizonital, but that givenl impulses
are app~lied to it. Then for all)' giveni s Niametrical. distribution of imp~ulse
/' (x), Suitable for Fourier analysis, with no initial elev'ationl, thle surlface
elevation at any subsequent time is given by

'=r P~ JKYO(K) Si-I K (X--VI) f/K - 4 JK\V(K) Sinl K (T+Vt)dfK, (40)

where 4) (K) = J/e) COS KO) dW.

*Lord Kelvini, 'Phil. Ah-.,' ','u. 1:3, 1). 11 (1907).

13
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If we assume 0 (i) equal to 1, so that it is confined to an indefinitely narrow
strip of impulse (cf. § 5), we obtain the result corresponding to (29) for
initial displacement by multiplying that expression by the value of KV; thus
we find

t2 t 2 j (41)

For comparison with the previous results, suppose that

f (X) ,(K) =
42 j, 2'

Then we find the surface form as an aggregate of groups, each of them
cumulative and so prominent only in a limited region, given by

7ri cagqit2 (q,2cos ( -2 + •7r). (42)
-4p . C 4x

For a given place the maxima are given by
d"(t2e-a0/4x" = 0, that is, by - = I1/(ga)"

Thus the maximum moves with velocity ½ v/(ga), and consists of nearly
simple waves of wave-length 27ra. Comparing with the result in § 6 for an
initial displacement of the same character, we see that the maximum is pro-
pagated outwards with slower velocity, the wave-length at the maximum
being one-half the corresponding value in the former case.

§ 9. Moving Line Impulse on Deep Water.

Suppose that the line impulse of the previous section is moving over the
surface of deep water at right angles to its length with uniform velocity c,
having started at some time practically infinitely remote. Then we may
regard the effect at (x, t) as the summation of the effects due to all the con-
secutive elements of impulse, and we can obtain an expression by modifying
(40) and integrating with respect to the time. We measure x from a fixed

origin which the li-ie impulse passes at z,ýro time ; then we substitute x-cto
for x and t-to for t in (40), and integrate with respect to to for all the time
the impulse has been moving. Thus we obtain

' fm7rgp2 = ( Jdt V sin K {v--ct0--V (t-(t1)} di

- fj /oJ sinS K W +(± (t-t 0 )} -K

= ~ F uf iy si ic r~±(--•u dOc

-- F dI KV sin /{c +(c+V)u} dK, (43)
40 0

14
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where w = x-et, and represents distance in advance of the present position
of the impulse. We proceed to obtain now the important regular features of
the disturbance represented by these integrals.

With the notation of (19) and (20) we have in the first integral

f(K) = O-V = e-%/(g/K),
d

d' {"Kf(K)} =

Hence the required predominant value of K, which corresponds to a stationary
argument, is given by

c--- or K 9ut (44)uV1C ? 4 (cj6 + M)2'

Thus the first integral in (43) gives

cos {( + -177' di,. (45)

We choose again the principal groups of oscillations by the condition

du di 4 (w++ en)+ = 0, or cu -2g.

Now u must be positive to come within the range of the integral (45);
benc, if w is positive we obtain no contribution towards a regular undulatory
disturbance. If w is negative we obtain a series of travelling waves which
we can evaluate from (45).

We have

d2 j gu2  + ir -- , when cu =-- 2 a.
du2 4 ( +cu)

Hence, using expression (18), we obtain the value of the chief group from (45),
namely,

- -i 2  (46)

which holds when w is negative.
As regards the second integral in (43), we easily see by taking the principal

group in K that w+cu must be negative: thus w must be negative and cu
between zero and ru numnerically. Then taking the chief group in u, we have
cu equal to 2 w numerically. Hence there is no resulting group of %aves
falling in the range, and the second integral contributes nothing to the regular
disturbance.

We have then the well-known result that in front of the travelling impulse
there is &o regular disturbance, while in the rear there is a train of regular
waves, proportional to (46), with wave-length suitable to the velocity c.

15
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The same method can be used for waves on water of depth h, due to a

travelling impulse system. For in the integrals (43) we should have

f(K) = c-V = c.- l tanh ch). (47)

The group with respect to / would give a term proportional to

cos f 1Kf' (K) + j•r (48)

where K has the value given by

-_M/It =f(() + Kf' (K). (49)

We then select the group with respect to it by

L{7e2f'(K)} = 0. (50)

Using (49) we find this leads to*

f(K) =/0, or V = c = \/,b) V(tanh kh) (51)

Since tanh Kh/Kh diminishes continually from 1 to 0 as Kh increases from
0 to oc , there is only a real solution of (51) when c2 is less than .fh. In this
case we have regular waves of length suitable to velocity c following in the
rear of the impulse; when c is greater than the maximuni wave-velocity there
is no regular wa le form.

§ 10. Catjilhry Suifec Jf;aces.

In order to illustrate the propagation of an element of the Fourier
expression as a limited travelling group of undulations, we conisider another
form of velocity function. If waves are propagated over the surface of a
liquid of density p under the action of the surface tension T, it can be shown
that the velocity of simple waves of length 2w/-K is

V = VI(TL/p). (52)

Hence in this case the group-velocity is

U = .%/(TK'/p) = 'V;

thus the group-velocity is greater than the wave-velocity, and we shall see
how this affects some of the previous. results.

(a) Initial elc'ation consistingq f (2n + 1) siimple oscillations of wave-length
27r/K.--Ifwe consider the same p)roblem as in § 7 we have

A= A •c(s( 2 x+ -cosK(x-Vt)die. (53)

* (Y. Lord Ra3 leigh, 'Phil. Mag.,' vol. 10, p. 407 (1905).

16
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The predominant value of K, for given time and place, is given by

K - 4po,/9Tt2. (54)

The chief groups, each with approximately constant amplitude, are given by

7 = A' cos (2n + cos 1 (55)8 1'K x'12t4 -16p 2 X4  9i'Tt2  t 3  /

At a given place the maxima of amplitude are those of

t3 cos (2a + 47•Tpx (56)8 1 T'K'2t4 - 16p2X49A'T2

Fig. 2 represents the curve

Y = 23•- 1Cos 9- ,r (5 -1)

where a is proportional to the time and a equal to 1 corresponds to K equal
to K'.

2 3

Fio. 2.

Comparing this with § 7 we draw the inference that in this case the
perceptible front of the advancing train is more clearly marked than the rear
and advances with the half-wave-velocity corresponding to K', in agreement
with simple observation.

(b) Moving line impulse.-A line impulse at rest leads to

17= Cx~t'4Cos( ~+1').

Consequently a moving line impulse will give

= A (f + c): Cos {-ý- ( I + ~r }(I.(8

17
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Then we choose u so that

d (+--cui) 3 -, -- 0, or u (cu-2w)(M+cu)2 = 0.

The value giving a regular wave pattern is the positive root

cu = 2w, for w positive.

Hence in this case we have a regular train of waves of length suitable to
the velocity c in advance of the moving pressure system, with no regular
pattern in the rear.

§ 11. Water Waves due to Gravity and Capillarity.

If we take account of gravity and the surface tension together, we have the
velocity function

V = (TK +g/l)k. (59)

Henced 3T+ (60)
1A(V 2 (TI3a+gA)(6

We have not here a simple ratio U/V, independent of Ac. The velocity V

has a inininium c,. for a certain value Ac., equal to (f /T)i, and for this value
U is equal to V-as in fact follows from the definition of U. For <ACm, U
is less than V, tending ultimately to JV; while for ic > Ac, U is greater than
V and approaches as a limit JV.

If we consider a travelling line impulse, the whole problem of finding the
principal groups is contained in the equations

m+cu U 3Tu2+ "
u 2 (TV3 +gx)i (61)

- V = (Tic -+g/x)i J

Hence c212 -
4M2  =

C4C- c.. 4  2T
where the positive sign is taken for w positive (in advance of the impulse),
and the negative sign for w negative (in the rear). Thus there is no wave
pattern unless c is greater than the minimum wave-velocity c. ; and if so
there are regular trains both in advance and in the rear, the smaller wave-
lengths being in advance. With the ratio c/ca large, the results approximate
to very small waves in front and waves in the rear with K equal to g/c 2.

§ 12. Surface Wares in two Dimensions.

Suppose that the initial data instead of being symmetrical about a
transverse straight line are symmetrical around the origin. Let the axes of

18
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x, Y be in the undisturbed surface and the axis of z vertically upwards; we
write a for /(.T2 +y 2 ). Then, corresponding to (25), the surface elevation "
due to an initial displacement f(w), set free without initia] velocity, is
given by

Jo (-c-) cos (xVt) 4) (K) xdw, (62)

where P (K) = for(a) Jo (Ia) ada. (63)

For an initial point-elevat~on we may take for simplicivy J6(K) equal to
1/27r; then we have

+40 (Jom) cos (KVt) Ad/

= -! ~o x o 3 coo~ (KN't) Kdcd

1 
cc'

-" a3 Jcos AC (w cos 6-- Vt) kdK
27r ffo

+ j Cos x , cos + Vt) xdK. (64)

For deep water we separa6e a real principal group from the first integral,
with respect to x, around the value of x fyiven by

= COO V__ .
tK

This is replaced by the equivalent form

3'ta f W/2 dfl i gt2
_- COS, COScos 4, os _i•), (65)

Considering now the range for 8, we can again select the principal group of
nscillations from (65); it occurs at 83 equal to zero, so we take one-half the
result given by the expression (14) and obtain the known result

0t2  qt(
COSr cos1- (66)

Similarly, for an initial point impulse we have, instead of (64), the
expression

/2 ma2

- , d f cV {sin K (w cos R-Vt)-sin K (W cos3+Vt)I)}•dK, (67)2gp~r2 Jf W U

leading in the same way to the result

-- 3 sin (68)

19
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§ 13. Point Impulse Travelling over Deep Water.

Let the impulse be moving along Ox with constant velocity c; let B be
the position at time t, A at any previous time to, and suppose the system to
have been moving for an indefinitely long time.

3/ 
Pf~.y)

i_'

Fio. 3.

We have OA = cto; OB = ct;

PB =-w = {(ct-x)2+y2ji;

cos a = (Ct-x)lM.

Then in (67) we have to substitute {2 - 2c oj(t - t)COS t+ C2 (t )2

for 3, t - to for t, and integrate with respect to to from --oxto t; we obtain

• 2g�l 2 IJf fdu JoV [sin K (cos 9 {W2- 2cuw cos a+ 9C1 2} j- Vu)

-sin ,C (cos {w2-2cuw cos + c2u}i+ Vu)] ,Kdx. (69)

With V = (g/x)i, we select the group around the value of x given by

.,-1 = 4 cos82 (W2- 2cuw Cos a + c2u2)/gu2 . (70)

By using the formula (17) we find

9 *O, fw/2 u4 d$8
= i j 0 Jd cos0 G , (M2- 2euw cos a + C2u 2)1

coB 4cos$(w2_2cuwcosa+cuF)h +U * . (71)

Selecting from this the chief group which occurs near , equal to zero, %e
find

2-p j(w2-2cumcosa++cu2)'! sin, 4 (w2- 2cu m cos a + cOu)" (72)

Finally we choose the chief groups of terms in u from the condition

ad gu2 (w2 -2euw cos +cda 2)- = 0; (73)

20
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that is, from c2-1 cos 2+ 2 r•2 = 0, (74)
T o T+ 2 (74)

or cu = IM {J3 (.os 2+(cos :•C -}, (73)

We have then different cases to consider according to tihe nature of these
values for cu, remembering that cu gives a position of the moving impulse, at
time u previously, for which the waves sent out reinforce each other at the
point (w, a) at time t.

(i) In the region where 9 cos2 a < 8, both roots are inmaginary; thus the

previous position is non-existent, and there is no princil)al group in the

integral (72). Hence all the regular wave pattern is contained within two
straight lines radiating from the point impulse, each making with the line of
motion an angle cos- 1 2 V/2 13, or approxiniately 19' 28'.

(ii) When 9cos2t<8, there are two different real roots for cu. Thus we
have two chief groups in the integral (72), corresponding to two regular
wave systems superposed on each other.

At any point P within the two bounding radii the disturbance consists of
two parts : one part sent out from A at time Uv previously, where

OA =½{3cosa+(9cos 2 a--8)i} and vi,= OA/c; (76)

and another part sent out from B at time 12 before, where

OB = im {3 cos at--(9 Cos 2 a-8)i} and u2-- OB/c. (77)

Fio. 4.

We have then two wave systems, which may be called the transverse
waves and the diverging waves; we shall examina them separately.

(a) The trannsverse icave systh,',.-Taking the larger value of Cu in (76)
we find

-2-2euu cos,+C2
j j=u- j { 3cos 2 ,-2+cos ,,( 9 cos 2 t--8)i},

,U - 18 cos'-8 + 6 cos a (9 coý, -a-8)j
4(W -- 2cuwcos +c:) ltic2 {316 os2,1--2+cos a (9 cos --8)}"

(78)
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Further, when f' (u) is zero, we have

f" (u) = -1qcit (2o, -3m cos a)/(m2- 2cru cos a + (.2,, 2)1. (79)

Using the formula (17) we obtain the particular group of terms from the

integral (72) as

3. r..27r OS (U 7 (0
217rp (w2-2cit mcos a+ Vl.f")J (-I,)

in which the special value of u muss be substituted.

Evaluating this expression we o1tain

Sq2 _{ - 8) +(9 o'- }

2-rI-pc m 1(93 os._)• (3cosa -2+cos a (9 cos2 .- 8)'}J

COS {3,- 2 f3 cOS . +(9 cos2--8)fI2 i i7r (81)._16c,2 {3cos"•-o-2+cosa(9cos~a--8)•} ¼r (1

This represents a system of transverse waves travelling with the

originating impulse ; the amplitude for a given azimuth a diminishes as W-1.

On the central line, where a is zero, this reduces to

f,= /COS -- i'r), (82)

corresponding to simple line waves of length suitable to velocity e on deep
water, but with the amplitude factor m-f.

Following the crest of a transverse wave we have

1{3cos a+(9cosS2t- R)}2 ¼vr = (2n+ 1)7r, (83)

16c2 {3 cosa-2+cos &(9 cos2--8)Y}i

where it is a positive integer. The crests cut the axis in points given by

M -= c2 ((2n+5)7r/g, (84)

and cut thQ radial boundaries given by a = + cos -,/2/3, in the points

= 2•2 (2n + -) ,,r/V 3 . (85)

Consider the variation of amplitude following a crest ; we substitute for w

from (83) in (82) and obtain

,,UOst. t3 cos at + (9 cos" (86)
(2n +51 (9 cos" o -8) t {'3 eco a -- '2 + cos a (9 cs2 a8)'} ()

This becomes infinite at the outer boundary, when a is approximately

190 28' ; this is due to the failure of the method of approximation and we

shall consider it later. For the present the following table of values and

curve show that the approximation ,hdls up to angles very near the limit.
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Table I.

relative amplitude, along the same crest at (liftrentt azimiuths.

0 1
1 "03

12 1 "l
is 2
19 2'9
19 15 3'5
19 27 7"5
1, 28

(

(b) Thc direryiay WIr S#Ocm.-By taking the sinaller root for cu given by

(77), we obtain the system, of diverging waves: m e need only change the
sign ,f the radicle in ordcr to write down the corresponding results in this

case.
The crests of the wavs are given by

3mycos 1 9o2~22__ 2_ r.1(_w_' {3 ,', •-- (9 1'o? .- 8 )•} A -- ( 2_fl+ •) 7, (*87)
(6'• {3 cos" -2 -- co,: of (9 Cos*- a• - -8 -

When a is zero, m is also zero: thus all the crests diverge from the point of

impulse. Further, we have

cos-' /2 ; m2= 2,"(2n +)7r/y,/3.(88)
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The law of amplitude along the same crest is given 1bv

couost, 3 cos a-(9 (, S2 2-8)

(2n +) (9 c C _-8)t { 3 cos2 o- 2-cos a (9 C,•_s -8) - (89)

In this case, and for the same reason as for the transverse waves, the
expression for the amnditude lends to intinitv at thlie miter end of each
diverging crest ; we shall find an approximatil in the next section. ]1ut
(89) becomes infinitely large for small values (,f oe, Frml (88) we see that
m also becomes small, so that the approximation fails ; further, we should
expect the expression to become infinite near the impulse (ill aceiziit of its
special character. We can show how the infinity disappears if we remove
this cause. Consider, as an examl)le, a Iiinte impulse, ,tf ctmstant inutensitv
over a circular area of radius d round the i igin, and of zero value ,mtsi4le
this eir le. Then, as we see fromi ( 3), we shall have the same expressiolns as
before, with a new factor given by

S=

- C J, (KC) , = C I-K 1.; (K d).
o

Now in the final group for the diverging systein we have

(-) a :•cs=-(9 cvo• -- S)' a

8(," 3 co05 2 2-- 2 - cos (9 cs, 2-8)

Hience the additional factor due to o (K) is propo1tional tO

3cos2 a--2 -c-mm_(9 cos 2 -- 8)2' fq d 1.3 icos --(9 es-- }
cos a - (9 cos- -- 8)!}8 o .- 2 -cos (9• a-

41114

When a approaches zero, the mrgumbont 4, the Blessel,'si fuict i,, i nr,4
ijde tinitelv and we may use the asympltotic exlpa-iiim: illii (90 is
proliortional to

{13 (:oS2a 2-2 - co s a (9 cos('•- S )9l
I,, CO cos a -(9 c s . - '}

If iiow we nmultiply (89) by (91) we d ,taihn a limit ing value of the
aiilplitu tde of the diverging systeo iiemar t],e axis : it is h'u,,rt1witial to

( 2 n +)- {+)e,,i -/( 9  " '-"

ii the infinity near the axis has disal plarM .
(C) 7711, line of cl/sps.-Wv shall isiile now thle iiitilitv whieh o,.ce'urs

at tk outer bomdary of the two mtave systems, lvheii U is cs - 2N/ 2/3. At
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any point P the lines of constant phase in the two wave patterns cn, ss at ail

angle 0), which is easily seen to be given by

tan q - 4 cosec (9 cos2 -8). (92)

As, P) apFroaches either ratdial boundary the two waves ultimately have the
siame direction, and they will ,,so hiavw the same phase when they meet;
ccnsequeiitly an abnormal elevation is to 1)e expected along the two outer
bouinlaries, where the two systems unite in lines of clsps. As we see from
(75), the two points A, B coincide for a point P ol the line of cusps ; and it
is on account of this fact that the previous al)proximations fail for both
systems. We have in fact a double root of the equation for finding tile
chief groups of the integ-ld (72).

Consider the integral

y = f 4) (1) sinl {f(1)} da, (93)

when vu is such that

f' (7) = 0 ;.f (an) = 0.

Following the previous method, we have

f(u) =( 4 (,,,,) + (-,. (,,11.)3

and provided ,f'"(a,,) is not small, we (.ani write the value of the group for
the double root as

y If C if'o,} s4(a ill(~+ o (94)

= ""- 4 (III) silnf( u1) c(s a.a d(.

Now at the line of cusps the integral (72) becomes

•" = . _ ,a d __.qa2(95)

p. '- s ± ,. 1t')2  4 ( ar;,- 2 + I) "

And we findl that ,,,,,= r/ 2

Inakes .' (a,) = 0 "' a,) - 0

U,f ~ ") = ,q'' /,/ )a "'' .. . a,,) - 3q c:xi (/2r '-2.

Al.") We h~ave Co's a:1 da~ - i 7r/ I' (O .

11011ce, sill Ist it lti1v these values, wve havc

,:-i , (96)
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WVe notice first the (liffTereCC Of phaMSe Of 4-17 betWeen this and thle
expressious for the separate, s 'Nsteius %here, thutZv (ut tile outer bioundlaries;

this is alialo~i ins to thle change of" phase along iln optical ray inl passing a

focus. We saw that the separate transverse and diverging crests converged

towardls points of equal phase, onl the outer biounidaries given 'by

hut with the result given in (96) we see that the actual Crests Oil thle line of

cuspIs are given by

'1 (97)

The amplitude of the cusped waves diminjishies at a slower rate than thle

transverse waves, so that their size. becomes relatively more imarked towards

the rear of the disturbance. Tho amplitude of successive crests is given by

(96) and (9 7) as

= 2~F(~) 2u ~(98)

The amplitude of successive crests of the transverse waves where they cut

the axis are given by (82) and (84), aild we find

2-, q(99)

Taking the. ratio of these twvo (1lanti~ties we have anl expression for thle
magnitude of the crests at thle cusps comlparedl with the transverse crests on
the axis ; approximiately

- 4n+ (100)
~If~t (211+ 3 1

The following table and curve show how the successive crests at tlw axis

anti outer line diminhishi, and exhliiit tlheiri relative mnagnituides for (different

values of n.

* ()ii Aulgust 81, 188S7, Lord Kelvini de#livereod a lecture " on Shi ip Xwave~s "heforte the
Iinstitutioni of Meudiaiciael Eiigiiits at Ediiibmigli, in which lie appean, it, hia'e shown ;I

modlel ill scale of the tlieiretical wave Patterii itr(Mlucel by at Shipt. ( )nly at &lagralini(if
the( crust vurves lias beenl publ.ished (I P'opular Lectiures,' vtL. 3i, p. 4S2) ; tlie formi tf the

cresýt--:grres with that d~iucel above, e-XIcltt (If CturSO iear the (list ullthic or tile
raia~lj bltiljiidariS. It has.-, iii fact, bevin verified that otn suilistituitiitg. his exltres*,it u for

X,./ill terims of it jiantitlet,,!,W ill thi prt -'iit qtuatioiis', uthe lattIr are sittisticil idiiticil yv.

Thie law oif aiiiplitli'le Along tbO WAVes is no1t -Stated lty Lord Kelv~ini as P'rof. Lanid

couijetures, his itsiili stvills toJ have livel oh taittiti Ly ail apptlicationi (of the( idea of .zn~oip-

Velocity (11. Lp~mih, "l lydrodynai-tos , 1932 vin. pp.' 106/7.)
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Table I1.

5 15 35 23
10 108 286 26
15 9 25 2'7
20 7"7 23 3
50 5 17 34

100 3"6 13"6 3'8

? 00 85 65 45 25 5

FIG. 6.

§ 14. Point Impulsefor Difrrent JMedia.

Consider a point impulse moving with uniform velocity c over the suirface
of a dispersive mediLIn for which U and V are respectively the group)- and

wave-velocity for a value K of 27r/X.

,0

0M,4 C?.,' 0

Fwo. 7.

lJet thle disturi ance foin lhi-e ijti}vvilmu wNcli in the . .ho f.

a 1point A (-4,11ibine so as t, ptrMluce wa,1Ves K at I at the p)resent hIioint

when the imlipulse is at 0. Then the 1)prolbli of filnding the p1,sible
persistent wave systems Is contained in the equatio ns

A 1P V
- ,�rC•oS V; (101)

that is, in (rn:- 2,un, cos 2 * ,')'i/t = U, (102)

r(,'--n cos ,)/( ---2, rn , ' = \. (.103')

The wave pattern depends, ,11,on th, c.haracter of the positive roots of

these CqIati, ins for ,'t ItI K C; each such value of rio delinu.s a wave system
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425 Dr. T. H. Havelock. The Propagationt ?f [Aug. 26,

with wave front through P at right angles to AIP, and each system can be
expressed in the form

= F (, ). cos {K (M2 - 2COS aos -+,,•,•' + ,

with cm and • as functions of m and a.
Suppose the medium is such that the group-velocity bears a constant ratio

to the wave-velocity, that is, suppose

U -- (a+ 1) V, (104)

where n is independent of K.

Then the equations (102) and (103) lead to a quadratic for ca, niamely,

(1 -n) C2 u2 + (n-3) curw cosa+ 2 M2 = 0. (105)

Hence we have the roots
cu [(3,)-os-v/{(:3--,t)cos'"•-8 (1 -- ,)}j. (106)CU = M- [(3 - v,) cos a (3-1) O2o

2 (1 -)

We shall examine some special cases.
(a) O <n< 1.-There are two positive values of civ which are real, provided

cos 2 a > 8 (1 - it)/(3 -),,)2.

Thus there are two wave systems, transverse and diverging, with a line of
cusps corresponding to the double roots, and the whole wave pattern is

included within an angle

2 cos-' {8 (1 -n)}i/(3-,), (107)

which increases with ?z.
Tle previous section on deep-water waves is the case of v zero.

(b) n? = 1. This is a critical case, implying coincidence of wave-velocity

with group-velocity, and consequeitly no dispersion.
(c) n = 2. This is the case 'f capillary surface waves. We see that there

is only one positive root of ýhe quadratic, and it is real for all values of a;

the root is
CU =m a (cos 2 +8):-cos a. (los)

There is only one wave system, but it extends over the whole surface,

along the line of Motion K is zero in the rear, while in advance of the
inimpulse it is of value suitable to simple waves moving with velocity r.

(d) 'v = 3. This holds for flexural waves on a plate ; there is one system

of waves extending over the surface, corresponding to the root (-• - M.

The crests, and other lines of equal phase, are given by the curves

m sin3 Je = constant.

(r) Grtvily cad capillaritq combined.-The relation between U and V is
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not a constant ratio in this case; we had in § II the expressions for the two
velocities as fungtio:s of K. It can be shown that in certain cases the
equations for eu lead to four possible roots, giving four wave-branches through
the point.

§ 15. Point Impulse moviny on. Water of Finite Depth.

With the same problem we have now, if the water is of depth I,

V = tanh Ki)

U = W!tanh K " -(sin2•, (109)

If we write
U = 1( V,

n varies between 0 and 1, being dependent upon the value of K. We use the
notation

gh = tanh Kh 27h (110)
C2 Ki sinh 2Kh

Then m and n are monotonic functions of K with the following limiting
values:

K O m=1; nm =1.

The two equations for c( and K become
(in- 2,,,, cos + e~u2)& =- ½(pn,,).•(l +n•), (111)

Cut(M2 M COS e + 2 (2)-l

(IT- 2U cos at (112)(02-- .2(.U M COS a + C.21t)j

From these we obtain

cos2  !--pn (I+ a)} 2  (113)
1 -- ,1 + n) (3--)

S= 2 [(3-n) cos % + {(3- n)2 cos2 -8 (1-n)}i]. (114)
2 (1 -7t)

Combining the last two we 1have the values of el as

ei-- {l-- pm (In)(3--)}t, (115)

or cu = M/{1-jpm (1 +,,)(3--n)}) (11)

We Lave two cases to consider according as 1) > or < 1.

(a) c<v'(yh); p>l.-From (114) we see that the equal valbis of e,
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(letiniug the lines of cusps within which the wave pattern lies, are given by
such values of K that.

- 8 (1-n) (117)
(3 -n)2"

Whatever the value of K, n can only lie between 1 and 0; hence o can
only lie between cos-12V 2/3 and 7r/2, or between 19' 28' and 90'. The
smaller value is the limiting angle for deep water, when i is considered zero
for all v1lues of K.

We see from (115) and (116) that the equal values of ca occur when

Jimp, (I +it) (3 - i) = -L (I--n,,

or when. 'n (3--n)= 2 p.

The greatest possible value of nt (3--n) is 2 ; hence we have the limitation
p>1. Only in this case is there a double wave system with at line of cusps.

As p decreases to 1, that is as the velocity c approaches the critical value
/(gh), Im and i at the line of cusps both approach their limiting value 1 ;

and at the same time the cusp angle widens out, approaching a right angle.
Further, along the axis we have

Jim = 1, m = 1/p = c2 /gh.

Hence on the axis the transverse waves are the simple waves travelling
with velocity c on water of depth h. As p decreases to 1, the wave-length
increases inletinitely ; mn, and consequently n, approach unity on the axis.

Now if n is 1, the group-velocity U equals the wave-velocity V, and the
medium is non -dispersive. Thus at the critical velocity c, equal to -'(gh),
we Lave a source emitting disturbances and travelling at the rate of propa-
gation of the disturbances; we see that the whole effect is practically concen-
trated into a line through the source at right angles to the direction of
motion. Tihis agrees with observations of ship waves when approaching

shallow water at the critical velocity.*
(b) c>,(qh); p-- 1.-We may now have the greatest A'alue, unity, of m;

it is easily seen that for less values of m and I the values of a given by (113)
becmno smaller.

At the outer limit we have

cs" = 2 -I -, sin2  = p- /h,'. (118)

Consequently the wave pattern is contained within two lines mnaking with
the axis an angle which diminishes as c increases.

S'Trans. liit. Nay. Arch.,' vol. 47, p. 35:1 (1903). (comnpare also the mnIotio(I of anl
chlectromn uith the velocity of radiati,,n.
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Further, since equal values of ct, are given Ly
g, (3-n) = 2/1),

we see that there are no cusps, for the left-hand sid.* cannot be greater than 2.

The values of cm given in (115) and (116) correspond t,, the transverse and

diverging waves respectively. If we substitute (116) in equations Ill )

and (112) we find that they are satisfied identically ; hence there is always a

diverging wave system. On the other hand, if we substitute (115) we find we

imust have
p1n -or m (2-t )

1 -11)m(1 + n) (:3 - )'

But the greatest possible value of the left-hand side is unity.

Hence there can be a transverse wave system only so long as 1 is greater

than 1 ; when c exceeds ,/(.qh), the transverse waves disappear.

At the outer line given by
sin2f 2 =n = , 1,

we have, for the diverging waves,
C(i = se (1--,- = a see 2.

Hence the outer line forms a wave front of the diverging wave systelul.

We see also that the other wave fronts (ines of equal phase) are now Con(cavet

to the axis, ins'ead of being convex as when 1) > 1. There is no definite inner

limit to the system as the axis is approached, the wave fronts beecmu.e no r(

nearly parallel to the axis, and the wave-length diminishes indefinite.Ix.

Finally, as the velocity c is increased, the angle 2 diminishes, and the reiular

waves are contained within a narrower angle radiating from the centre of

(listui-r ene.
The following tables JIl1) and (IV) and the curve in fig. 8 show how the

angle a varies as the velocity c is increased up Lo and boyond the critical

velocity.
Table III.

xh at cus.ps. p. a. C ,"(qh).

10 7 19 28 0-3 I
8 5'4 19 2S 0'42
6 4 19 29 05
5 3:13 19 30) 0-55

4 2 '7 19 37 0 "6
3 2 20 1S (1 07
2 1 '5 23 42 O'S2
I I A1 30 19 0'92
II 5 1 's 59 27 0(-96
W2 1 7s 0-99

o 1 Ot1

-- c',,, l,'S •-,) (3-n).

N'ee* Editorial Note on page 33.
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Table IV.

p. C .Ein ' ,/(,). S

0.99 84 I. '(05
0"5 45 1 '41
033 35 1 "7:
0 25 30 2
0"11 19 28 3

90' -

Fio. 8.

, \. . ---
•.• . . . 0. .......

- • - 1%"

-Z tSeuL note' by editorS/- on next pa~e,//

F3 9.
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With the help of these results, sketches tire given iii fig. 9 to represent
the change in the wave pattern, as the critical velocity is approached and
passe81.

tEditorial Note [The shapes of these wave-fronts have been recalculated by
Inui (Physico Mathematical Society of Japan, Vol. 18, pt. 2 11936]) who
does not agree that they are concave to the axis.]

IIAMlltioN A,4i' SoNi, Primttr, lz (m rdmor.) to, Itis SlajtO , St, .Maarlt I.Imr.
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§ 1. Ia/roeluction tofld Siollimirey.

The tlieoretie.al iiivesti-ation of the total resistance to the forward motion

of a ship is usually simupliftiedl by regarli ii it --L, tht sum of certain

ilidelpenli~ft termis Such as the frictionial, % ave-making, and eddv-iiaking

resistances. Time experimienital study of frictional resistance leads to a

formula oif time type
R, ~ , 1

where S is the wetted sutrfacv, V the speed, f a fricetional coefficient, and tit

anl ii iile.x wvlmn valuie is allout 1 *8:1.

After dedu ct in,', fro m thmm t otl ves i ~tayiee the. frictio nal part, calculate I fro m

asuitable formimia ot this kimlid, til' mm1itiiaimmie iN Cadlld thle residuary resist-

anice. (if ti is tile wave-imak iig, nmm 's isi ame Is thl e momist i mmportan t p art ;the

present, paper Is ilmain.,-iI t') dtha 5tOV. wv.0ak eiane an (I Aciiefly

its variati'l 'ii ith tin' siedi ofn theV Shipl. '1110It~mdymimi theory ~IS i

stamils, al. present niay k.' slAt 'l 11ll, v. i

Silimplify time mroimlmloii first by noivmi (lvli I.,o ;di' tha.t is, Miil1hmosO

the( 1inouiiolm tim bV " ill twit (himmmmmitmiiei11 Ill spae.' teCrkStS amlid tioughsn being

in iumhiite prlm'lhm1lihues at rigtmit 1,11e th the directionl of mmotionm. hiurthur,

suppommse that thet mmmpifii ion as staiteui at soluivi memnote hierii umlamd hams litellm

mmd11li lliedl mmiifom-imn. We knmow t hat, except very near to time travelling

distm-irhmaci, tii'ull- -tvaci- Ijintioll iiillP 1114. ivtronlsists praciticatlly ok, sinijlo

jmii di a~l (4' it lemettl smitAmtli to- t hi velocity 1tit ill( (lemist imrbanmem Lil
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a be the amplitude of the waves, and w the weight of unit volume•: of water;
then the mean energy of' the wave motion per unit area of the water surface
is ,,wCC". Imagine a fixed vertical plane in the rear of the disturbance the

space in front of this plane is gaining energy at the rate Aw,2 v per unit time.

But on account of the fluid motion, energy is supplied through the imaginary
fixed plane to the space in front, and it can be shown that the rate of supply
is .wa 2

11, where u is the group-velocity corresponding to the wave-velocity v.

The nett rate of gain of energy is Lwa
2 (v-u), and this represents the part of

the power of the ship which is needO, at uniform velocity, to feed the
procession of regular waves in its rear. An equivalent method of stating

this argument is to regard the whole procession of regular waves from the
beginning of the motion as a simlple group; then the rear moves forward
with velocity u while the head advances with velocity n', anU the whole
procession lengthens at the rate v--u. If we write Rv for the rate at which

energy must be supplied by the ship, we call It the wave-making resistance,
aid we have

R = .wa2 (v--u) V. (2)

We notice that R is the wave-making resistance in unn'rm motion; it is

only different from zero because i differs from v, that is, because the velocity
of propagation depends upon the wave-length.

In deep water, u is ' v, so that R is 111.a
2 . In the application of this to

a ship at sea, it is assumed that the transverse waves have a certain average
uniform breadth and height, and, further, that the diverging waves may be

considered separately and as having crests of uniform height inclined at
a certain angle to the line of motion; if the amplitude is taken to vary as
the square of the velocity, it follows that R varies as q,

4. Several fornwke

of the type R - Av 4, or R = Av 4 +Bi, have been proposed ; although these
may be of use practically by embodying the results of sets of experiments,
they are not successful from a theoretical point of view. Recently many
such cases have been analysed graphically by Prof. Hovgaard ;* the general
result is that a fai, asgreeunet may be made for lower velocities with an
average experimental curve neglecting the humps and hollows due to the

interference of bow and stern wave systems, but at higher velocities the
experimental curve falls away very considerably from the empirical curve.

The methocd used here consists in considering the ship, in regard to its
wave-making properties, as equivalent to a transverse linear pressure
distribution travelling uniformly over the surface of the w, ter. Taking
a simple form of diffused pressure system and making' some necea,_sary

W W. llhvgaard, ' hist. N Ay. Arch, T'ianm.,' v%.). 50, 1.). 5, 90SN.
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,ass.um11lptionls, we obtain ain expression for the amu' litude ot the trancverse
waves thus originlatedl, and for the resistance R, in which the velocif v enters
in the formi e-a/v2 ; this fun~ction is seen to have the general character of the
exp~erimental curves. Adding on a similar term for the waves diverging
from bow and stern, and, finally, in the manner of' W. Froude, anl oscillating
factor for the interference of these boxv and stern waves, we find a formula
for the wave-making resistance of the type

IR = aeL/ 2 I { 10 +, r-Y cos (?n /,1 2)1 e-/I

In this env:ression there are six a(lJustable constants ; we proceco to reduce
the number of these after transforming into units which uitilise Froude's law
of comparison. We use the quantity c, defined as

(speed in knots)/V(length of ship in fer~t),

and we express the resistance in lbs. per ton displaceinent of the ship). All
inspection of exlperitneiital curves, andl other cons id erations suggest that the
quantities 1, rn, n maliy be treated as universal congtairts ;with this assumption,
a three-constant, formula is obtained, viz.,

IR = ae -2 ,3/
9

(:
2 +8fi (I -,y cos (10-2/c 2 )l C-2'3 ,1,2, (3)

where the constants a, 8i, y depend upon the, form of the ship.
We then treat (Q8)) as a semi -eipi rical formula of which tire form has been

suggestedl by the preceding theoretical considerations; several experimental
mnodel curves are examined, andl numerical calculations are giveni which show
that these canl le texlressed very well by a formula of the above type.

Since the constait, a I.- found to be small comipared with ei, it is miot
allowable to press too closely the theoretical interpretation of the first term,
especially as the experiniceirtal curves includle certain smuall elements in
add~itionl to wave-roakiner resistance. If we limit tire comparison to values
of v troinu about 0-9 up wantls, it is possiblie to fit the curves with an
alternative formula of thie typte

It,= 811 -. y cos (10-2/C 2 )) /'

-nd sonie examlules of this are given

Thbe efect, of finnit" dopthr of' water is considered, and a modification of~ the
formula is obtruined to exprcms th~i~ (fleut a-s far as ))ossiblc!. Starting from
anl expe-Linleurtal curve For deep) water, curves an.-2~c i, ronli thme formu!..,,

for tire traitsverse wave resistance of the same inuttel wit~r diflierent di' pths;

althoughI curiuain simplifications have to be made, thle curves show the

character of the effect, anal allow an cstiniate of the stage tat whichl it becomleS
appreciable.

Ini the last section the10 q14es.iona ii f othier types of pressure d istribut~ion is
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(liselusseil, and~ one is 'I V'011 ill illti lut 'Iioln Of' 1I I W;aVe- in ikinog resistance of

an entirely stidinei-cged sn.

§ 2. J'i, Sr .Iflii /nruri'liuo~ ov,,r Livup II a/

It is known that a luwel'si'-(ilrac travelli ng over thle surface,
4 Water N~ith iii' Ifolrni veboiity j- at rigrh. augle.s to its lengýthj gives rise to a
regular wave-t~r-tn Inl its rear (if c( ual wave-vel~oeiuV.* Take tlie axis of xi

ill the direc-'t ion of in otion aud let the pressure sys ciii lIe symminetrical with
reISpect to tie*(, 1rH- in 11114 givelIný 1) y f(i') ; supp~lose- that 1(x) vanlishesq
for all lm ut :1Iiuli -,,Ines Of -, for whijca it beiioiues infniite so that

fJf x) dii 1), The regular part :f the surface dlepression 77 due to thjis

integral pressure 1) practically Concentrated! onl a line is givenl by

1Z='2 ,iP 1 S jiIy (4)

The part of the sijifiuce effeci which is ne-lected inl this expression cons~ists
of a local disturb~ance svininietiical wvith reMI c!t* to the ori-in anid practically

Confiniedl to its neig! I bounil ood.

Ii, we suippose P' conistanlt, the amnplitude inl the regular wave-traiii and
the consequent dIrai:i of energy tite to its maintenance diminlish with tile
velocity.

To Obtain results in any wvay comparahle with practical condhitions it is
necessary to suppose the p'.essure system diffused over a strip wvhich is not

infinitely iiarrow.

An illustration is afforded by taking

.= , 2 , (5)
7r 2 +x~

where a is small compared with the distances at which the regular surface

eflects are estimated. This type of piessure distribuLtionl is sh1own in fig. 1.

o

*For a discussion of the wave pattern, ree Lamb, I'Hydrodynamics,' § 241 et seq. ; or
Havelock, 'Roy. Soc. Proc.,' A, vol. 8 1, p. 398, 1 "908.
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The effect of thus diffusing the pre, ure system is expressed by the

introduction of a factor (A (K) into the amplitude of' the regular waves, where

27r/' is the wave-length and

€ (K=o) = j cos Kw do. (6)

Using (5) in (6), we find

SS (K) = Pe-- = Pe-r.".

Hence the amplitude of the waves is given by

a 92q•P e - . (7)
WV2

Further, since fie = i2/g, the group velocity v =- d (Kt')[dK = jv. Hence

the wave-making resistance R is given by

R = !7213 e- "(8)14[; 114 "

We have to examine the variation of these quantities with the velocity v

under the supposition that the pressure system is due to the notln of a

body either floating on the surface or wholly immersed in the water. The

pressures concerned being the vertical copinponents of the excess or defect

due to the motion, it seems possible to assume as a first approximation that

P varies as r2; this is the casse in the or,linary hydrodynamical theory of

a solid in an infinite perfect fluid, and a similar assumption is also made

in the theory of Froude's law of comparis im. This being assumed, we find

a = Ae-It-", R = Bc-2a9'. (9)

We see that both the amplitude and the -sistance increase steadily from

zero up to limiting values.
If we draw the curve representing this relatioa between R and v, there is

a point of inflection when

-- 0 or v2 =4g,. (10)

Writing v' for this velocity, we see that dR/dy increases as the velocity

rises to v' and then falls oil in value as the velocity is further increased.

We can write the relation now in the form

R = Be-i(v'/v). (11)

The character of this relation is shown by the curve in fig. 2, which

represents the case
- 315c-I(•/v)i, (12)

R being in tons, and V in knots.
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The values of the constants in (12) have been ch.isen for c(iiiarlsoni with
ain experimental curve of residuary resistlance given iy It. E. Froule ;* it,
was obtained from model experiments and by means of the law of

200 -

FIG 2

100

C
0

b.-

so

20 I5 20 V Knots 25 30 40 45

corresponding speeds and dimensions the results were given for a ship

(model A) of 4090 tons displacement and 400 feet length. The actual curve

is given in fig. 4 and is discussed more fully later ; we neglect. for the
present the undulations which are known to be due to the interference of

the bow and stern wave systems, and we consider a fairly drawn mean

experimental carve denoted by R'. Table I shows a comparison of the
values of R' with those of R calculated from the formula (12).

Table I.

V. R. R'.

10 0"02 1 8
14 2 4
18 14 16
22 38 39"5
26 70 70
30 106 107
34 132 136
38 157 156
42 17; 175
46 195 192

From this compari m we seo that the point of inflection given by V'

corresponds to the point at which the slope of the mean experinent*l curve
*R. E. Froude, 'Inst. Nay. Arch. Trans.,' vol. 22, p. 220, 1881.
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begins to fall off. This effect, is general in residuary resistance curves ; we
see that it is really an interference effect, the character of the curve being
due to the niutaal interference of the wave-making elements of tile pressure
system. Superposed on the mean curve we have a further interference effect
due to the combination of two systems, the bow and stern systems.

From Table I we infer that the mean curve agrees well with the calculated
values R from about 18 knots upwards, but at the lower speeds the values of
R are much too small; this suggests the addition of a term to represent the
effect of the diverging waves.

§ 3. Diverginy fVfre qstem.

In the example considered above, the calculated values of R are much too
small at the lower velocities. This imight have been expected ; for we
obtained (12) by the consideration of line.-waves on the surface, that is waves
with crests of uniform height along parallel infinite lines. But the model
experiments correspond more to a point disturbance travelling o%er the
surface, with the formation of diverging waves as well as transverse waves.
Tn fact, W. Froude* infers from his experimental curves that the residuary
resistance at the lower velocities is chiefly due to the diverging wave system,

on account of the absence of undulations; for the latter signify interference
of the transverse systems initiated by the bow and stern, and these Lecome
very important at the higher velocities.

We have to add to (12) a term representing the diverging waves; the
comparison in Table I suggests for this a term of the same type, C-I(v'/V)',
with V" much smaller than the corresponding velocity V' for the transverse

waves. With the data at our disposal we might then determine the various
constants so as to obtain the closest fit possible ; however, we can make the
process appear less artificial by the following considerations. We know that
the wave pattern produced by a travelling Point source consists of a system
of transverse waves and a system of diverging waves, the whole pattern
being contained with two radial lines makin, angles of about 190 28' with
the direction of motion ; a fuller investigation of the effects produced by
a diffused source :,ust be left over at present. In applying energy con-
siderations as in the previous sections, the usual method is to suppose that
the transverse waves form on the average a regular wave-train of uniform
amplitude and uniform breadth ; using the same approximation for the
diverging wives we suppose that these form on the average a regular wave-
train on each side, with the crests inclined at some angle 0 to the direction

SW. Froude, 'Inst. Nay. Aruch. Trans.,' vol. 18, p. 86, 1877.

40



1909.] T]4' IPic ,,,VC•tiitj 2R,'si.4t~uce , f ,,is.83

of motion of the disturbance. Thiiet , f i( veli the 4 di"ergi wave-

trains normally to their crests is V sin 0. Now the same features of the

ship are responsible for the clharacter of both transverse andl ,i wrgi ng

waves then if V' is the velocity at which there is a l iijt of inflection iii

the resistance curve for the transverse waves, tie suggestion is thia, V' sin 0

is the correspionding vlohcity for tie di verging waves. Takin, as a first

approximation the aiigle given abuve, viz., 19' 28' or si .- e w test now

a formula of the type

R = A-1(v'",;v•+ I;B v',-. (13)

For the particular exainple already used (Froude, Ship A) we take V'

equal to 26 knots, and determine A, B from two values ,.f V. We obtain

thus
Rf 4"5 ,-(26/3v5+ 297e- (26/v. (14)

With this for'iwmla we find as good an agreement as before at the, higher

velocitius, and we have now at lower velocities the comparison in Table II:

Table 11.

V. R. R'.

10 16 1"8
14 411 4
18 16"5 16
22 40 39'5

In calculating from (14) we find that the two terms both increase

continually ; at low velocities the second term is practically negligible, then

at about 15 knots the two terms are of equal value, and after that the

transverse wave term becomes all important.
It must be remembered that the experimental curve was obtained from

tank experiments, and it is possible that the width of the tank may have an

effect on the relative values of the transverse and diverging waves. It
would be of interest if experiments were possible with the same model

in tanks of different widths; if the methods used in obtaining (14) form
a legitimate approximation, the effect might be shown in the relative

proportions of the two terms-provided always that one can make a suitable

deduction first for the frictional resistance, and can then separate out tOn
relatively small effects of the diverging waves, the eddy-making and other

similar elements.
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§ 4. Jae•tfrena, ( RoWw and S/e rr tV(f/oe-hrwins.

Th, cause of the undlulatioIus in tile re•sistance curves was shown by
W. Froude to be interference of the wave system produced by the bow (cr
entrance) with that arising at the stern (or run). His experiments on tie
effect of introducing a parallel middle body between entrance and run
confirmed his theory, which may be stated briefly. Let the wave-making
features of the bow produce transverse waves which would have at
a breadth b an amplitude a; owing to the spreading out of the transverse
waves they will be equivalent ti, simple waves at the stern of smaller
amplitudc ka, at the same breadth b. Let a' be the amniitude there of the
waves produced by the stern. Then in the rear of the ship we suppose there
are simple waves of amplitude ka superposed upon others of equal wave-
length of amplitude a'. At certain velocities the crests of the two systems
coincide in position, giving rise to a hump on the resistance curve ; and at
intermediate velocities there are hollows on the curve owing to the crets of
one system coinciding with the troughs of the other.

In developing a form for the resistance, subsequent writers have generally
taken R proportional to an expression of the form a12 + a' 2 + 2kaa' cos (nu.L/,V-),

where L is the length of the ship. This means that the bow is supposed to
initiate a system of waves with a first crest at a short disLance behind the
bow, and that sinmi.arly the stern waves have their first crest shortly after

the stern ; the length viL is the distance between these two crests, and is
called the wave-making length of the ship. The determination of a value
for m appears to be doubtful, but from interference effects it is said to vary
for different ships between the values 1 and 1"2.

It has seemed desirable here to follow more closely the point of view in
W. Froude's original paper already quoted.* We regard the entrance of the
ship as forming transverse waves with their first crest shortly aft of the bow,
and the run of the ship as forming waves with their first trough in the
vicinity of the nmiddle of the run. It is suggested that this distance between
first crest and first trough, in practice found to be about 0'9L, should be
taken as the " wave-making distance " ; the cosine terim in the formula
is then prefixed by a minus sign instead of a. positive sign. We return to
this point later; we first work out a definite simple illustration in "two-
dimensional waves," and then build up a more complete formula for
comparison with experiment. With the same notation as in § 1, let the
pressure system be given by

%V. i' oiUdc, /,c. cit. ante, 1). 8:3.
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This indicates two pressiir systems, onie of ,xeess: andl the (,th' l Idt d(14fc(.t,
of pressmie ; each distrijl ti,,' is of tha. tyln, alradyI used, atiI ii lvir e:entiis
are separated by a distance 1. Fig. 3 shows the character of the (list Irl'bal.c.

-7

P

, FIG.3

In the rear of the whole disturbance there is interference between the
regular wave-trains due to the two parts. With the same methods as before
we find that the resulting waves are given by

- 2PI C- _9/•V" i g ( l) 2:/1-D e-Sil'l '" q I P C-/1

- &/V
2 fPI -" _ '-2 )COSlSill -(P1 + 1'2) Sin "S (16)
wt'2 2 . (6

Hence the average energy per unit area is proportional to

v-4e-9' {-l2,q -- P 1 2-+ P22-2PlPecos(,//i)}.

Now, assuming as before that P, and P_2 vary as v2, we find that as regards
variation with the velocity the effective resistance 11, which is the expression
of thQ energy required to feed the wave-trains, is given in the form

R = {A2+B 2-- 2AB cos (gl/v2)} e- /". (17)

A more general expression might have been obtained by taking two
quantities at and 09 in (15), corresponding to some difference in wave-making
properties of entrance and run ; this would have led to different exponential
factors being attached to the boe\ and stern waves. However, we find (17),
with a common exponential factor, sufficiently adjustable for present
purposes.

In Froude's experiments in 1877 the effect of insertinr different lengths
of parallel middle body between the same entrance and run was examined;
it was found that a hump in the residuary resistance curve corresponded to
a trough of the bow waves being in the vicinity of the middle of the run
and a hollow to a crest being in that position.
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F'or the tin hel, Ship A, %%e have: length = , = .1(0 feet, entrance =
run = 80 feet.

Hence, in this case we 11a:1y take, ii f'rmntla (17), 1 as aplproximlately
:60 feet. We Iltl ice that tilis . t ives / 1 9', . anlI ill slibsequneit coi-
parisonis, instead iof leaviitli. / Itb I'c ahljste.d I,, fit Uth,, (\]erililltii:tl curve,
we filnd there is sullicietlit agre(emuetiit if we fix it icfitelýtahitIl as 09 of tl he
lengthl oIf the ship oll the water-I l,,.

(C'ompiare, now, tli, length I with the otdiiiarv - wavw-niakiiig h iigth " of
the ship, the latter is written as ,L aml is hetinlci as elie1 ,li:.tan fhct
the first regular bow crest aniil the tirst regular stern crest. lFrom the preselit
point of view (17) gives

inL = 1 J- or m = 0" .9+',/L, (18)

where X is the wave-length in fe~et of deep-sea waves of velocityv , ft./see.
Calculating from this formula fo r Ship A, and writing V for velocity in knots

(6080 feet per hour), we ohtain Table Ill.
We see that the statement that )n lies I'etweeii 1 and ahout 1"2 would

hold for this ship if it were measured for ordinary speeds between about
14 and 22 knots.

Table III.

V. X.

10 55"5 0'97
14 110 1-03
18 180 1-12
22 270 1 -24
26 362 1 35
30 500 15

We proceed now to modify (14) by introducing into the second term a
factor 1 --y cos (qi/c'). With / = 360, we find yi/1r2 is approximately

4080/Va, with V in knots ; further, from one value from the experininrntal
curve we obtain 'y = 0"12. Thus for Ship A we have R, in tons given by

R = 4"5c-1(t",:IV)2 + 297 { 1- 012 cos (4080/V2)} e-( '/-)• (19)

Table IV shows some calculated values for R, and these are represented in
fig. 4 by dots; the continuous curve is the exper'imental residuary resistance
curve given by Froude, that is, the total resistance less the calculated
frictional part.

It is the custom to give the results of model experiments in the form
of a fair curve, so that the lpositions of actual readings and the possible
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error are not known. The inte•'ruptdl curve is a curve* lR = A \' .sketched in

fur comlparisun.

T'd4cr I V.

V. R. V. Ii.

10 1 5 3t I I o(2
Ii 4. "2 :4 1 4,2
11 15 38 171
22 *4 42 1 S5
26; 62 41; 195

§ 5. Coi,qnsrisnn ,iv/t .Epc,,,'imnb1d iRe.sus.

B efore examini* i iiig fr•ther 14)(lel curves wexv must express the previous

form-ulIa ill it fo)0 ilo)re suitabdle filr calhudlation: we use the .Aystll of units
i N ell ih odel results are ]iow generally expressed. R is given in lbs.
per ton d isplahcinezit of the ship, while instead of thhe speed V we use the
ratio V/vK,, V b eing il knots and I, in feet; this is called tle S,(ee l-length
ratio, amil %vo shtll (Iviu te it 1)y v. Tle a, lvaultage or these uhits is that they

utilise Froule's law ()f compariso, ; from the experimental curve between
it and c we can write down at oi(ne the residuary resistance for a shipl of any
length and displacenient at the corresponding velocity, 1provided the ship has
the same lines and foni as the model. Thus tile constants which are left in
the 'iclation between 11 and c dlepend only upon tie lines of the model, not
upon its absolute size. At present we make no attempt to connect these

wVi'stal~s xNidl th,-, "IrI, of the nuudcl, as expressed by the usual cetlicieuts
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of fineness or the curve of scetionAtl are~as, or in other ways we are concerned
with the form ,f R as a function o'f c, atid tOie constant.'; are chosen in (each

case to make the l,-t fit possi hi.
First, ,s regards the exponential factor, we had ,:-: wv,', with V' giving

a point of infle(t ion tan the resistance curve i, t 1 Ow ease (if Shi p A we hal
= 26, 1, = 400, so that = 1-3. Now, it is just alimt this value of c

that there is a falling off in most experimental curves, so that we try tirst
C' = 1"3 for the point of i itlection on the R, c curve. Then the exlponential
factor becomes e- , or j,

Secomndly, as regards the cosine term which gives time undulations, we Laml
eos (q//m'-) we have decided to put / = 0"91, so that we have

0- 9q1 , ?!8 V) =19 -2 al)proxiuately.

tIence the previous relation for R reduces to the following general form:
R = ae --2  '+4 (l-_y cos 10'2/ -',2) (.- (20)

where R is in lbs. per ton displacement, and a, 8, J' depend upon the formin of
the model.

There are humps on the curve when 10"2c- 2 is an odd multiple of 7,
hollows when it is an even multiple, and mean values whea it is an odd
multiple of Ir. For facilitating calculation, some of these p)ositions are giveC
in Table V; and, for the same reason, values of the exponentials and the
cosine factor are given in Table VI.

Table V.

IuMps - - 8 - 104, - - 0"8

Means... -.- 5 -- 1"471- 1.13 -- 0"96 - 0"S' - 076
Hollows x 0, 0-

i -12 1 O''

Va1UP 4f

Table v1.

e-2Zk'M ,. i e-','c•, cos (1021c-).

0"6 0 -4(W 0 "0009 +0"75
0"8 0-044 0'019 -0"97
1.0 0 "756 0 '080 -0 "71
1 .2 0 "821 0 "172 4 0-70
1 .4 0"866 0"275 +0"47
1 '6 0 "896 0 "372 -0"65
11'80 0916 04.58 -11O
2"0 0o932 0 '532 -0o83
2"2 0'943 0 "592 -0"51
2 '4 01951 0 -644 -0 "20
3 O 0970 0756 +0"43

46



1) 909. 1 1 h. R- sJ;/ I (e.4+ uce of S/)S 289

for 11, 1I1, ttuil V, hiave~ iiwe takeni frioni ill, collt1iwii lii Pni!. 1 wil

pawi alrowly referiiil. tii, lit wlijt ho it:. dvs to fit forii'itiý ini\' luiii VI or
V; wijth the experimientdl tlliv'-S.

1. Ri. Ej. ]',*ýn' 1, S I, A,~i~

Dispaceout 00 ilis : =tl.~i 400f fi(t : cyl~indrial

(4 tt'ciotjhl = 0-694.

This is the case \%-( luitv tx:llli])OllI ill 1.1i0 1IWOViitS Se~i jul15-, Si that NVO

halve ('Illy to chal~l-v th Ilt vnniijiial faitlrs it! ( 19) ti) cal(ýiRlto hie -. vil ll

S2-46 ý 3= 1626; - = 0-12.

11. It. K l,1877.

D~isplacemient = 3804 tions ,length = 340 fcet - cy] iiilriica

co-eft.icQeut = 0.787.

The last two datat inch ode the~ uy-hindlriedt Iijihlle 1)ody. Tfhe curve 13

(fiVeli ill Ii-. 5 it. wits constructed hY Ilovgaanl froiii the dlata if Frotudc's

10 ~F1G. 5

40

25

,4 15 c .6 .7 .
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experiments, and these were such that it was possible to make a mean
residuary resistance curve, the effects of bow and stern interference being
eliminated. The curve is given as total residuary resistance in tons on a
base of V in knots. If wo work in lbs. per ton, we find there is a very fair
agcveement with formula (20) if we take

:: 2"24; 8 = 279"7; y = 0.

Probably a closer agreement could be obtained by further slight adjustment
of a and 8. Fig. 5 shows a comparison of values of the total residuary
resistance for the ship (in tons); the calculated values are indicated by small

circles.

III. D. TW. flcylor, 1000 lbs. Model.

Length on water line = 20"51 feet; cyl. coeff. = 0"680.

The experimental curve in this case is given as residuary resistance for
the model in lbs. on a base of V in knots. With the same notation as before
we find

a= 2; 8 =136"6; 0-=014 .

Putting these values in (20), we can calculate It in lbs. per ton, and hence
R, in lbs. for the model; fig. 6 shows the comparison between R, and the
corresponding values on the curve; the calculated values R, are indicated by

dots.

45 r

37.5

FIG.6

30

22.5

.7, C 1 125 IS3 1.73 2 3.25
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IV. 1). . Tif,/lr, Mlr'/ No. 892.*

Displacement = 500 lbs. ; length on water lino = 20-512 feet ; longitudinial

coeff. = 0'68 ; midship section coeff. = 0'70.

In this case the experimental curve is given as lbs. per ton displacement
(R) on a base of speed-length ratio (c). In the same manner as before, ig. 7
shows the comparison with the formula (20) when we take

S= 2 ; f/ = 82'5 ; y = 0-14 .

Since the i-nstant a is small compared with 8, one is not able to lay
much stress on the meaning of the first term. For as the velocity functions

Fic.7 I

30

20

.5 .7 C .9 ,., 1.3 1.5 1.7 1.8

are of a suitable type, the consitnts poqsess considerable elasticity as regards
fitting an experimental curve. For instance, if we omit values of c below
about 0"9, it is possible to represent the previous curves fairly well by a
formula

I = 8{1 -,ycos (10"2/)} e('c)

In the previous examples we took the value 1.3 for c'. 1in Case IV above

we find now the values

/8= 87; y = 0"14; c'=1"3.
For a similar curve taken from the sqme paper, viz., Model No. 891, dis-

placement 1000 lbs., we find a good correspondence, except for slightly higher

values near c = 1"1, with the values

S-=174; y =0"14; c'-1.4.
*D.W. Taylor, Trans. S.N.A.M.E., vol. 16, p. 13 (1908).
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V. L. I. Yrtcs, De'stroyr Model C.*

Displaeenient = 575 11, ; lhngth = 20 feet; cyl. coeff. = 0'529.

Th',u experimental curve is givei ,i lbs. for the model oi a 1)ase of V in
knots, ndd is a total resi,-tauce curve, that is, it includes the frictionahi
resistance. The curve is reproduced fig. 8.

60 

-

FIG.8
40-

30-

240
I0

.5 1 C 1.5 2 2.5 3

This curve is not analysed here so as to compare the residuary resistance
with the formula (20), but it is ineluded in order to draw attention to certain
possible complications. It may be nticed that the curve is carried to a high
value of the speed-length ratio c, and that it continues to rise more rapidly
after about c = 2";, than might be expected on the present theory. Now in
the first place it is possible that the frictional resistance may account partly
for this rise. The ordinary estimation of the frictional resistcnce assumes
that it can be calculated separately from some expression likef SV'85; now
the legitiniacy of this is beyond doubt in all ordinary cases, but at high speeds
it is possible that the form of the expression may change, or even that it
may not be a fair simplification to divide the total resistance into simple
additive components.

In the second place a more important consideration must be taken into
account, and that is the depth of the tank. For the experiments now undex

1I. I. Yates, Thesis, 1907, Mass. Iist, Tech. U.S.A. See Hovgaard, loc. cit. ante,
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consideration the depth of water ill the tank is 1),1., khimiwi. 'Ti d leep.et

experimental tank appears to be the U.S. (GovermeWnt, tauk at Va.lhiugirton,
which has a inaximun depth of about 14-7 feet. Now in that tank, wvith
a 20-foot model, there would be a " critical " condition near the value

c = 29 ; before and up to that point the residuary res ',ance earve would
rise sharply and abnormally. This efifet is discussed more fully in the nexL
section, and curves are given ii fig. 11, withv which fig. 8 may be compared.

It appears, then, as far as one is able to judge, that it is possible the
resistance curve in fig. 8 is complicated by the effect of finite depth of the

tank.

§ 6. The 1Effeet of Shallow Water.

We saw in the first section that the wave-making resistance R can be

written in the form
R = ½wal (v -- u)/v,

where u is the group-velocity corresponding to wave-velocity v. For deep

water u == ½v, and the fortnul. are comparatively simple. But for water of

finite depth h the relation between u and v depends upon the wave-length

(2 7Tr/). We have

V= tanh xh),

d , '

u = - (,v) = ½v (1 + 21ch/sinh 2xh).

Consequently we find

=R iwa2(1 2th (21)sinh 2Kh)

As v increases from zero to ,I(gh), R diminishes from Iwa2 to 0, provided

the amplitude remains constant. But as Prof. Lamb remarks,* the

amplitude due to a disturbance of given character will also vary with the

velocity. It is the variation of this factor that we have to examine in

the manner used in the previous sections for deep water.
If a symmetrical line-pressure system F(x), suitable for Fourier analysis,

is moving uniformly with velocity v over the surface of water, tho surface

disturbance q is given by

VW1 = J (K) (Bil sin X +(v-V)t} d1c

-- ½ d JV (K) sin K {x+(v+V) t) dK, (22)

where (K) = F o cos icto do.

*H. Lamb, 'lHydrodynamics,' (1932 edn. p. 415).
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'Tlhe Iieth',1 of evalating these in tgmais LLI I',xiinately so asi to give t,!i
rlegula; wave..trains hlts been (lisluussed in a previous paper aid it is followed
now-in the case of fivite depth.* We take, under certain limitations, the

value of an integral such as

y= J ¢ (u) sin {(u (11) 1('

to be the value of its principal group, viz.,

Yo • ) (gno) cos {g (?to)- 47}, (22A)

where it is such that g' (•,) = 0.
Now in the integrals in (22) we have to find successively two principal

groups, first with regard to K and then in the variable t and thus we may
evaluate the amplitude factor in the resulting regular wave-trains.

For water of depth h we may write

f(K) = v-V = V- V(tanh Ich)

The group with respect to K gives a term proportiona' to

cos {tKf' (K)+ j,}

where x' has the value given by
X

f() + Kf'(00) -- *. (23)
t

From (22A), this introduces into the amplitude a factor

1IV[t {2f'(K')+ Kf" (K)}]. (24)

Further, the group with respect to t occurs for

d
W{t- (c2f')} ---= 0 or f(K) = 0.

Also we have in these circumstances

I {t7
2
f' (() + } O (-)

J'~;1+ Kf 1 (f+ icf')2 
- (25)

- 2f' +f --f2f'+ Kf t(2f'+J") (2

Hence from (22A), (24), and (25) the selection of the two groups adds to
the amplitude a factor l/KJ'(K), where

f(K) = 0 = v- A/(tanhieh.

* IHavelock, 'Roy. Soc. Proc.,' A, vol. 81, p. 411, 1908.
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Also if ,, is tile gronip-vwlm. ty for wave-leoglth 27r/K aiid \ave-v•,l'ity V,

we have, in this ca,•.,

' +- = (KV) = -' {--Kj'(f)} = V,- j'(1) + KJ" (K)}.

Hence, since in the final valuef(t) = 0, we have Kf (K) equal to v--u. Thus

if K is the wave-length of the regular wave-trains in the rear of the

disturbance, we find that they are given by

= const. x K (K sin KX, (26)

where V tanh2h it = IV 1+ 2Kh'

/ ~tahk)~ I sinli 2KhI

Hence for the amplitude a we have

a = CKO (K) I(- 2,ch\
1( sinh 206bk

Substituting now in (21) we obtain for the wave-making resistance, 1I

proportional to

K'f (A /K))2//(I 2Kh
sinh ,t/)

If we take the same distribution of pressure in the travelling disturbance,

namely, F(x) = PO/7r (L 2 +x 2 ), we have O(K) =- Pe-; further, we may

again assume that the pressure P varies as vO, so that we have the resistance

in the form

ER =A t24-xt 2c
I sinh 2Kh)d'

with tanh Kh _ v2  (27)
Kh. gh (

Considering ER given as a function of v by these two equations, we see

that Rl increases slowly at first and then rapidly up to a limiting value at

the critical velocity I/(gh) ; after this point R is zero, for there is no value of

Ssatisfying the second equation with v 2/gh > 1.

Further, the limiting value of R at the critical velocity is finite, for we

have

Lim 
Kh2

x 0 (1- 2Kh/sinh 2Kh) -

We see that the R, v curve given by (27) is of the type sketched in fig. 9.

We may compare this with some of the curves given by Scott Russell for

canal boats. The continuous curve in fig. 10 is an experimnentai curve of
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type as the theoretical curve in fig. 9.
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I FIG. 9 FIG. O /' /
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We can obtain a better estimate ot' elluation (27) by taking an experi-

mental curve for a model in deep water, and then building up curves for
different depths. We must first put (27) into a form suitable for coma-
parison with deep water results.

Limiting the problem to one of transverse waves only, the formula (27)
must reduce to R = Ae-2 '531/, for h infinite and c = (speed in knots)/V/(length
in feet).

Writing v' for v/V(yh) we find ce = 113v'2h/L; thus although the actual

critical velocity does not depend upon the length of the ship but only on the
depth of water, the speed-length ratio (c) has a critical value which is
proportional to the square root of the ratio (depth of water)/(length of ship).

In (27) we cannot fix any value of v or c and then calculate R directly;

we must work through the intermediate variable Kh. The equations may

now be written as

IR = A (Kbh) 2 v',eC- V'/(1 - 2Kh/sinh 2ch), (28)

V/2 = (tanh K7h)/Kh; 8' = 0"2181,/h,; c2 = 113v'0h/L.

With h infinite this reduces to the previous form for deep water with the

same constant A, so that a direct comparison is possible. As the velocity v
increases from 0 to V '(gh), K diminislhýs from c to 0; we select certain
values of ich, calculate the values from tables of hyperbolic functions, and

thus obtain the set of values in Table VII, writing m for
(Kh )l V 41( l - 2Kh/sinh 2Kch).

*J. Scott Russell, 'Edin. Phil. Trans.,' vol. 14, p. 48, 1840.
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"lal,h VII.

0 0 10
10 0"311 1 "13 1 "0 2 53
6 0"41 1 -S7 1 "0 2 %53
4 0'5 2'82 1 '005 2"53
2 069 5 42 1 "077 2 '43
1 0 "87 8 -57 1 "2S7 1•92
0 h. 11"3 15 0

We consider now t0'e experiluental curve analysed in Case IV iii tile

previous section, a model of 20"5 feet taken up to a value r = 1'S. Assuming
that time influence of finite depth was inappreciable inl this range, we have for
deep water rt = 2e- -"','9± +82"5 { 1 -0-14 cos (10"2/ca)} c-2 -53'/0. (29)

We leave out of consideration at present tile first term, which is supposed
to represent the diverging waves, and we extend time calculations for iR
(transvcrse) from the rest of tie formula up to C = 3"3 taken. at intervals

of 0'1 for c; we obtain thus the lowest curve given in fig. 11. With the
help of Table VII, we calculate values of It for depths of about 5, 10, 12, 15,
and 20 feet, taking in the formula (28) A equal to

82.5 {1 - 0.14 cos (10-2/0 2 )}

so that the results apply to the same mo(del at diffbrent depths. An examp~e
of the calculations for one case may be suiliient; Table VIII shows tile
intermediate steps for h = 12'3 ft., L = 20"5.

Table VIII.

C C. 9 K. R/A. e- 2 53/c'.

0"68 0 '825 3.73 0'024 0.024
1.12 1-06 2.26 0 .106 0o106
1'69 1-3 1-5 0'224 0 ",223
3-25 i8 0"75 0 508 0-472
5 "14 2"27 0-374 0"385 0"687
6 8 2 '61 0 1"5

The results for the five valnes of h are given in Table IX, and from these
the curves in ig. 11 have been drawn.

The g-neral character of the effect of finite depth is cleat on inspection of
the set of curves in fig. 11. If it is required to go to high values of the
speed-lcngth ratio in a given tank, the ratio of the depth of water to the
length of the model must be adjusted so thaL there is no appreciable effect in
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Table IX.

1, t '0 1 '5 P 1 7 2 33 3
I 0-7 7- s5 39-2 592'' 81

07) C 07 1.0 1, 2 1.4 2 2564
07R 0-7 7.5 13 21-4 54 5 79'2

0-6 C 07 1.0 1 3 1-8 2-3 2'6
R o-7 j 75 17,9 47-7 78 122

0.5 0 o-7 10 1'2 1 65 21 2'38
R o-7 7.5 13'1 40 74 127

0-2. 0.7 0.8 0,84 1 16 1A 16
R 0-7 1 3 3 W14 43'6 142-5

140,

120

100-

60

20

the range of the experiments. Since the curves given here are theoretical
curves for transverse waves only, each of themi ends abruptly at the critical
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a i)it'ihde ,'l(s to It ee,,ie irttif ittite ! l H :1it iea vol,:it.,, ugl th,

correSpo,,,-,| resisLance at inif ui't vel,(t ity r(eilail1s fignite blit, even apart

from the effects of viscosity, there is a highest possibhle wave with a velocity

depending partly upon the amplitude. Secondly, we have left out ()f

consideration tlit (liverging waves ; but these imust bIecoine more, Important

in the neighbourhood of the critical velocity, for we may regardl the two

systems as coalescing into one solitary wave in the liniit, as the critical
velocity is reached. After this point the diverging waves persist, so that

the effect of these would be of the order of halving the drop in the resistance

as the critical velocity is passed.

Finally, we must consider the frictional resistance, which increases steadily

with the velocity; so that the fall is finally a smaller percentage of the total

resiztance than might appear it first. The curves given in fig. 11 give

an estimate of a maximum effect of this kind, considering on'y the transverse

wave system.

§7. Further Types of Pressure Distribution.

The preceding formulh have been built up on the effect of a travelling

pressure disturbance of simple type; we consider now another type which

we may use as an illustration.

Let the pressure system be given by

p = f(x) = A (It-2- )/(x 2 + h2 )2 .

The type of distribution is graphed in fig. 12.

h G. 12

Proceeding as in §2, we have

o= 2A + h2 )2cos hewdw rAKe-. (30)
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300 The Wave-maki'nq Resistance of Ships.

Hence the amplitude of the regular wave-trains formed on deep water in
the rear of this disturbance is; proportional to K2Ae--,h, and the effective

wave-making resistance is proportional to K4A 2e-2Kh. We make the same
assumption as before, viz., A proportional to V2, and write / = g/v 2 ; then the

resistance is given by
R .- Cv-e-2 €k2 . (31)

We use this expression to show how R varies with the constant It of the

pressure system. Let v = 10 ft./see., and let R = 1 for hi = 0 ; then we find
the following relative values:

h. R.

0 1.0
1 0-52
5 0"04

10 0"0016

IR decreases very rapidly as i is increased. We have chosen this example

for the following reason. Consider the motion of a thin infinite cylinder in
an infinite perfect fluid; if we consider a plane parallel to the direction of
motion and to the cylinder and at a distance i from it, we find that the
distribution of excess or defect of pressure due to the motion is of the above
type. Now, this is not the same as a cylinder moving in deep water rot

a depth it below the free surface, but it is suggested that as a first approxi-
mation the wave-forming effect is that of an equivalent diffused pressure
system. The illustration shows how rapidly the wave-making resistance

diminishes with the amount of diffusion, that is, with the depth h; this, of

course, agrees with the experiments on the resistance to motion of submerged
bodies, and, in fact, with the resistance of submarine vessels.

In the preceding work no attempt bas been made to connect theoretically
the constants in the pressure formula with those of the model ; since the
theory rests chiefly on the consideration of transverse waves only, this would

presumably bring into question the length of entrance, run, and so forth. The
consideration of any " transverse" constants, such as the beam, would need

a fuller treatment of a diffused pressure system in two dimensions on the
surface so as to give a more detailed investigation of both transverse and
diverging wave systems.

U1AaItsoN AND SoNs, Printers iu Ordinary to His Majesty, St. Martin's Larie
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(Excerpt from the Proceedings of the
University of Durhan Philosophical Society,

Vol. M11., Part 4.)

SHIP-REsISTANCE: A NuMERICAIM ANALYSIS OF THE

DISTRIBUTION OF EFFECTIVE HORME PowEIR.

By T. H. HANELOCK, M.A., D.Sc.

[Read January 24th, 1910.]

Introduction.---The following paper contains, in its second
part, u numerical study of the distribution of effective horse-
power at different speeds. The data are taken from some
recent experiments on models by D. W. Taylor, and are
expressed for a ship of 400 tons displacement and 250 feet
length. A theoretical formula is found to fit the experime:,al
results, and from it the different terms in the E.H.P. are
calcula~ted for much higher speeds. In addition to the
general analysis, attention is directed to the changes in the
proportion of power which goes in wave-making, and also to
the variation of the ratio E.H.P./(speed) 3 with the speed; in
the latter case a curve is drawn and may be compared with
the type of curve obtained from high-speed motor boats.

In the first part, an outline is given of the general theory,
of ship resistance; it is developed so as to lead to the introduc-
tion of a type of expression which exhibits the variation of the
wave-making resistance with the speed, but for details of the
mathematical analysis reference is made to previous papers.*
One obtains a general formula which is based on theory in so
far as it depends upon the speed, and with co-efficients which
should depend upon the form of the ship but whose values
are at present empirical. N- attempt has been made to
tabulate values suitable for different types of vessels, for
without further information, it is uncertain whether the
results would repay the labour; meantime, as already
indicated, the formula has been used to analyse experimental

* Proceedings of the Royal Society, A, vol. 81, p. 398 (1908); A, rol. 82,
p. 276 (1909).
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results and to extend them to the region whe,'e more accurate
data are needed.

General Theory.--We obtain a clearer view of the problhm
to be solved if we pass over the idea of resistance and fix our
attention directly upon the transformations of energy wh-lih
aocompany the motion of a ship. Imagine a ship which is
moving at constant speel and whose engines are developing
energy effectively at a certain rate. None of the energy
supplied goes into the motion of the ship, for its speed re-
mains the same ; clearly all the energy goes into the water.
If we could calculate completely the motion of the water we
should know the raleo at which energy must be supplied from
the ship and consequently the effective horsepower necessary
to maintain a given speed. Naturally the problem has
proved too difficult to solve as a whole. All that can be done
is to classify the motions of the water into groups which seem
more or less independent; the results of the separate calcula-
tions are then added together and the sum compared with
the total effect in actual experiments. For a first attempt we
consider the following groups of motions -surface waves:
wake and large eddies; smaller eddies of turbulent motion;
rotations and heat-nmotions of the particles of water. Since
the rate of supply of energy is equivalent to some resistance
multiplied by the speed of the ship, we may express the
results of calculations in terms of effective resistance obtained
in this way. The latter groups in the above scheme are
usually taken together, and their effect is expressed as a
frictional resistance calculated from an empirical formula
based on experiment. It has been found that a suitable ex-
pression is fSVn, where V is the speed and S is the area of the
wetted surface of the ship; the numerical values of f and n are
taken from tables of experimental results. After this part has
been deducted from the total effective resistance, the re-
mainder is called the residuary resistance; foEawing the
usual custom, we assume that this is associated almost en-
tirely with the surface waves, and we proceed to estimate
the rate at which energy goes into the wave motion.
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The well-known wave pattern which accompanies a
moving ship is complicated, as it consists of both diverging
waves and transverse waves. We begin with the simpler

wave formation which is obtained by drawing a long rod
over the surface at a steady speed in a direction at right
angles to the rod : we observe that the water surface behind
the rod is undulating, with parallel ridges and hollows suc-
ceeding each other regularly. The distance between conse-
cutive ridges is called the wave-length ; it is found that the
waves have definite wave length and a definite height
(a feet) above the mean water level for a given speed (v)
of the rod. It can be proved tnat over the -ange where
there are regular waves the nmean energy of the wave motion
is ½wa2 foot-pounds per square foot of the surfa-e, where
w pounds is the weight of a cubic foot cf water.

What is the length of the train of regular waves behind
the rod at any time ? Its front is at the rod, and so moves
forward with velocity vi: its rear depends upon how and when
the rod was started. Suppose the motion has been steady
for a considerable time, so that the range of regular waves is
large compared with the initial disturbances in getting up
speed; it can be shown that the rear of the train of waves
moves forward at a certain speed (u) less than v. This
velocity of the rear is called the "group velocity "; if we
observe a group of waves advancing into still water we may
,otice the crests moving forward relativcly to the group,
so that the wave velocity is greater than the.group velocity.
The result in the present connection is that the wave-train
is increasing constantly in length at a certain speed (v-u);
hence the energy in the wave motion is increasing at the
rate jwa 2 (v-u) per foot-length of the rod. Energy must be

supplied at this i•ate in order to maintain the constant -3peed
17 of the rod, If we write the rate of supply as Rv, then R
is a force per foot of the rod and is called the wave-making
resistance. We have then-

R Wa 2 (v- u)/ (1)
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Some interesting conclusions may be taken from this

equation. R is zero if it e(juals v, and this is in fact ap-
proximately the ease in shallow-water, the whole group of

transverse waves consists then of a hi1u1p which accompanies

the ship at its own speed (r'), an(I in consequence, once the

disturbance is formed, no further supply of energy is needed.
In deep water, it can be shown that n is A,: we limit our

consideration here to this case.

We must examine now the variation of the height (tt)
of the waves with the speed. The motion of the ship makes
differences of fluid pressure in its neighbourhood, so we

may consider the problem as equivalent dynamically to a

pressure disturbance moving over the surface of the water;
the effects will depend both upon the speed and upon the

character of the disturbance.
As regards the velocity, the differences of pressure in-

crease with the speed, and probably they are proportional to

its square.
The distribution of pressure in the disturbance depends

upon the form of the ship. To take an extreme case, if the
ship were an infinite raft moving over an infinite sea, the

pressure would be constant over the surface and there would

be no waves, on the other hand, if the lines of the ship are
abrupt the pressure changes may be sudden and concen-

trated and the height of the waves greater. A detailed
analysis confirms the impression that in general the height

of the waves is diminished by diffusing the pressr're system.
But an increase of speed is equivalent to a diffusion of the

pressure; hence we have a two-fold effect, increase of speed
increases the magnitude of the pressures, and is at the same
time equivalent to diffusing them over a greater area.
Thus, there appear to be two opposing tendeneies, and we
infer that. the height of the waves should not increase

indefinitely with the speed of the ship, for the two effects

may tend to b)alai•ce at high speeds.

For a sinmple type of pressure distribution, a mathenmati-

cal analysis shows that the wave-making resistance varies
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with the velocity according to a certain exponential fune-

tion, niamely,

S* -. ,(2)ItR = Ao, C

where A and t,' are constants as regards v.

Before exam in ing this relation we change the variables in
Scerl-Hain :ainner. Instead of the speed v, we use the speed-

jength ratio c defined as (speed of ship in knots),/v(length in

feet); further, the resistance R is expressed in lbs. per ton
(1isphlceienvi of the ship. The advaitages of these changes
are found in calculating from the results of model experi-

nients similar quantities for a ship of any dimensions on the

same lines as the model ; IR is the same for equal values of c

in the two cases.

AOO .2-

'1o4

Fig. 1 represents the type of curve given by R=A, -

The slope of the curve increases up to the value c1 , and

then falls off for higher values of c. It increases continu-

ally with e, and approaches a limniting vadue eqal to the

coefficient A. if we compare Fig. 1 with any experimental

curve of residuary resistance we find that the general

features are the same, hut if we wish to obtain a close agree-

ment over a large range of values ,t' c there are two ways in

which the formula imust be extended.
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In the first place, in an actual ship there are two chief
pressure systeflis, one associated with the entrance at the
bow and the other with the run at.the stern. The undula-
tions caused by these are superposed upon each other, and
the result is that the resistance curve is sometimes above
and sometimes below a mean curve, according as the crests
of one group coincide with the crests or with the troughs
of the other group of waves. It appears probable that the
variations from a mean value R can be represented by an
"additional term bit cos (n/c 2), where b and n do not involve
c but depend upon the form and dimensions of the ship.

In the second place, in addition to the transverse waves
which we have considered alone so far, there are waves
diverging from the. bow and stern. Regarding these as
wave-trains inclined to the direction of motion, certain
considerations suggest a similar form for the resistance as
before, but with a value of c1 one-third its value for the
transverse waves. This term is found to have a small value
compared with the others, and is only of importance
relatively at lower speeds.

Summing up the various terms we obtain a general
formula of the type

8/,c1 "•2 --
R ~ 1-- cos &(3)

An inspection of experimental results shows that some
of the coefficients in this formula may be given fixed values
provisionally, that is, they are practically the same for
ordinary types of vessels; thus we find el = 1'3., v 10'2, and
- =-0*14 approximately. A good agreement can be obtained
at values of e greater than I by using only the second term
in (3), but if we wish to cover the whole range by one
formula we must include all the terms.* For present pur-
poses we use (3) in the form

2"53 253
R +/31- 0"14 cos e0 ] (4)

Loc. cit. ante, p. 215.
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A Numer'ical Analysis.-In a paper by D. W. Taylort
a residuary resistance curve is given for a certain model
(No. 892) from the result of tank experiments up to a value
of c of 1"8. This is given almost exactly by (4) with a =2
and 6=82'5. All the results are now calculated in terms
of effective horsepower for a ship on the same lines as the
model. In the following table the column headed Ex-
perimental E.H.P. was obtained in this way from the
residuary resistance curve, while the calculated E.H.P.
was found from (4) with the above values of a and 8 ; in
both cases the total E.IH.P. was obtained by adding a suit-
able frictional part 0"00307fSV 2"s3.

The data for the ship on the lines of the model are:
Displacement= 400 tons; length=250 feet; wetted surface
= 5,000 square feet; longitudinal coefficient= 0"68; midship
section coefficient =0"70; frictional coefficient='00897.

TABLE I.-EFFECTIVE HORSE POWER.

C. V. Experimental. Calculated. "/. Wave. E.H.P./V".

0"5 7"9 53 54 11 '109
0"8 12"6 227 228 20 •112
1"0 15"8 514 510 33 "129
1"2 18"9 888 898 37 "132
P4 22"1 1,495 1,495 42 "144
1"6 25"3 2,370 2,370 46 -147
1"8 28"4 3,360 3,360 47 147
2"2 34*8 - 6,400 36 "152
2"6 41-1 8,010 36 "116
3"0 47'4 11,160 31 •105
4"0 63-2 22,250 23 "088

The agreement between coluiins 3 and 4 shows that the
formula (4) is capable of representing the experimental
results for this model. LI regard to the calculated values
at high values of e, it is of interest to compare these with other
calculations. Cotterill* states that for certain types of torpedo
boats the total resistance is approximately g0 c2 for values

of c between P5 and 2"5; for the ship under discussion this
wouhl give the total E.T.P. as 582 c3 . T his fornuda gives

J. W. Taylor, Trans. S.N.A.M.E. (Now York, Vol. 16, p. 17 (1908).
Cotterlll, Applied Nathematic&, p. 621.

65



8

2,380 at c= 1"6 and 3,400 at c= 1'8: but for higher values
it increases very rapidly, and gives 15,7(00 at c=3 and 37,250
at c=4.

In the last column in Table I. the values of E.H.P./V3

are given; these were obtained from the calculated total
power in each case, and the results are graphed in Fig. 2
on a base of V/-/. The curve is of the same type as one
which has been deduced from the performances of high-
speed motor boats.*

Column 5 in Table I. gives the percentage which the
wave horsepower is of the total horsepower. It attains
a maximum in this case of nearly 50 per cent at about

p I| .

e= 1"8. After this value the ratio diminishes, for the wave
resistance begins to approach its limiting value while the
irictional resistance continues increasing as V1"83. If we
suppose the total power to vary as V" in the neighbourhood
of any given value of V, we can find how the index n varies
with the percentaga (p) which the wave power is of the total
power (E). For we have

E=F + l- 0-E• 10 0_CV2 '8

where C is some constant.
Since n = V(dEjdV)./E, we find

n ="83 + V d .
100-p dV

R. E. Froude, Trait.. Ya. Arch., vol. 48, p. 102 (1906).
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The index n begins at the value 2"83, increases with in
creasing values of p, then decreases to a minimum, and finally
increases again to a limiting value of 2"83; the position of
the mininium idlex is not the place where the wave power is
a maximum proportion (,lp/dV=O) but at some velocity

4-

A

Fic. 3.

'/ Lg Y:

gcreater than this value. Sinee the equivalent index n is
given by ( /(lg E)/d (log V), its changes may be exhibited by
gra')hing log E upon a base log V; the slope of this curve
gives the corresponding value of n. This has been done for
the ship under discussion, and the result is shown in Fig. 3.
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The scale is not sufficient to show the variations in the
first part of the curve, but, one may notice the short interval
between c=2 and c=3 for which n drops to values in the
vicinity of 2; after this the index rises again. The region
of low values of n depends upon the relation of wave power
to frictional horsepower; hence it will vary not only with
the lines of the ship but also 'with its absolute dimensions.
This, together with other points mentioned in the previous
study, must be left to a more detailed analysis and com-
parison of experimental results for models of different types.
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The IVa've-maki'nq IResistance of Ships: a Study ?f Certain

Sc,'ies of Model .'xpefrirnents.

By T. H. HAVELOCK, M.A., D).Sc., Armstrong College, Neweastle-on-Tyne.

(Communicated by Prof. Sir Joseph Larmor, Sec. R.S. Received June 7,-
Read June 23, 1910.)

1. In a previous communication* I proposed a formula for the wave-
making resistance of ships, and showed that it expresscl certain general
qualities of experimental results; further, notwithstanding the limitations of
theory and the difficulty of interpretation of experimental data, a good
numerical agreement was found in several cases with the published results of
tank experiments on models when suitable numerical values were given to
the coeflicients in the formula.

This paper records the results of a more systematic study of the
numerical values of some of the coefficients, the data being taken from certain
recent series of experiments ; for the present the discussion is limited to
those types of model whose resistance-speed curves show clearly the humps
and hollows which are attributed to interference of wave-systems originating

at the bow and stern. It has been remarked that although the mode of
disturbance is different, the action of the bows of a ship may be roughly
compared to that of a travelling pressure-point, trnd further, that the stern
may be regarded in the same way as a negative pressure-point.t This poinm
of view originated in the well-known paper of W. Froude+ on the effect of
the length of parallel middle body, and the theory was developed in a later
paper by R. E. Froude§ ; from an inspection of experimental results it was
seen that the variations in magnitude and position of the oscillations were in
directions which agreed with the above interpretation. On account of the
lack of an adequate formula, the available data have not yet been examined

,nmifierically in any detail; the present investigation aims at supplying this in
some measure. Section 2 is theoretical, with some necessary repetition of
previous work; Sections 3 and 4 contain a numerical analysis of some avail-
able experimental curves. In Section r an attemlpt is made to estimate the
iflettive horse-power of the "Turbinia," in order to illustrate certain points

while in Section 6 the limitations of the interference theory, in the

*'Roy. Soc. Proc.,' 1909, A, vol. 82, p. 276.

tN. Lamb, 'Itydrodynamics,' 1932 edn. p. 438.

tW. Froude, 'Trans. Inst. Nav. Arch.,' 1877, vol. 18.

§R.E. Froude, 'Trans. Inst. Nay. Arch.,' 1881, vol. 22.
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conventional use of the term, are -liscussed in connection with the residuary
resistance cunrves of finer-ended models.

2. A transverse pressure disturbance travelling over the surface of water at
right angles to its axis leaves in its rear a procession of regilar waves; on
account of tha supply of energy needed to maintain this system, there is an
effbctive resistance which may be called the wave-making resistance of the
given disturbance. An illustration of a simple type of disturbance,
symmetrical fore and aft with respect to its axis, is afforded by the function
lP/(p 2 +x2 ), where Ox is in the direction of motion. The length p may be
used to define the distribution of pressure to this extent: when 1 is decreased,
the changes are more concentrated and a-brupt, and conversely; we may, as a
convention, call 2p the effective width b of the disturbance. If the dis-
turbance is made to move with uniform velocity v at right angles to its axis,
the height of the waves can be calculated, and thence, from considerations of
energy, the corresponding wave-resistance R. If the quantity P which defines
the magnitude of the diskarbance is supposed an absolute constant, the
calculation of R as a funtion of v gives an expression which rises to a
maximum and then diminishes ultimately to zero with increasing values of
the velocity.* But if the pressure disturbance is associated with a moving

ship, it seems reasonable to suppose that P depends upon the velocity, and in
fact the assu: . .,on is that P varies as the square of the speed.

In this way we obtain the result

R = (1)

where B is independent of v. According to this expression, R increases from
zero up to a limiting value B; at any given speed R is a certain fraction of
the value B, and if the quantity b were increased the same value of R would
only be reached at some higher speed. Further if we have a second
expression R, mith constants B,, bi, greater than B, b, respectively, the curve
for ER, will intersect the curve for R at a certain velocity; at lower speeds

ER1 < R, while at higher values R, > R.
Suppose now that a similar negative pressure system, with a different

coefficient P, but with the same width 1), is situated behind the first system,
with a fixed distance 1 between the two axes. The wave-making resistance

of the combined system is given by an expression 8(l - 'Ycosgl/.1
2 )c- 3/v',

where 8 and y are independent of v. In applying this result to the case of a
ship, wc can of course only expect agreement if the type of model is such that we
may imagine distinct, but mutually interfering, wave-systems originating at
the bow and stern; it is. in fact, an attempt to describe the wave-making

SCf. Lord Kelvin, ' MAti. :tod Phys. Papers,' vul. 4, p. 390.

70



1.910.] The Wtve-m( kinhg Resist(nce (f' Ships. 199

prol)erties of a ship in terms of the coelficients of a simple equivalent pressure
distribution of the type specified. Another point which must be noted is that

the previous exprcssiun is obtained by considering two-dimensional motion
only ; but the bow and stern of a ship act in,)re like point disturbances than
as transverse line systems, hence there are diverging, as well as transverse,
waves. In default of a fuller analysis, I have suggested for certain reasons
the addition to R, of a term ae-b¢/I"'; it is retained for the present, because it
indicates the necessity for some expression of the diverging waves and it
agrees with certain general properties of them, and also in several cases it
allows us to obtain better numerical agreement at lower speeds.

We suppose that R is expressed in pounds per ton displacement of the ship,
also V is the speed in knots, L the length of the ship on the water line in
feet, and c is equal to V/v,/L; then we have

It = (C-90+ 1 -'Ycos n/C2 ce, lbs. per ton, (2)

where m = ll'3b/L and n = 11"31/L.
In the following examples attention is directed chiefly to the variations of

,8 and m, and incidentally to those of ,y and n. The length b cannot be taken
directly as the length of the entrance or run of the ship, for it will depend also
on the lines of the model; but one may expect the ratio b/L to decrease as
the slope of the model at the bow is increased, and conversely; similarly the
number n will vary in a direction which may be predicted. In the previous
paper sufficient agreement was found when ii and n were assigned fixed
values; in many oases the mean curve of residuary resistance appeared to
have a point of inflection near c = 1"3, and for this we had m = 2"53 ; further,
the humps and hollows agreed with n = 10'2 for the angle n/c0 in radians, or
i = 584 for the angle in degrees. With none of the coefficients fixed before-
hand, ii, is necessary to adopt some method of approximation. Drawing the
experimental curve of residuary resistance on a suitable scale, a fair mean
curve was sketched in and an equation R = Ac-"Icn was found, generally by
graphical methods, to fit this as closely as possible ; in fact it was the original
intention to limit the study to the two leading coefficients A and m so deter-
mined. The value of in is now fixed, and from the intersections of the mean
curve with the actual oscillating curve one could assign a value to n. with
sutfficient accuracy. Finally the three remaining quantities were found from
three puints on the actual curve, for example, at c = 0'6, 1'2, 1"8, if the curve
extended so far. In practice the lowest point determines a, for the term in 0
is negligible there; for the same reason the values ef $ and Y are more batis-
factory when fairly high values -'! c are available. In all cases the
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approximation was not carried further than the circumstances seemed to
warrant ; the values of the coefficients are gi,'en generally in round numbers,
and the theoretical curves were calculated throughout their range from
the formula! so obtained.

3. The first series is taken from a paper by D. W. Taylor* on the influence

of the shape of midship-section upon the resistance of ships; from the

curves in that paper I have taken four, which form a series having the same
midship-section coefficient, but with different displacements. The data and
the results are given in the following table:-

Table I.-Models I to IV.

Displace- Displace-.
No. ment ment-length Beam. Draft. a. j3. - m. a.

in lbs. coefficient.

I 500 26'"6 1"365 0"467 1"6 81 0"14 2.7 584
II 1000 532 1.930 0-660 2.0 160 0"18 3 "( 540
III 1500 798 2364 0'809 2,0 240 018 3"2 540
IV 2000 119"7 2"895 0'991 2 "5 360 0"18 3"5 540

Cylindrical coefficient = 0 68 ; midship-section coefficient - 0 90;
water-line length = 20 "51 feet; beam/draft = 2 "923.

The curves in fig. 1 indicate the results of the analysis ; in each case the

continuous curve is the experimental curve of residuary resistance; the
points marked by circles have been calculhted from the formula (2), while

the broken curve is a mean curve graphed from the expression

ae-m-I/2+-e-m/c2 . The calculated curves have been extended as far as c = 3,
in order to include the highest theoretical point of intersection of the mean

and oscillating curves.

The third column in Table I refees to a coefficient of fineness used by

Taylor in the paper referred to ; it is defined as ])/(L/100) 3, where ]) is the

displacement of the model in salt water in tons, and L is the water-line

length in feet. It is a method of estimating the proptortions of a model by

the displacement of a ship of the same lines and of 100-feet length.

From the numbers in Table I, 8 appears practically proportional to the

displacement. The resistance R has been calculated in pounds per ton

displacement, so that dimensionally 8 is a pure number. In this series

certain quantities are constant, namely, with the ordinary notation, L, B/H,

(B x H x L)/D, and (area of midship-section)/(B x 11). As far as this series

is concerned we might regard 13 as proportional, for instance, to (B x H)/L2

or to the disl•acement-length coefficient.

11D.W. Taylor, 'Trans. Amer. Soc. Nay. Arch.,' vol. 16, p. 13 (1908).
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The index m of the exponential increases slightly with the displacement,
that is, with increasing beam and draft; this variation is in the direction
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one might anticipate, as it indicates a greater diffusion of the pressure
changes. In regard to the coefficients specifying the interference between
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the bow al stern systems, Iy is larger at the higher displacements, while n
is less; both variations are consistent with a diminution of the distance
between the axes of the simple equivalent pressure distributions.

To illustrate the smaller changes which are possible at the same displace-
ment, three models are taken from the same paper, having diflerent midship-
section coefficients with the same area of midship-section; thus smaller
coefficients are associated with greater beam and draft. One of these three
is No. 1 of Table I : midship-section coefficient = 0"9, ja = 81, m = 2"7.
Another of the set I had already used in my previous paper with the results:
midship-sectio.i coefficient = 0'7, ,8 = 82"5, m = 2-53. For the third of the
series the same coefficient is 1"1, and there is a good agreement by taking
R = 79"5, r- = 2"87.

4. The next sets of experimental results are taken from a paper by
D. W. Taylor* on the influence of length of parallel middle body. One must
notice that the problem investigated is not quite the same as in the paper
by W. iFroude referred to above. In the latter case the bow and stern of

the model were unaltered, but varying lengths of parallel middle body were
inserted between them, so that the special effect was isolated as far as

possible. In Taylor's experiments the models have constant length and
displacement, but varying proporticns of the length are occupied by a
parallel middle body, and, of course, the bow and stern vary in form so as to
keep the displacement constant; the effect is thus more complex theoretically.

We may anticipate the direction of variation of some of the coefficients

with increasing percentage of parallel middle body under these conditions.
Since the ratio of the length of entrance and run to the length of the ship
becomes less, the index m should decrease; also the effective distance apart
of the bow and stern systems becomes greater, so at the same time t shouid

decrease and n increase.

Table II.-Models V to VIII.

Percentage of Cylindrical
No. parallel coefficient a. fi. T. m. n.

middle body.I of ends.

V 0 0,740 2"5 135 0 "17 2 '53 584
VI 24 0 "658 2 "0 145 O"16 245 584

VI[ 36 0"594 2'0 155 0,14 2 "35 605
VIII 48 0"500 2"0 165 0'12 2"10 650

Displacement - 1000 lbs.; length - 20'51 feet; beam r - 1"682; draft = 0673; displacement-
length coefficient - 53,2; midship-section coefficient - 0,96 ; beam/draft - 2 "5.

"*D.W. Taylor, 'Trans. Amer. Soc. Nav. Arch.,' vol. 17, p. 171 (1909).
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Table II contains the results for a set of four models of 1000 lbs. displace-
ment, together with other data; the corresponding curves are shown in fig. 2
in the same manner as before.
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F"rom the curves in fig. 2, it will be seen that the calculated curves express
the general variations in the manner anticipated above. The numerical
agreement is best throughout the range for Model V, while for the other
curves the agreement at lower values of c is not so good; this appears to be

75



204 Dr. T. H. Havelock. [June 7,

associated with the change in shape of the ends of the model. Although for
the whole length of each model the cylindrical coefficient is 0"74, on account
of increasing proportion of parallel middle body the ends become finer ; this
is indicated in the third column of Table I1. The formula (2), in its present

form, gives best numerical agreement for models with fuller ends, that is,
with fairly high cylindrical coefficients; this point is examined further

below.
The same remarks apply to a second set of four models, taken from the

same paper, having a displacement of 1500 lbs. The results are given in
Table III and the curves in fig. 3. For Curve XII, a poivt in connection with
the interference-coefficients y and n may be neticed. Whatever value of n
is used, if the simple theory is to be adequate, there must be certain re~l'tion-.s
between the values of c at which the humps and hollows oucur; beginning
with the highest values and working down to lower speeds, the successive
values of c at which hollows, humps, and mean values occur must be
proportional to the reciprocals of the sequence

% 5, V V VI v , .........
In all the curves given here the graphs have been extended to c = 3, so as

to include, in most cases, the highest mean value, corresponding to the second
term in the above series. In most cases it was possible to choose n so that
this relation was approximately satisfied, but the difficulty increases apparently
at higher displacements, such as in Model XII. The mean curve shown for
this case in fig. 3 represents the curve R- = 255c-2'3'k/,2 ; determining the value
of n from the intersections of this with the actual curve, the numbers
obtained from the higher positions are larger than those from the lower
speeds. In conse(quence, the circles showing the theoretical continuation
of the curve have been calcailated with 'y = 0"15 and it = 610, without
attempting a fit over the whole curve.

Table III.-Models IX to XII.

Percentage of! Cylindrical:No. parale " I eoefllcein~t a. 0. 7. tn.
middle body. of enda.

ix 3 0o740 2'r 200 0o10 27 584
X 24 0.'658 2 '2 210 0 "17 2 '64 584
XI 36 0 "594 2'0 235 0 "14 2 * G 610

XII 48 0'"50 0 255 - 2"3 -

Diaplavnient - 1500 lbs.; length - 2o-51 feet.; b'am - 2'060; draft 0*824 ; displacement-
length cueficient - 79"8; widship.section ceoetoient - 0"96; belw/draft - 2'1.

76



1910.] The IWave-,akiug Ih'.,SNawcc Of ,! ,".. 205

___ //

160 140 iI

Figure 3
-14C 120 - z

I 12010

__o120 100, _ / -

100 80/ 
/1

/

80 / 1 / 0

010 0 /

0 40 - / / /

60,_ 4/ /40

/ / / ,

400 10 1"' /Y,,

40 20 • /

20 0/ Z
--- _ " -- - --r.. --

20 0
•0

0'2 0.8 1,0 K4 fe 2"2 30

5. The curves ill thle pi'evitious sct Ueliois have b'een examined (liictly from a
thieoretical polilt of view, that is, with the oibject, of testing in these ca•es
tile genileril adequiy of a ceinl am type of simiiiei e~jivialcii preskmur
distribution. Oine iiiight try also to classify the Coufiientis of tht. foriiula
sLo as ý,) 1 taiii CUiii;) l e'xp ressionls f,, t themii ili rclatioun tou Lh forii of
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the model. The latter is frequently specified by various coefficients of
fineness, which of course give only an al)proximIIate estimate of form, and
in any case do not make a set of independent variables ; no attempt is

made here beyond giving ull the available data for each model. With the
results given above and in the previous paper, one can find an approximate
estimate of the leading coefficicnt /, at least for forms similar to those already

examined. It was noticed that, other things being equal, / was proportional

to the displacenient-length coefficient; also for given values of the latter
/f appears to be approximately proportional to the ratio of beam to draft.

This seems reasonable, since wave-making is largely a surface effect ; that is,
for a disturbance travelling below the surface the wave-making falls off

rapidly with its depth. In several of the cases already examined, it

happens that /8 is numerically only slightly larger than the product of the

two ratios mentioned, that is, / is a little greater than (B/H) x D/(L/100)',
with all the quantities in the units specified above. This result is used now

to make an approximate estimate of total effective horse-power for a
certain ship, as it affords opportunity for introducing other points of
interest. The data for the ship are those of the "Turbinia," as far as

they are available from the published record of trials.*

Turbinia.-Displacenement = 441 tons; length = 100 feet; beam = 9 feet;
draft = 3 feet; cylindrical coefficient = 0"66 ; speed = 31 knots.

The displacement-length coefficient is 44"5, while the ratio of beam to
draft is 3; since the cylindrical coefficient is less than those already
examined, we take /8 as about 5 per cent. greater than the product of these

two ratios, that is, / = 140. Following out the indications of the previous

cases, m should be niearly 3; as we shall calculate quantities for c = 3'1

the exponeutial e_""'/2 only varies slowly with m, so that m = 3, with sufli-
cient approximation. Under the same conditions we take n/c- = 600 and
,y-= 0"15, also a = 2. Calculating from formula (2) with these values, we

obtain an estimate of 410 for the effective horse-power of the ship at 31 knots

due to wave-n'kiing, with the possibility of this being slightly in defect;
any of the usual approximate fornmulk, with simple powers of the speed, when

extended to this high value of c give possibly twice this estimate, a result

which is much too high. If we take the area of wetted surface (8) as
970 square feet and the frictional coeflicient (f) as 0"0095, we may cal,'.ilate

the frictional effective horse-power from the expression 0f)307fSV2' :'; it is
470 at 31 knots. We obtain thus an approximate estimate of 880 for the
total effective horse-power of the ship at 31 knots. It is stated in the record

re' rre(I to above that the total effective horse-power at 31 knots is 946,

* C. A. Piaraous, 'Trins. lust. Nay. Arch.,' IS07, vol. 39, p. 232.
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obtained by Froude's method from tank experinents onl a model of thle sbip;
no details of the calculation are givon. Althoughi the estiiiate ab~ove is only
app~roximiate, another possib~le factor Should( N!e noued ; this is the influence (if
the finite depth of the tank. It has beeni statedI that, fromn recordled experi-
mental dlatai, this efect becomnes appreciable when the leng-th of thle waves
exceeds twice the depth ; this mneans approximnately when c> 19h / L, h1 being
the dlep~th of wvater and L, the length of the model. This appears tu agree
with the curves of fig. 11 of my previous paper, whithi were obtained 117o11
theo~rctical con~siderations. The effect of shallow water is all excessive
increase in the resistance for a considerable range, but if the sp)eed is mnade
high enough the resistance may becomec ýeven less than in deep water at the
sampe speed. I t seemis possible that the tank experiments qjuoted above come
wvithin the range of excess of transverse wave-inaking, resistance. It is stated
that, assuming a propulsive coefficient of 60 per cent., the value of 946 means
a correspondling indicated horse-power of 1576 ; it may be noted that the
estimate of 880 corresponds to the saine indicated hinrse-power with anl efficiency
of about 56 per cent. In this connection the followinig reinnrk may be quoted
from a recent discussion "Is it possible that this is one contributing cause
to the large propulsive coellicients obtainc'1 by torpedlo craft Compared with
those obtained in full-sized vessels, viz., that the tank cfli~alve hiorse-power of
torpedlo craft models is over-rated, because of excessive transverse wave-
making resistanace in the ' shoal water' of the tank " ?

6. It must be noted that all the preceding calculations refer to rather full-
ended models, that is, with at cylindrical coefflicient of aboat 0-68 and
upwards. It wvas upion such a type that thle original experiments of Fronile
were performed!, and it seemus that the characteristic interference effects occur
Specially in such vessels ; the latter are associated with the idlea of two fairly
distinct svst enis of pres';ure disturbance at bow ant" stern respectively. Now
if thle ends are madle liner it is reasoi a1 he to inia-ine tlie two systems
coalescing" into wh'lat Could be umore aeccurately interpreted as one pressure

vse.This woulid lbe more diffused over thle licrtigi uif tile ;hip, so thle
equivalent in('ex 7), sholtiobile larger further, since for constant displace-
11n0ia finler ends, melanl lar-ger beani anil dIraft, the limitiing- coeffhieient j3 shiouhl(
be~ larger. Consequentily, for deem easill eyig ciildriciii ci uutticiruI, lit co nst an t
displacemient, thli ctirves of resid nary rt-4,,talwcn~homi '11114 1c iivi-eset' ilig 0 lIeu-s,

lower at low speedls and thten id tfimuatul ' hmi-lier. This is ill list rated ill the
curves in fig. 4, wh ichi h3VO 1100en sup~erplosed tim Show Ol e "ii intt inl question.

Tha(' curves are taken fronm a series oif 11100-1h, modlels- by 1). W. TLayluor, of
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constant midship-section coefficient 0"926, and with the ratio of beam to draft
2'923; the cylindrical coefficients are 0'68, 0"60, and 0"48.
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100 Figure 4.
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Tihe curve with a coefficient of 0"68 is represented quite well 1by fo;rmlvla, (2)

with a = 2, 8• = 155, ,y = 0"14, ti = 2'9, it = 584; the circles rep~resent

calculated points. The typical oscillations are clearly visible in this clirve

b ut they appear to b~e absent altogether from the other two cuirves; the

general character of the la•tter cur\'e• is in accordance with the remarksI lmade

above. One may even oibtain some numerical agroement with 'Y zero, and

larger values of ý9 and m, 1itut it i.A unsatisfactory without a further examina-

tioit (if interme'diate st ,es. a,,d their equ~ivalent pressure, distri bliti,ils ;

an lothetr point is timt with a largzer Nalm- of tit the first terin in the formula,

which repre.eiits the diverging wavets, becomes nmore imporntant, and ad ds

another reasovi for deferring the stmly ,ol finer-ended modlels.

IilARUISI)% AND .SON., P'rbttrit ii Ordinary t,-- Itim late WtmiLty, S:.M,rlihmi',, Lune.
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(Lxcerv't from the Proceedings of the
Universi.., of Durham Philosophical Society,

Vol. TV., Part 2.)

THEi DI)SPLACE~MENTi OF THlE PARTICLES IN A CASEr

OF FixJI) MOTION.

iBy 'r2. 11. HAVELOCK, M.A., D.Se.

[Read March 3rd, 191 1.j

I'ihe leading feat ures of thle mloti~on induced by th lie assage
oif it cy]mdcia throiiughi a p~erfecit flu hi are well know ai, but
certain aspects of the permanent dilsplacement of the fluid
particles are less familiar. The following notes on these
were. suggestedl by an unexplained paradiox which is men-
tioned in recent treafises, such ais Lnc(,hesfer's Aero-dynamicis
,11d raylor's Spee-d and P~ower of Ships ; it was found later
that the same dlifficulty is mnentioned by Maxwell in a paper
on the paths of tile particles. Tfle present remarks are
arranged as follows:

1. Front tihe orin ary theory of the fluid motion is
deduced a siniple proof of Rankine's formiula for the
radius of curvature oIf tile path of a particle, and the
solution is theiu completed in terms of elliptic
f unctions.

2. After drawing paths of particles, curves are ebtained
for the subsequent~ positions of lines of particles
which were abreast of the cylinder at certain times.

3. A graphical study of the deformation of a group of
p~articles as it passes near tile cylinder suggests a
difference between tile behaviour of an ideally con-
tirnmoiis fluid and one which is molecular.



4. A discussion of the paradox t h ft the fluid appears to
have a purmanent forward displacement ultimately.
The difficulty is shown to arise from the introduction

of infinities without precise definition of conditions.
Analytically the ambiguity occurs in the form of a

dlouble integral whose value depends upon the ordei
of performing the integrations.

1.--A circular cylinder of radius a and of infinite length
moveq through an infinife fluid with uniform velocity u at
right angles to its axis. The fluid is assumed to be perfectly

continuous, frictionless, and incompressible; and under
these conditions a certain continuous motion is determined
in the fluid. Let the (liagraim in Fig. 1 represent a section
at right angles to the axis of the cylinder. the circle with
centre 0 being a section of the cylinder at any instant.

FIGURE I.

The fluid at any point P(r,O) is moving with velociiy

112 /r 2 in a direction making an angle 20 with Ox, that is
tangentially to a circle through P touching the axis of x at

0. Thitus the fluid at points on a circle such as OPA is
moving tangentially to the circle at each point at a given
iustanat. T'lhiis solution gives thle actual velocity of the fluid
at any point at any time ; it does not follow the motion of a
given par~i(.le of tlie fluid. If we fix attention upon a fluid
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particle at P in Fig. 1, we could trace its path relatively to
the cylinder by superposing on its actual motion a backward
velocity u parallel to O, It (can be shown that this relitive
path is a curve PBC wlý 'e equation in terms of y and r is

r(1)

where b is the distance of the particle from the axis O.r when
at an infinite distance before or behind the cylinder. These
curves, given by different values of b, would be the actual
paths of the fluid particles if the cylinder were at rest and
the fluid were streaming past it. In the case under coil.
sideration the cylinder is moving and the fluid is at rest at
infinity; hence the actual path of a particle may be imagined
as the path in (1) referred to axes moving with uniform
velocity u. The equation of the path was first obtained by
lankine1 in the form of a relation between the ordinate y
and the radius of curvature p. It can be deduced from
Fig. 1.

We have pd(20)Idt = velocity of particle at P = ua2 jr 2 .

By writing down the velocity of P relative to 0 in a direc-
tion at right angles to OP we have

dO ua" sne
r•t- it sin 0 +- sin 0.

From these two equations, with y for r sin 0, we obtain
2py(1 + a/r 2 ) = a 2. But relatively to the cylinder the
particle lies on the curve given by equation (1) above; hence,
substituting for a2/r 2 we find the result

1 4S= - b(2)

As Rankine pointed out, this represents in general a case of
the 'elastic curve'; and, in fact, the path of a particle is one
loop of a coiled elastica. We can complete now the solution
of (2). For any given particle, fixed by the value of b, if 0

1 W. J. M. Rankine, P/il. Trrt,.m .. 4., vol. 154, p. 369, 1864. The
result is erroneously attributed to Maxwell in t1e article on hydrernechanics
in the Encyclopaedia liritannica, 1 th ed.
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is the angle between the tangent to the path and the axis
Ox, we have on integrating (2)

y-- + (11)2 +in 2 + a2CoS) 2  (3)

We choose the axis Oy so that x is zero when y is a maximum,
and measure the are s from this point. Then

=(1 -- s+ 8)am-•); n=Ab+ dnf); (4)

where the modulus of the elliptic functions is k--= (I + b'214a 2 ) - i.

In terms of elliptic integrals which are usually tabulated,
namely F(k, 0) and E(k,ob) and the corresponding complete
integrhls K and E, we find the following results: the letters
refer to the Symmetrical curve in fig. 2.

(i) At the point B. y = -b + a/k; p = ka.

(ii) At C, the widest part of the loop. y = -!b +•/ D -/k);

jka { (i - irF(k, 450) + ýýE(k-, 450)
22

p =k/~ -

(iii) At an end point A. y= b; r= ka 7--_-)K+-EJ;

p = ag/2b.

These data are general]y sufficient for drawing the curve
with considerable accuracy. From the periodicity of the

elliptic functione we can alsowrite down the total length of
the path ABCI); it is equal to kKu. As a numerical

example, one finds that the total distance covered by a

particle initially at a distance a from the axis, as the cylinder
moves from an infinite distance behind to an infinite distance

in front of the particle, is approximately 2a; this is the

curve denoted by 1-0 in fig. 2. It need hardly be pointed
out that although the limiting length of path is finite, the

tEme involved becomes infinite.
In Fig. 2, some curves are drawn for various values of the

ratio of b to a; except in one case, only half of each complete

path is shown. For b zero, the path is infinite in length and

is given by

x - a tan h(2s/a) - s; y - a Sec b(2s/a).
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The cross-marks on the curves indicate the spaces covered in
successive equal intervals of time by particles which were
simultaneously at similar points (B) of their paths.

2.-With the help of these curves we can trace the
changes in any line containing always the same particles.
For this purpose we draw the relative stream lines given by
(1), for the same values of bia as are shown in Fig. 2. We

YI superpose this diagram on
Fig. 2, with the axes of r

X} coinciding, and draw a curve

through the intersections of
corresponding actual and rela-
tive paths; displacing one
diagram parallel to the direc-

C tion of motion, we mark again

the intersections and obtain
A A th displaced position of the

same set of particles. For
instance, with the actual
paths as in Fig. 2, we obtain
by this method the successive

- -_- positions of a line of par-
0 x ticdes which at some instant

riount 2 formed a straight line abreast
of the cylinder; these curves are shown for one quadrant in
Fig. 3.

The diagram can also be described in another manner.
The cylinder moves from left to right. At the instant repre-
sented in Fig. 3, AB is a line of particles abreast of the
cylinder; the successive curves to the left are the present
positions of particles which were abreast of the cylinder at
certain equal intervals of time previously. The unit of time
T is that taken by the cylinder to move through one-quarter
of its diameter. Thus the curve ('])'E' repreaents the
present position of paiicles which were abreast of the
cylinder at C])E at a time 5T previoiusly. It may be
noticed that the circumference (it the ('ylinder hfoins part,
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in tile linit, of one of the relative stream lines, so that the
same particles are alwa•s ill contact with the cylinder, as
the ordinary idea] theory requlires.

L -To trace out tile deformation of other lines of
particles, it is necessary to adiust first the curves in Fig. 2.
F-or instance, to obtain curves which have been drawn by
Maxwell, we arrange the paths in Fig. 3 so that the initial
points (A) lie in a straight line perpendicular to Ox; then
by the same process as before, we obtain the successive forms
(if a line of particles which lay in a straight line initially

EB

ICI

FiGu.l .3

when at a great distance in front of the cylinder. We could
trace similarly the deformation of groups of particles.

Fig. 4 was obtained by this method ; it illustrates the

extreme deformation which occurs near the cylinder. ('on-
sider for a moment that the cylinder is at rest and the fluid
streams past it from left to right. The three enc!osed areas,
equal in magnitude, are' suCCessive positions of thle same
group of particles.

It has been mentioned already that the ordidmry solution
of this problem assumes that the fluid is infitlitrlv divisible
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into parts retaining tihe clharacteristic properties of a fluid.

We introduce other limitations when we regard thle fluid as
made up of a large, but finite, number of partivle% or mole-
cules which retain their identity during the motion. For
such a molecular fluid, it is known that solutions obtained
by continuous analysis imply that the molecules move in
sa h a way that their torder of arrangement does not alter.
Also if we consider a group of molecules forming an element
of volume round some point at any time, the same molecules
will form an element of volume in the neighbourhood of some
other point at any subsequent time; that is, the deformation
of an element of volume must be infinitesimal. An inspec-
tion of Fi,. 4 shows that this condition is not fulfilled in the

FIG•uRE 4.

vicinity of the cylinder. One can imagine a curve drawn
round the cylinder, not symmetrical fore and aft, within
which the conditions are certainlY not satisfied. These
consI dderations may help to remove an appaient absurdity.
If we examine curves, as Maxwell's, showing the successive
form.. of lines of particles originally straight in advance of
the cylinder, we notice that the cylinder never penetrates
through any such line, all of them being looped always round
the cylinder. Quite apart from other considerations which
enter in the case of an actual fluid, we are relieved from this
conclusion by rememiering that, on account of molecular
constitution alone, there is a region roundi the cylinder
within which the solution obtained by continuous analysti
does not represent the true state of motion.
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4.--WVe consider now the paradox to which reference has
been made above, returning to the solution of the first two
sections. If we imagine the fluid to be contained within a
fixed vessel it is clear that, as the cylinder is moved forward,
an equal volume of fluid must be displaced backwards. The
same argument should hold continuously as we suppose the
containing vessel increased indefinitely, and hence in the
limit, when we consider motion in an infinite fluid subject to
its being at rest at infinity. Thus there should be a per-
manent displacement of the fluid backwards on the whole.
But, according to the paths drawn in Fig. 2, we find that
every particle comes to rest ultimately at some point D in
advance of its initial position A ; so that there appears to be a
displacement of the liquid forwards. The interest of this
paradox lies partly in its recurrence in various writings.
Tainchesteri states the difficulty and leaves it with the
remark: "it is evident that some subtle error must exist in
Rankine's argument, the exact nature of which it is difficult
to ascertain." Taylor 2 points out how with a finite displace-
ment of the cylinder it can be verified that the fluid is dis-
placed backwards, but with an infinite displacement one has
the curious result of a permanent forward displacement.
Maxwell 3 raised tle same problem many years ago; lie
admits it as a real difficulty and disposes of it thus: " It
appears that the final displacement of every particle is in the
forward direction. It follcws from this that the condition
fulfilled by the fluid at a>. infinite distance is not that of
being contained in a fixed vessel; for in that case there
would have been, on the whole, a displacement backwards
equal to that of the cylinder forwards. The problem actually
solved differs from this only by the application of an
infinitely small forward velocity to the infinite mass of fluid
such as to generate a finite momentum."

The difficulty arises chiefly from a loose use of the idea of
IF.W. Lanchester, Aerodynamics, vol. 1, Aerodonetics, p. 20, 1909.2 D.W. Taylor, Speed and Power of Ships, p. 10, 1910.
3J. C. Maxwell, Scientific Papers, vol. HI., p. 210, 1870.
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inlfinity' as if it imlllied a definite State or time, rathler than,
file linlitinig Value of at process; whiih must be dlefinled
precise,]y in each case; unless thiis is (]one the problem is,
realIly' indeterminate, F'romn 61s, point of view, 31axwel]'s

statement seems inadequate, in that it accepts the fnrward
(1isplacement as definitelv proved; on the other hand it

A points to a root of the matter,

namely, the conditions at infinity.

Leaving this till later, we discuss
SQthe previous solution as it stands,

first stating the possibilties in
Y general ternis and then treating

them analytically.
( In Fig. 5, 0 is the centre of the

cylinder; the curved line represents
the particles which were abreast of

,/ the cylinder when the centre was
at 0(. The flow of fluid backwards
is given by the difference between
the areas behind and in front of tht-

I FiGURE 5. line A(0PB. As 010 increases, the
points (C move outwards along the
line AOB , the (lotted curve,
which is entirely in front of AOIB,

shows the ultimate position of the same particles, according
to the paths in Fig. 4, when O0O becomes infinite.

(A) Let ,x, y be co-ordinates of a'.y poinl P on the line
.OWli referred to the centre 0. If we fix any value of y,
however large, we can make P he within the range 01(C by
making r large enough. This is the argument which leads
to a permanent form'ard displacement. It clearly lays more
stress on the infinity of extent of liquid fore and aft of the
cylinder.

(B) On the other hand, if we fix .r, no matter how large,
we (ean mnaltc the point P he beyond C( on the line 01kA by
making y large enough. By giving more weight to the

infinity of liqluiii abreast of tle cylinider, this argullilni't
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denies that the limit of the dotted curve in Fig. 5 can ever he

attainel. These two arguments can, of course, be stated

simply in terms of the flow of liquid at any instant across a

line behind the cylinder. If we draw lines OQ, OR at 450 to

the line O0, then at any time the flow across AOIB is

forwards in the range QO( R and backwards beyond Q and

R. According to (A), the range QOIR can be made infinite

by taking r large enough; while the argument (B) points to
the region within lines at 450 and 900 to the axis 001.

Analytically, the mnatter rleduces to the evaluatin of a
double integral which gives different values according to the
order in which the integrations are performed. We can see
this by writing down an expre.ision for the total momentum
of the whole liquid in the direction of motion of the cylinder.

Referring to Fig, 1, we have wet-r- 2 cos 20 for the component
fluid velocity at any point, or iu(t;(x- - y 2 )1(.r 2

_ + y'2 )" in terms
of rectangular coordinates. Thus with s for the density of
the fluid, the total momentum forward is given by

M = ua~s' 2 -11dx

- ,f-< -.i+ ,,,,

where the integration extends throughout the fluid.
We divide the integration into two parts, writing f for

(' - y-)/(" + y*) 2 . First, the region abreast of the cylinder,extending to infinity ill both directions, gives without

ambiguity

M1 =4ua 2 sfdfd =--r.a2-U.

For the rest of the fluid, fore and aft of the cylinder, we
]have

S= 4,fJfd~rd,J,,

where r ranges froin / to ac, and y from 0 to m.
'[Ih'( ilUt(,grlal M., has diffei'ent values ac•ordingr to the

oirder in whici.h the i lt elgr:itiolns aie pierforielld. We hiave

AL., = 4 wi .J/z =r 9 2wsaOu.
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This evidentlv corresponds v'idi argument (A) above.
Adding 31, and M.,. we have a total ranmenturi forwards of
w'sa',2- and this agrees with the permanent forward displace-
ment.

On the other band, we have

M. = 4ua(2s fr•tkfbly = 0.
a o

This is the argument (B), and it gives a total momentum
of •.,avti backwards.

We may write the integral M2 as a limit in the form

M =Lim 41&12 Sf dx ffdy
a e

In this integral with b, c finite and a not zero, the order of
integration may be inverted without changing the value : we
have in either case

'M -- 4ua-2s Lira (tan_'- - tan-'a

This form brings out the indeterminateness of the prob-
lem. for the limit can have any value we please between
--/2 and 0 according to the limiting value of the ratio b',,.
The argument (A) above supposes that b and c are both
infinite in such a way that b is infinitely grealer than c:
while we obtain the result of argument (B) by supposing
c/b infinite in the limit. Another special case would be to
suppose b) and c to become indefinite in a ratio of equality.
Then I.L is ,rjzL21 and the total momentum of the fluid is
zero. In this case we picture the fluid as of equally infinite
extent in and at right angles to the line of motion. Up to
the present we have taken the solution of the fluid motion
without considering the conditions under which it was
obtained. These included lhe condition that the fluid should
be at rest at infinity, that is, the velocity should become
infinitesimal as the distance from the cylinder increased
indefinitely. If we could imagine the fluid to be contained
in a fixed boundary at infinity, the condition to be satisfied
there would be the vanishing of the normal component of
velocity. At first sight. there would not seem to be much
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difference between the two cases, the latter being included
in the former. But we have seen that it is necessary to
define conditions more precisely in order to avoid ambiguity.
WTe may illustrate this by a definite problem in initial
motion for wbich the solution is known.

Let the fluid be contained within a fixed concentric
cylinder of radius c, and let the inner cylinder he suddenly
started with velocity u. If 0 is the velocity potential of
the initial fluid motion, the boundary condition at the outer
cylinder is that dq&/dr should be zero. The value of 6 is

u - a2 \••)

The second part of 0 represents the fluid motion already
studied, with an additional factor e2/(C2-a 2 ). Superposed
on this there iý a uniform flow backwards of amount
ua 2/ (C2-a2). The total momentum can be found by integ-
rating throughout the liquid as before. In this case there is
no ambiguity and it is easily shown that the second term in 4
contributes nothing to the momentum. Adding the part due
to the uniform flow, we find the total fluid momentum to be
,rsa2au backwards; this result is independent of the radius
of the outer cylinder, and, of coarse, agrees with elementary
considerations.

Now suppose the radius c to become infinite. The fluid
motion then differs from that studied in the previous sections
only by a superposed uniform flow backwards of infinitesimal
magnitude; but when integrated through the infinite extent
of liquid it gives use to a finite momentum sasau backwards.
Further, in any finite time the additional term makes no
more than an infinitesimal difference to the paths of the
particles; but if we attempted to extend the solution to
" infinite " time we should be faced with various ambiguities
in making any allowance for the extra term.

The velocity potential 0 for a finite extent of fluid is
determinate when the values of 4, or 84,/Sn are given over
all the boundaries. If the outer boundary becomes infinite
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and 0 is said to vanlishi at in tinil. the soluIion is indeter-
ilinmate by an1 i~inin~tesilmlla]iillounit . ((utIsoqwIlfeýiho114 total
momientum or flow may Ix, inde('l', minate to a finite ameount.
On the othor h•znd, the totlal kinetic ennergy of the fluid

niotion, involving a suni tio ,ou of (he square o ifi the velociiy,
is only indetermiiate to, an ilfillitesiiniil extent.

In con•lusion, it appear., that tlie problem is indeter-
niinate unless the infinite Iiuihdary ,of fluid can 1),e defined
as the limit of some IMatbiiular form, and fuithber in that
case the conditions satisfied at the boundar. iun t ani , 1w
,.onsidived. At the bost th,', question of 'hat halinpts in lIIl

infinite fluid after aln infinite ilme leads to on real 'lifliculties;

the above discussion niav serwv to show in whiat way these
arise when we attenipt to forc.e t•o this extent ordinary solh-

tions which give consisient r•sults when treated in a
legitimate manner.
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Sh•p Resistaince: The TVave-making Properties of Certain

Tra•vellir~y Pressure Disturbances.
By T. H. HAVELOCK, M.A., D.Sc., Armstrong College, Newcastle-on-Tyne.

(Communicated by Sir J. [armor, F.R.S. Received October 7,-Read

November 27, 1913.)

1. In previous papers* I have investigated the wave-making resistance

of a ship by comparing it, with a certain simple type of pressure disturbance

travelling over the surface of the water. In a recent papert on the effect

of form and size on the resistance of ships, by Messrs. Baker and Kent of the

National Physical Laboratory, reference is made to this pcint of view. The
main work of these authors consists in the examination of mo(tel results and

the deduction of empirical formulwa of practical value. In addition, they

connect the wave-making properties with the pressure distribution and haN ,-

obtained graphs of the latter for various ship forms under certain conditions;
these curves show a range of negative pressure, or defect of pressue, between

the positive humps of excess pressure corresponding to the bew and stern.

The authoi., remark that this will have an effect upon the wave-making, but

conclude that it is sufficient for their purpose to be able to state that such

pressure disturbances, as they have shown to exist when a ship is in miotion,

will produce waves which will vary more or less in accordance with the theory

referred to above.
Under the circumstances it seems advisable to extend the mathematical

* ' Roy. Soc. Proc.,' 1909, A, vol. 82, p. 276 ; also 1910, A, vol. 84, p. 197 ; •tit, ' Proc.

Univ. Durh. Phil. Soc.,' 1910, vol. 3, p. 215.
t G.S. Baker and J. L. Kent, Trans. Inst. Nav. Arch., vol. 55(ii), p. 37

(191 3).
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thenry by working out the wave-making propertiies of' other distributions of
pressure. Altflioughi im attempt has becil made to con nect, t lie dist rih1iiitioil
directly with sh ip formj, the fodlowiiig vxanq~les lave 1 ccli ci 'sel wi tli a view
to general iniferences which call be drawn in thiis respect. In particular, the
dlistributions graphed by Baker and Kent can be representedl, inl type at least,
by a mathematical expression for which the corresponding FInirier integral
can be evaluated, so that one call comnpare the result with that obtained from
siluipler formis. Although tile expression for the wave-mnakini; resis,-tance
becomes more complicated, it is not essentially difterent from that obtained

previously ; it appears in general to lie built up of terms involving- the same
type of exponential. e-111", together with oseillating fa~ctors rep)resenlting hiter-
ference effects between prominent features of the pressure distribution.

2. We confine our attention to two-dimensional fluid motion. We may
imagine it to be produced in a deep canal of unit breadth, with vertical sides,
by thle horizontal motion of a floating pontoon with plane sides fitting closely
to the walls of the canal but without friction. We assume that, as regards
transverse wave-making, this is effectively equivalent to .sorne travelling
distribution of pressure impressed upon the surface of thle water.

Let Ox be in the direction of motion of the disturbance, and let y bie the
surface elevation of the water. Suppose the distribution of pressurc to be
given by

p f (r).(1
For a line dlistributionl we may suppose tihe dlisturbance to be Inappreciab le

except near the origin aimd to be concentrated there in such a manner that, the
integral pressure P is finite, where

P f J(x) dxz. (2)

When this disturbance moves along thtu Surface of water, of (density p, whid

velocity v, the main part of the surface disturbance consists (if a roegtilar train

of waves in the rear given by

qp -2KP Sinl K.", (3)
where the lei-gtll X of the waves is

21r _27rv2

/C f

We can generalise this result for any formn of lpressume distribution f (a),
which is likely to oc-lur, by the Fourier method. We have in general

2 K ~f(f) SillKX- (if (4)

j -2cýsnx- cox) (5)

-2K(6Sl V*CSK))
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where = ff(f)cos Cfdf, = -- sin Kdf. (6)

The mean energy per unit area of the wave motion given by (5) is
2 K 2(0 2 +-4 )/yp. Now the head of the disturbance advances with velocity v,
while the rate of flow of energy in the train of waves is the group velocity ½v;

hence the net rate of gain of energy per unit area is 4v times the above

expression for the energy. If we equate this product to Rv, then 1. may be
called the wave-making resistance per unit breadth ; and we have

I = 0 (01 + ,f"2)/gp. (7)

We have in each case to evaluate the complex integral

x = O+i, =JdS. (8)

In the examples which follow, the integral has a finite, definite value
which can be obtained in Cauchy's manner by integrating round a closed

simple contour in the plane of the complex vart ble ý. The functionf(S)
is such that (i) it has no critical points other than simple poles in the

semi-infinite plane situated above the real axis for ý; (ii) it has no critical

points on the real axis ; and (iii) its value tends to zero as ý becomes infinite.
Further, the quantity K is restricted to real, positive values. Under these

conditions it can be shown* that

Jf (ý) eitdE =27r.-'A

where YA is the stun of the residues uf the integrand at the poles off(S)

situated above the real axis. If a is a pole, A is given by the value of

(ý-a)f(E)eW' when • - a. Alternatively, in the following examples f(ý) is
of the form F(ý)/G(S), none of the zeros of G(ý) coinciding with those of

F(t), and A is given by F(a)ei,"/G'(a).

3. For the sake of comp-rison the results which have been obtained

previously may be repeated briefly. If A
=/= f A (9)

the poles are at -=-+_io, of which the positive one alone concerns us.

Hence we have

f _ = 27 Ae-. (10)

Hence from (7) P = -- A K2,,= ,-2- e2-'a•/ 2 .t (11)

• Jordan, 'Cours d'Analyse,' vol. 2, § 270.
t Cf. Lamb, 'hydrodynamics,' 1932 edn. p. 415.
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If A is a constant and independent of the speed v, the gr;,plh of R, as a
function of t rises to a maximum and then falls slowly but continually to
zero as v increases indefinitely. Thus, for an assigned pressure disturbance
of this type whose magnitude is indexemdent of the speed, there is a certain

speed beyond which the resistance R continually decreases.
On the other haml, if the pressure disturbance is that produced by tWle

motion of a floating, or submerged, body, it is clear that it will depend upon
the speed. Since we may suppose the pressures in question to be the excess
or defect of pressure due to the speed, it seems a plausible first apl)roxima-
tion to assume that the distribution is not altered appreciably in type and
that the magnitude is proportional to v2. Thus if in (11) we make A pro-
portional to vr we obtain

11 -- const. x e-9•'v. (12)

The value of R now tends to a finite limiting value as v increases
indefinitely.

If the quantity A, specifying the magnitude of the pressure disturbance,
varies as vn, then the graph of R rises to a maximum for some finite value
of v, provided n is positive and less than 2 ; the nearer , is to 2 the higher
is the speed at which the maximum occurs. For the present we assume
that 7 is equal to 2 ; in any case it does not affect the results of a qualitative

comparison of different types of distribution.
The scope or the assumption may be illustrated by a certain case.

Prof. Lamb* has worked out directly the wave-making resistance R due to

a circular cylinder of small radius a, submerged with its centre at a constant
depth f, and moving with uniform velocity v; he finds that R varies with
the speed according to the law -4e- 2 9f,1. If we attempt to represent the

disturbance approximately by some equivalent surface pressure distribution,
the type which suggests itself naturally is

p = A(Pl-a)/(j 2 +X2 9.

It can be shownf that this distribution, together with the assumption that
A is proportional to v2, leads to the same law of variation of resistance with

speed.
4. In a certain sense the generalisation from a line disturbance to any

diffused distribution of pressure may be regarded analytically as a case of
interference; the final result is due to the mutual interference of the line
elements into which we may analyse the given distribution. However, the
idea of interlrrence in ship waves has usually been associated, after the work

* H. Lamb, 'Ann. di Matematica,' vol. 21, Ser. 3, p. 237.
t ' Ro). Soc. Proc.,' A, vol. 82, p, 300.
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Ship Resistance. 493

of W. Froudo, with the superposition of bow and stern wave-systems, that
is, when the whole system may be separated into two fairly distinct parts.
I have represented this previously by a positive pressure system of type (9)
associated with the bow, followed by a similar negative systemn associated
with the middle of the run. Thus if I is the distance between the centres of
the two systems we have in the present notation

A, A2 (13)p=(ý_½ty+ al (f+11)2+ 2"

Substituting in (8) and evaluating the integrals we find

S6 = (A1 -A 2) e- cos C I Kc (A, + A2 ) e-' sin I K1.

Hence from (7)

gpp, = C2(A1
2+ A2

2- 2AIA2 cos ici) e- 2
.. (14)

The graph of R is a mearn curve similar to (12) with oscillations super-
posed upon it, humps and hollows corresponding to minima and maxima of

COS Klor cos (gl/v 2).
It is of interest to note that if A, and A2 are equal, we have

R = const. x e-2 - sin2 J•d. (15)

Thus, in a hollow, R would be actually zero if the two pressure systems
were equal in magnitude. This, of course, follows at once from general
principles; if we have a pressure system followed at a fixed distance by an
equal and similar system, then there are certain wave-lengths and corre-
sponding speeds for' which the main regular waves due to the two systems
cancel each other out exactly. A moving body which would produce such
a state of affairs would be, in Lord Kelvin's phrase, a waveless pontoon.
Of course, this does not occur in ship forms, and there are several reasons
why it could not be expected to do so. In far2t we have in general to suppose
A2 much less than A, in (13). However, it is conceivable that some change
of form might give more effective interference effects of this kind and so
deepen the hollows in the resistance curve, though possibly as a practical
suggestion it may be subject to the same limitation as in other cases, namely,
even if the wave-making resistance were lessened in this way probably the
alterations would so increase frictional and other resistances tht there might
be no gain on the whole.

5. Baker and Kent have pointed out that in certain cases the pressure
distribution at the entrance of a ship form is not simply a hump of excess
pressure, but is a hump followed by a hollow of negative pressure. They
assign to the interference of these two parts a certain subsidiary interference
effect in the resistance which may become important when it coincides with
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one due to the bow and stern systems. This follows on general grounds, and
might be. represented ainalytically as in § 4, but, it is worth while examining
other distributions with this chacacter.

In the first place consider one which doeo not give the desired interference
effect, namely,

- (16)

The graph has been drawn for certain numerical values of the constants
and is curve A in fig. 1.

A

FiJ. 1

We have X + a2  = i7rAe

Hence, from (7) and (8),

gpR = wrarA 2 e-2•. (17)

We have here the same form for R as a function of v as in (11) for the single

hump of positive pressure; we do not get the interference effect which might

have been expected. This may be explained by remarking that the pressure
falls away from the maximum only slowly; in other words, the hump and

hollow are not sufficiently pronounced for their- individuality to show

directly in the final formula. in the previous section, where the distribu-
tion is 1/(f 2 + a2) instead of ý/(t2+4a), the maximum and minimum are more
pronounced and we get a typical oscillating term in the final result. This
view may be confirmed by another example.

6. Consider
( A)P •+4&4'

This distribution is graphed in curve B of fig. 1, arranged so as to have the
same minimum and maximum as for (16); the curves A and B illustrate
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clearly the difference in question. Numerically, if fo is the position of
the maximum, at 3eo the value of p from (16) has fallen to 3/5 of the
maximum, while from (18) it has fallen to 1/7 of the same value.

The poles of the function in (18) are ±(1+i)0 ; thus from (8) we have

X+=21ri j {f-e(1i)1 (1 -- 01-) {e+a(1 +i)} {-- a(I--i)} (-+-)

e-ir sin at1/.

The wave-making resistance, R, is given by

4gp&4R = -- Me,-- s3 -.K. (19)

We have now the oscillating factor sin01 c. There will be, for instance, a
humn on the resistance curve when 2ax = iir, that is, when the half wave-
length is equal to 2a. It may be noticed that this is nearly, but not exactly,
the distance between the maximum and minimum of p; from (18) it follows
that the latter distance is 2a4/(4/3), or approximately 2"15a.

We also have R exactly zero in the hollows in the resistance curve, a result
which follows from the numerical equality of the positive and negative
pressures at equal distances from the origin. We can make the negative
pressures less by considering an unsymmetrical distribution.

7. Let the pressure be

P (20)

In this case the graph would be as in fig. 1, with the curve B for positive $
and the curve C for negative values.

If the poles of (20) are a, ± ib, and a2 ± ib2, we have

a+ a -- 0, -
a, 2+b?..raj2 +b2 

9+4aal = 0, (21)

2 jai (a.2 4 b2-) + a(a 1 + b,2)1 = (21
(a,2 + b1

2) (a2
2 + b92 ) = 4 0L.

In forming the function X .by the previous method we have two parts.
The part for the pole a1 + ib1 is

7r (a, + ibi) aaO,•.-b,
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There is also a similar exp'rossion correslonldin, Io the pole (t,+ d,2: frmi

(21) we see tli:t the reult (,;n bc written in t he frin

S= (A ,--v 1,I) d ,,-" -( . + J"D. .... v ......

Hence f'•r the resistance we have, froim (7),

!pR/K= (A12 +B 1 2) -2)y, + (A.?+ 1,+), b.t

-2 {(A 1A2± +BB 2) cos 2,t1 --(A.Al2  - AlW.,)sin 2 ,iK} ,1-01+'1m) (2)t

We notice how the presence of the smaller negative pressure vomplicates
the mathematical expressions. On the ,ither hand, all the terms are of the
same type as in simpler cases, we hav'e thiree t'erms invodving the same
exponential function, the third having an oscillating factur ', ( 2

K( I + C),

where
tan f = (A 2 I -A- 1B12)/(AAh+ B1 I112 ). (24)

The humps and hollows on the curve for R will not coincide' exactly with
those obtained ly graphing

e-'-'(I,,+?) cos (2alK + 6), with K = Y /,

but the agreement will be sufticiently close ftr p)resent purpo)ses.
Accordingly, the maxima for R will he near speeds for which

2(QK+ C = -- r,; /I -- 1, 3, 5,. ..

The corresponding speeds and wave-lengths are given liv

1-2 2yo, x (25-" r - c 11r-- f

In the previous case of symmetry, with thU result in (19), the humps
occur at wave-lengths 4aln, that is when the wave-length is equal to or an
odd sub-multiple of a certain length ; a similar statement in tvrms of velocity

brings in the series 1, 1/V/3, ,/V5, etc. In the present case we see from
(24) that this arrangement is somewhat disturbed by the presence of the phase
e, a quantity which may p)ssibly be small compared with 7r. A complete
algebraical study might h)e ma(le, hut possil,!y a simpler way would he to
start from a gralph of the pressure curve and carry out the integrations
involved in (8) by graphical methods. We can also obtain informn.ation b)y
w(Irking out some mnmerical examples ; one may suffice at present namely,

p (26)V -/'- 180f + 2419

T'he pressure curve is of the form BC, shown in fig. I, withi

I/ilt = 0'541: 1 - 1066.

i rthier with the previotis mitation,

= = 5, b, = 4, bh = %/ 4.
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Working out the numerical values from (22) we obtain for the resistance,
omitting a constant factor,

= 516e-11, + 353 4-n.61 857 cos (10 C -- ) C-9*8, (27)

with K = gq /. tan e = 0"017.

We verify that in this case E is, in fact, very small, consequently the simple

relation between speeds at which there are humps is not appreciably altered.

The absolute position of these humps on the R,v curve may be slightly dis-
placed. For instance, the final hump occurs when 10K is equal to v, that is
when the half wave-length is eqaal to 10; on the other hand, the distance I
between the maximum and minimum on the pressure curve is 10"66 units,

8. We turn now to more complicated distributions of pressure similar to

those obtained by Baker and Kent, to which reference has already been made.
We can build up a rational algebraic fraction which has at least the salient

features of these curves; for instance, the graph of fig. 2 is represented by

2 - X2 -X 2  (28)

where X and p are constants. We have, on the curve,

OA X, OlB = ~~(~p~ C' = a., AE = CD 2 - k _L)

OF 2- 2 (++pý 2 )/(X 4 +F/4 ).

P D

F F 0. 2.

With different values of X and p, one could obtain variations in the

relative prominence of OF compared with CD, and in other features.

if the roots of the denominator in (28) are + (a + ib), we have

2 (12 - b2 ) = X2+ ',2

- (29)2 (02 + P! 2_= X4 + 14.Jt

Using these relations in evaluating the integral X, we obtain

,X 2 r 2 a + h2) 44 __

+-a 2b)J 2 (f2 - a3 + b2)I
+2-i -(,,i {•--(a-ib)) {+(,,+i,)} -,+
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On simplification this leads to

x= 2 7re ba, (h COS Kfl-a sin pf(,)/Qi 2 + h)

Hence from (7) the correspon(ling resistance is giveni by
(f(2 + 1)2) yplI., = 4 72K,2 ,,§ 2t Sin12 (KU - E), (0

with tan E 6/a..;h

We have in (30) a form very similar to those we have alruady studied.
The phase c mneans a bodiy displacement of the seri,ýs of humps andl hollows;
but, again, e is Small u~nder the ustial circumrrstances, whien the 0ifference
between p& and X is Small compared with either.

Further, because of the symmetry of the distribution fore- and aft, there are
Values Of K, with correspondii~o speeds, for which It is zero; we have seen
that to av,)id this result we must suppose the mnagnitude of the. pevssure 1p to
be less in the vicinity of the ruin than at the entrawce. NWe coulid initroduice
this want of symmnetry by considerinig

In the expression for the integral X we sho uld have a part corresponiding
to each (if d t polos a I+ di b and f,2 + ih- ; inii imisvquellee. thI e resistan ce It
wouldh be similar in formn to the expression in (23).

From (:-'0) we notice that the wave-lengthis corresponding t,) humpls on the
resistance curve are submultiples of 2a ; also when X andl j. are nearly equial,
2(( is of the order 2 pt, the distance '.jetween the two positive pressure humps.
The typical iiiterfercric~e effects in this example are (due to the interference oIf

the bow and stern s;ystewns ; in order to get a Secondlary interference effect
betweent the. Positive and negative parts at the bow these must have separate
individuality to a greater degree, as we saw in §5., For instance, we could
conisider two distributions, like (20), one associated with the entrance, the
other reversed and associated with the run -, we should then have a ver'y
grel iral type of distribution represented by

A, A(ý- 41) +-- 1) +32)
I) -)13, (f- "I /) + 42 (+ 1IP 1) 4 ý(e + 1/) + 4u (:12

11 is unnlecessalry to grraph this or to put down expressions, for X and It.
NNe Shlouldl obtain it sumi of expressit ns like (23) involving sines and cosines
of 2K(1 and of 2Kf(o, and(, id additii in, of K1. vier'e wotld hev in general
var~imit ipoI ssibliilit ies if sithsidiary in terforenee efli~ct s ; the 1maix. one, woUld lit-
the 1 1Wv and ster!n i litel ferelene rep reseel bN .t KI~ , .1ntd tOW next ill iluportailcet
tha~t b et Wetll the. li.Sýt ivv anti negat ive ):trt s at the lio w represented by 21cai.
There wonid-i altio lit the~ i possibility of t hese two etliets adding togethier at,
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9. One could obtain more maxima, or increased waviness, iii the pressure
curve by introducing higher powers of ý into the fractions we have used.
With the samne general method for evalmuting t bh integ-ral X it fillows that
we should obtain expressions of the same type, oi., inore complicated
in form.

The various examples which have been studied coveýr a wide range of
distributions of the type which one would expect to be associated with the
motion of a ship, in respect to the formation of transverse waves. It may be
said that the corresponding resistance curves (1o not differ esseliLially front
those obtained from a simple distribution. only with the intr)due-tion of
additional coefficients there is possible a widher range of variation.

11 A .H It40 AN 11 SUON :, Prigtl.,** im Ordinary tu Ilia Majesty, St. Marlti'b Lam.,
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The Initial Wave Resistance of a Moving Surface Pressure.
By T. H. HAVELOCK, F.R.S., Professor of Applied Mathematics

in the University of Durham.

(Received January 18, 1917.)

1. The study of the water waves produced by the motion of an assigned
pressure distribution over the surface has hitherto been limited to the steady
state attained when the system has been moving with uniform velocity for a
very long time. In his latest series of papers on water waves, Lord Kelvin*
made an elaborate graphical and numerical study of cognate problems, and
expressed the hope of applying his methods to calculate the initiation and
continued growth of canal ship-waves due to the sudden commencement and
continued application of a moving, steady surface pressure.

In the following paper, I have not attempted any analysis of the surface
elevation itseif, but I have proceeded directly to the calculation of the corre-
sponding wave resistance. At present the wave resistance is known only
for the steady state for certain localised pressure systems in uniform motion,
and it seems desirable to attempt some estimate of the time taken to attain
this state when we take into account the beginnings of the motion. One
might examine the effiect of initial acceleration, but I have limited the
problem by considering only the case of a system which is suddenly
established, and is at the same instant set in motion with un:!orm velocity.

SKelvin, ' Math. and Phys. Papers,' vol. 4, p. 456 (1906).
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The work is arranged in the following order: a general expression for the
wave resistance as a function of the time, an exact solution for a certain
waveless system, a comparison of this solution and the group approximation,

and an approximate solution for certain systems which leave regular waves
in their rear.

2. Consider, first, the effect of a single impulse applied to the surface of
deep water, with no initial displacement of the surface. Take the axis of y
vertically upwards, the axis of x horizontal, and the origin in the undisturbed
surface. if the impulse is given by F(x), and if the Fourier method is
app)licable, the elevation at any time t is given by

-- rypy = [V sin (KVt) dx F (a) eix(z-a)d, (1)

where V = (.q/1)t, and the real part of the integral is to be taken. The

effect of a pressure system, wlhether stationary or moving, can be obtained by
integrating (1) suitably with respect to the time. For the pressure system
may be considered as a succession of impulses; to each impulse there
corresponds a fluid motion with definite velocity potential, and the velocity
potential of the fluid motion at any instant is the sum of the velociLy
potentials due to all the previous impulses. Similarly, the corresponding
surface elevations are simply superposed, and we obtain the required solution
by an integration.

For a. pressure system moving with uniform velocity c, we have to
substitute x+ct for x in (1) and then integrate with respect to t between
the limits 0 and t. But the solution so obtained is indeterminate to .1
certain extent, for we can superpose on it any infinite train of waves of
wave velocity c. The so-called practical solution is found by choosing the
amplitude of this train so as to annul the main regular waves in front of
the travelling system. The integrals are, in fact, indeterminate, and are
evaluated by taking their principal value, in Cauchy's sense of the term.
Another way of avoiding this difficulty is to introduce small frictional terms
proportional to the velocity. The integrals are then determinate, though
more complicated in form ; however, the final results, after the analysis is
completed, can be simplified by taking the frictional coefficient as small as
we please. We shall use this method, and it is sufficient for our purpose to

write, instead of (1),

-- rgpy = (me-"xV sinl(xVt) dx JF(l)et ((-K•'d, (2)

where, ultimately, 1A is to he considered small.*

*Compare Lamb, 'Hydrodynamics,' 1932 edn. p. 348.
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Consider, then, a pressure system

-F (z= ), (3)

which is suddenly established, and i': at the same instant, set in motion with
uniform velocity c along the axis of x.

Putting x = r+ct, the surface elevation at any time t after the start is
given by

7q P e I i (~) e"-do. (4)--r•qpy / -•c•,-!~u~i KV,•"'w+e")sin (KVu) dK FJ~ .. •

For simplicity, we shall confine ourselves to pressure systems which are
symmetrical with respect to the origin ; so that

O(K) F(a))e-iKd2 = 2 FJF(a)cos Ko do. (5)

Also we shall use only localised distributioms tfr which the integrals are
finite and determinate; the systems will be finite and continuous and such

that the integral pressure is finite, that is, the integral f F((.) d!

convergent. Carrying out the integration with respect to i, we obtain

-27rgpy - fKV0 (K) 0 "' (V +-)+ ipx + (V~ c)

C'~ AN (K)eR eig (V+c-,t tv-t• IV-e.t(-)

•-':.0•(o ),. K (V4- ) + i,: + K(V- ?.--.Ur • (

The first integral represents the steady state, while the second gives the

deviation from it when we take into account the beginning of the motion.
3. From the first integral in (6) we have, with K0 =- !&2'

-7rgpy=K o( C)+ --.f i () d (7)
E.0 K(O -K I2ýAi

The integral is to be evaluated first, before we make j. zero, otherwise it is

indeterminate. The interpretation for certain types of localised pressure

systeem is well known; in such cases the solution takes the form

Y =f(M), W > 0,

y = -- I (Ko)sinUKOM+f(-M), W < 0.

This solution represents an infinite train of regular waves in the; rear

of the moving system, together with a disturbance symmetrical fore and aft

which becomes negligible at a distance depending upon the concentration and

the velocity. For our present punpose, all the examples we use are included

under the case
0 (K) = KncC-a, n > 0, a >0 (0)
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To, verify the sohtit oll (81 in this case, regard K in (7) as a complex variab)le

re19 .
For r positive, integrate rotnd a sector of radius R b) inded by the. lines

0 = 0 and 0 = 3 (O< 3•<7r). Under the specified conditions, it can be
shown that the iitegral along the arc r = R tendsF to zef") as It is luade
infinite. hI this way the integral (7) is tran.forined into an integral, along

the line 0 =, in which we can inake /i zero.
For m negative, integrate round a sector of ridius R bounded by the lines

0 = 0 and 9 = 0, with -tan-m' 2 o/K,>/ 3 > - ýr. We get a similar result,

except that th~e integrand has tow a simlple pole within the sector at the
Point K,--2LtIi approximately. The residue at this pole gives the terai in (8)
which represents the regular train of waves in tLe rear of the system. It, can
also be verified that in this case y and ay/lra are finite and continuous

throughout.
Returning to the general expression (6), the second integral represents the

deviation from the steady state. Tt contains exp { iK (M. + Ct) j as a factor, and

we see from its form that it represents the effect at time I of a certain initial
distribution of velocity and displacement. To, illustrate this point, consider
a stationary pressure system which is suddenly established at a given instant
and maintained constant. The effect is the same as it there had been in
existence ul) to the given instant two equal and opposite systems with t'eir
ultimate static etlect upon the water surface fully established, the negative
system being thOn suddenly annulled. Thus the subsequent effect is the
steady state of the positive sy:,tem combined with the effect of an initial
displacement equal to thle steady state of an equal negative system. In the
same way, for a pressure svytem which is suddenly estalblished and started in
uniform motion, the effect is the suiperposition of the steady state of this

system and the disturbance due to initial conditimns given by the steady state
of an equal negative system in uniform motion. We shall find this principle
of use in a later section.

4. The wave resistance P, in the steady state is usually obtained from
energy principles applied to the regular waves. Tihe front of the train
advances with velocity e, while the rate of flow of energy across any fixed
vertical plane in the rear is the corresponding group velocity ýc; from the
amplitude of the regular waves in (8), by equating the net rate of gain of

fluid energy to lc,, it follows that

I= {4, = (Ko) (10)

Some consideration is miecessary before we can apply this method to the
motion before the steady state has been attained.
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Bogin with at (case ill whiih thjele i; JIll) ;11lig.'liitY, 1!111 .ly, whI', the wa',-
ar(, lprduce(l Iy a ri-idI hwl l,,i• liz,,l~titffy thrl-MI• t~he liqluidl. W\e
canl apply the g.rieral hydrodywti.:IilA prin~ciple that •he rato of iliircase ,il'

total eneri'y of the fluid is equal lto tll• tetivily ,(f the pnOssurC t;tkeii over all

the bouliuling surfaces. If we eyatlme the rate sd ili'•re:,se , ef•leor,_ry tio the

prolduct of a force RI and the y\.e],c itv of Ill, rijiI ,(),I, it follows that. lR is
simply the total thisd pressulre ,ol te riioVirl2 lsiy jesI'.l hirizoc~aib'. This
lesult uall eavsily be kerifioei IY dir'ect i:klculttiiiu for the st ,alv y t :ate, w\l.t her
Lt10 wavCs alr produced b," th, notii nf a rigidl Ioidly (,Ir l tOw itisilii•oi ,f an

assir•iwol surface pressure' ill fact, the two I'lses are identic.al ill thle stealV

state, f(- we cal imagine tih surface pressur., to be applied by a r 2i41d cover

which fits the water surface everywhere.
CXonsider now the proldeii 1,f4ire the steady state has been estalilishe I. If

the Wat\ves are camus•e by it allOVill-vi rigid body, we can use either dlefi iition for

the waNe resistalk .w, we c•ai ciicidlate it fromn the rate of iilcreaCsej of fluid
energy or froni the total horiz'nrtal pressure ou the body. Ave are not

disceissing this ease, sinrply Ibc(ýausc so far the analysis has proved too

conrfiicated to allow of suitalbh rcdueti'r. We replace this probicin by that

of the motion of art assigned surface pressure. Now we can calculat- tha rate

of increase of the total eniergy of the fluid when the pressure system 7.s i'l
inctiun. But it would not be satisf;atory to divide tlhi:. juIantity by the

velocity of the pressure systei, and define the quotient as the wave resistance,

for part of the increase of fluid energy is independent of the motion of the

pressure system. For instance, if a stationary pressure systeit is suddenly

established and maintained steady, the activityof the surface pressure is not zero

immediately after the initial instant,; there is a subseqluent flow of energy,

whose rate ultiinately subsides to zero. From these considerations it seems

that we should get results more comparable wit~h the wave resistance of a

rigid body by '-dopting the alternative method of calculation. In what

follows we shall therefore calculate for any instant the total horizontal

component of the surface pressure regarded as applied normally -o the surface

of the water ; and we shall define this to lbe the wave resistance.

With the usual limitation that the lope of the surface is everywhere

small, we have from this definition

R (()11 ~.1)

We can verify that this givez the same result (10) for the steady state,

For instance, taking the expressions in (8), the part which is rymmetrical

with respect to the origin gives no contribution to R, and we obtain
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gpR1 = 2 _ F () . Ko2 (Ko) cosS oM dM = K02 (KO) }2,

or if we work directly from the integral (7), we have

irgpR1 = •o LimI . .2 1(K) } 2 
d . (12)

,•-,0 .o K(Ko-K)+A2-2,Wxi'

where the real part is to be taken. Under the general conditions specified
for 0 (K), or, in particular, for the case given in (9), it can be shown that this
leads to the same expression (10). The wave resistance in general is the
sum of two parts, the steady value I1, as given by (10), and the deviation R2.

Using the definition (11) with the second integral in (6), we find

-2rgpR%= Lim e-ct iK2'V {1(0)}( [ -o•(V)_C) I't- + - -e(v+c)t ]dK.
A-U JU' I(V-)-Pi (\ +C)+kLcId

(13)

5. Consider first a special case in which the pressure system is such that
".here are no regular waves left in the rear, a type which Kelvin called a
waveless system. It follows from (10), (12), and (13), that this is the case
when the system is such that 0 (i) is of the form (K - KO) * (K), where ,I" (K)
remains finite. We have then

= 4(K) = (IC- KO)*(K). (14)

If this system is made to travel with the velocity c, for which 2
7r/Ko is the

free wave-length, there will be no regular train of waves in the rear. The
integrals (12) and (13) now remain finite and determinate with jL zero; we
can thus simplify the expressions by making p zero. The integral (12)
vanishes, as does also the equivalent expression (10). Then, taking the real

part of (13), we find for the total wave resistance of this system at any

time t

-'rgpR = Kof[K(C)o K

x {Jc sin xVt cos CCt--Kot COS KVt sin cct) dc. (15)

It is of interest to examine this solution when the integral can be evaluated
exactly in finite terms. Burnside* suggested some years ago a method of
building up exact solutions of certain wave problems, and similar forms
have been analysed in detail by Kelvin, after obtaining the solutions by a
different method. The cases in which we can carry out the integrations in
(15) lead to similar functions; we obtain them by taking

4r(K) = Kie-', 7'> 0. (16)

* W. Burnside, ' Proc. Lond. Math. Smc.,' vol. 20, p. 31 (1888).
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This case is the simplest of the type which allows of exact e(aiiuti,,n ,u"f (15),
and for which the integrai lpressure is tinite. To derive th,' clirre-spini

pressure syste in, we make use of Etler's irtegrals ,f the form

Kn-,'- A,, cos a5(X Sill a),/ = X.- nI'(,)eos 11. (17)

ý >O0, >. U. -. ir <', c < 7 r.

T'sing the Fourier iiitegral thlircm, colhitr, I with (1M) and ( I", ,.e findl

-rF (x) 0 2(K- - ICi)Ki C - ,' COS KX f11

G r (i-) ()-' +.,)-' , ( C tanl'l P)- ,,, I' ( ) (,.'ý + x )" "" cOS, U 7- /!.)
(18)

Tie two terms of this expressoil are easily graphed when expressed in

te rmns of the anugle tan-' (ir)" two numerical cases are shown later.
We can now iind the .-esistwnce R for the system (18), travelliag with velocity

C = 1(g/l,). Substituting (I7' in (15), and writing " = 11, Y -, ,. = p.
ve have

-- • r/p g =-Z K,, KuW(" - o,),:o.,. sill 1 ?/: Cos 1,/, (/1/

+ K114 (,/7 -•Ký,W") C-2'u cos 1,12 sin 7, p i/. (19)

The integrals involved can all he derived, by ulifferentiatiomi with respect to
the parameters, fron

e-(P-"'cos q d, = [7r/(p--ip)] , `1 4"(p-"'. (20)

Carry'ng out these 6perations, we obtain finally

--w71 gpR = KolI2 (4r72 +ct2t)- .5 c-yt32 "2(4?,+,2t2)

× [xol { -- t i-A sin,(-O-6 {-}!h .,dii (4" 3~,9-)- :'. 7 LtA sin (i- -- ))

+ - q5A' sin (J O-1-0)) +4)- o/1 Bin(A co (7 -- 0)))

"+ Ko• VqA• csi (10 -- 5) q3 A 2r ACog (q0-h- Ar -,r..7.t' os(• -€

(21,
where

q = g't; A = (4r2 +clt•) i; i=-tai-'(d2i) ; 4----) y,/4(4i- +-2t-).

6. Before working out numerical examples, it is convenient, to record the
asymptotic expansion suitable for large values of (1/2r. Frwuu (21), by
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writing = -- r-tan- (2't.), and extpanding the various terms, we get, up
to and including terius in (2,/(c.t):i'-:

-- r r l lT R Y (- I T.X/ ' c J~a- l c ' c ) t / 4 , ! + i] 7 r )

+-•' 4 gac-v'It-"{T +f3 (18/3-75) }-,-, Yos (//4c-- .rr), (22)

where X,, = 27rc:/.q and /8 = -rr,/X. If the lressure system has moved
through n wave-lengths, we have r/ n,,,, and lhe ratio of the amplitudes

of the two terms in (22) is

•,-' + , I- - 1, (28)

an expression which gives s',ine est, iiiatc iof the aplroxilliationi ol aited by
using only the first term of (22). Ift depends not ,ily upon the distance

travelled, but also upon the ratio of the effe,.:tive breadth of the system to
the free wave-length for the assigned velocity.

Compare this approximation with that obtained by applying Kelvin's

group method directly to the integral expression for the wave resistanec.

Under certain conditions,* an approximate value of an integral of the forni

is given by

v,,7,F' (.) 
3

the upper or lBwer sign being taken in the exponential according asf" (,) is
positive or negative, and( a eitig a root off'(a) = 0. It is assumed that the
circular function in the integral goes through a large number of periods
within the range of integration, while F (o) changes comparatively slowly; in
addition, the quotient f"' (o)/ {f" (a)}):'" must be small.

Apply this to the form for F given in (13). The second term within the
square brackets contributes nothing to th'3 approximatioa; fronm the first

term we have, with ri = aXo,

f(K) = -K(V-c)t -gtfi+±ctdK.
Hence

Sql4'; f" (f) = q f'"(7)/{.f'(")}2 /( .

From (13) and (24) the group vahlu of R is

It I l-ini e- t  A/( (i) !tJ'a' lt(gt 4 ý- w 4). (25)

Taking the real part of this expression and putting 1 zero, we obtain

R= _c( ,+) (261

* Lamb, I 1Idrodynamics,' 1932 edn. p. 395.
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It 41hould be notted that for a pressure system which leaves re"gular waves

in its rear, we cannot take (26) as ami alppr4,xiiatil m for the litimiting value

of (1.3) when pz- 0, except under cortaili further limiiitatioun. Foi the

presett this difficulty does not arise, as we are eumxsidering a waveless syst.em

with 0 (K) of the forHm (K- K,,) *(X)" we have seen that in this case the

integrals (12) awl (13) remain finite awl determlilate twith jL ,eru.

In particular, for the foirms (16) anl (18), tile grouti formila (26)

redtlces to

--r "f/pl/ " /- q4c -/ ..... ' cos ( lt 4,.+ 7r), (27)

which, from (22), agrees with the first term in the asymptotic expansion of

the exact solution for this case.

Instead of expressing R. as a fune!ioin of the time t, we can use tile

distance travelled, or again the umibal' /, of free wave-l.ngths X), through

which the systei has moved ; in the last case the circular function in (27)

becomes cos J(21t + 1) 7r. The formi of (27) agrees with the defhilition of the

wave resistance as the resolved total pressure. For after a suflicient timie,

the surface ii) the neigbbourhood of the moving origin consists chiefly of the

simple waves whose group velocity is the velocity c of the pressure system

thus the wave-length there is 4Xo.

7. Consider now two numerical examples of the exact solution (21) with
different values of the ratio r/No.

In the first place, we shall adopt units used by Kelvin, for comparison and

for simplicity of calculation.

c.ase i : g= 4 ; r = 1; X=2; K" = 7r ; c = 2[/VOr.

From (18) the pressure system F (x) can be obtained by graphing

47r cos•114 0 cos 1 -- 5 cos 91110 cos 9 0,

where -= tan -i (x/r). The graph is shown in curve (1) of fig. 1 ; the

curve has maxima near x = + 0'2, though they are almost inappreciable on

the diagram.

It is convenient to graph the resistance curve upon a base • = ct/2r; in

this particular case f is also the number of wave..lengths N)O through which

the systein has moved. The anglea of the formula (21) are vow

S= tanu- ; 4 = 7rf 1/2(1+ f').

It is unnecessary to repeat the expression (21) with these values ; each of

the 14 terms can be easily calculated for any given value of f. The results

are shown in curve (1)of fig. 2; to obtain the curve 15 points were calculated

by the formula (21).

The wwve resistance decreases ultimately to zero, as it should for a waveless
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system, but it approaches the steady state very slowly. This is explained

when we examire the graph of the pressure system in this case. The

13
FI G I

FIG 2

waveless character is due to the mutual interference effects produced by

the peaks of the pressure graph, and fig. 1 shows how inappreciable the peaks
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diu i, Ohii caks-. Heouct the , wnwwi ll| W hic ih the steady state is attaiied
and the probable lack ot stability of t!:, steady state.

To compare the group approximatio,. with the exact solw:ion, we 11-ave
from (27)

-- r'1 2gpIR, = 9 x 2- ' r4n-lr/e-w2 cos j(2n+ 1.)7-. (28;

The following is a comparison of the values of 10 2 rkqph, as given by (28)
and the exact fornula (21):

n. Group..

9 -- 3 73 -26'45

16 + 17 -77 + 16 "04

25 -. 14121 -14 93

100 + 7"11 + 694

Case ii.-As a second numericai example, we take one which might
correspond more to practical conditions, in that the pressure system is
similar to that associated with the motion of a ship model in an experimental
tank. Using foot-second units, we take

g=32; r-= 2; ec =20; &0o=008; X0 = 257r.

The pressure system is graphed in curve (2) of fig. 1, from the expression
8 cosk4 8 cos *B - 125 cos9/4 0 cos 10. We notice the contrast between this and

the previous case. We should now expect the steady state to be attained
quickly and to be much more stable. This is brought out very elearly by
the resistance curve, which has been graphed from (21), and is shown in
curve (2) of fig. 2; after the initial peak, the subsequent oscillations can
scarcely be shown on the scale of the diagram.

A comparison of the exact formula and the group approximation gives
similar results to the previous case, for in both the numerical value of the

ratio (23) is of the order 1/n, in spite of the difference in the values of r/No
for the two cases.

It should be remarked that the two cases cannot be compared as regards
absolute values from the curves shown, because the scale for the ordinates
has been chosen arbitrarily in each case. The maximum value of R, that is,
the value at the prominent peak on curve (2), is given by gpR = 7 x l0-1.
We can obtain some idea of the magnitude by the following comparison:
We have chosen the pressure system so that it is waveless at a particular

velocity, namely, 20 feet per second. Now, imagine the same system to be
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driven at any (ther steady velociLt ; it will have a steady resistance, which
we can calculate from the formula (10) ; in this case it is

ypRI -= K-/ 2(K--0') 2 e-4r, K =- q/V. (29)

This steady wave resistance has a maximum at a velocity of about
5"25 ft./see., and the value of gpR is then 16"4 x 10-A. Hence the maximum
resistance due to the sudden starting of the system at its waveless speed is
about one-half the maximurn steady resistance at any uniform speed.

8. We have been able to obtain an exact solution for a special type of
waveless system ; we leave this now to consider more generally a symmetrical
localised pressure system, which is suddenly established and set in motion.

We have seen that the surface elevation at any time is found by super-

posing the steady state of the system and the effect due to initial conditions
given by the steady state of an equal negative system in uniform motion.
Apply this to a case in which the steady state consists of an infinite train of
regular wav(:s in rear of the system, together with a localised displacement
symmetrical with respect to the moving origin. Let 0 be ,the fixed origin
and starting point, and C the position at time t. The deviation from the
ultimate steady state consists of the effect due to a certain initial distribution
of displacement and velocity localised round 0, together with the subsequent
state of a semi-infinite train of regular waves, which at the initial instant
had a definite front at the point 0. We may describe the latter part in
general terms as a regular train with a front, more or less definite according
to the time, at a point G corresp)onding to the group velocity, ald in
advance of G a disturbance which may be called the forerunner. If OC is
sufficiently large, and if we require the surface elevation only at, points
sufficiently far in advance of Q, the forerunner is given with considerable
accuracy by Kel"in's group method of approximation. The argument is
represented diagrammatically in fig. 3, the continuous line showing the
elevation and the dotted line the travelling pressure system.

FIG 3,..

The wn ve resistance being defined as the total horizontal component of the
pre,'3ure system, we divide it into two parts. The first part is the final

steady value KAc{o(,xo)}'/gp as given in (10), and the second is the deviation
given by the integral in (13). The latter represents the resolved pressure
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system as if the surface elevation were that diue t, the sty lige a o' ita ndgative
system, as rejlresented in fig. :1.

For a concentrated prusi.'e system, the value of the iutetral (10) will b.

given approximately by the Kelvin gr, up method" if the ti lie is sl he ieltly

large ; that is, if C is sutliciently far in advance of (-9 fVi" us tc lteghe , tile

contribution of the applied pressure acting on the surface to the rear ot G.

Without, attempting to spec-ify thes4e uoiditiolls luore precisely, we shall

apply the weidhod to the type,! of systUem used ill the previous sec(tioMs ; fr,,m
the previous exact solutiol we have beeln able to estiniate somewhat the
degree of accuracy of the group approximation.

The group value of (13) is given in (26). Hence the wave resistance, for

sufficiently large values of t, is given by
1• =-I-.{q ( €' ')~_ !i'/"{P (/ c) o(,,v,/t/4,c+ 1,) (

P4 O 4r.rI /2p,.l (l

9. Apply this to the pressure distribution

,-r 1,.C) =: I D eio {-o tail-I, (x//-) (31)

for which 0 (K) = , with Ki - /.,/
2 . The graph of this distribution is

shown in curve (3) of fig. 1.
We have

P Ik ,-2gr,/l e-9  Cos (!t/44 + 7r). (32)evc 128717l/ C 72l /2 . Iq'

The value of R oscillates about the final steady value. The relative

deviatiou is given by the ratio of the two terms, namely,

2 --1/27r- Iit- 1/ea/A cos j (2 n + 1)7r,

where )to is the wave-length of the regular train and ct = 'kn. We may

obtain numerical values by using the two cases of the previous sections.
For C.sc i we have r =- 1, Xo -- 2, and we find the following comparison

between R1, the final steadfy resistance, and 112, the deviation given by the
second term of (32):- n

n. R.J/R1 .

9 4-0'0441

1if -0 035

25 +0-027

100 --0'014

Hence, after the system has moved through nine wave-lengths, the devia-

tion is less than 5 per cent.
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In Case ii, 2. = 2 and X0 = 257r. We find that when i -= 9, thtl deviation

is already less than 0,06 per cent.

10. Consider now a simpler type of localised pressure distribution, namely,
S' (1) = r/(r2"+X2). (33)

This type leads to a steady wave resistance whose variation with the

velocity is more like that of a ship niodel, We have O(K) = e- ', and (30)

gives

p _ g -2Y - /27t-' cos (gt/4c + irr). (34)

The relative deviation is now 32 times as large as in the previous case, since

R 2  e
3

7rr/A

1R -- 2b/'2./ 2 cos 4(2n + 1)7r.

With r 1, X0 -2, the value of R%/R1 is about 0"5 for n = 100. We

should have to take n of the order 10,000 before bringing the deviation from

the steady value below 5 per cent.
On the other hand, with r 2, XG = 257r, the deviation is under 2 per cent.

when n = 9, or at about 35 seconds after the beginning of the motion; it is
less than 2 per cent. when n = 4, or after a travel of rather more than

300 feet.

11. The waves produced by the horizontal motion of a circular cylinder of
small radius travelling at a considerable depth h below the surface may be

compared with t ose produced by the surface pressure

7F (x) = Ac2 (b2 _- x2)l(h,2 + X2)2 , (35)

We assume that the intensity of the system is proportional to the square

of the velocity. It appears that the steady wave resistance is then the
same function of the velocity as in the motion of the cylinder ;* for we have

S (K) = A-2KC-,h,
and hence

p = = A 2 -q 3 -- A 2/A5/2 tl c-•hI 2 c cos (gt/4c + I 7r). (36)
C 464 7 /2 ,;7/2t1 /2

As a numerical example, take the case when the velocity is such that
the steady resistance R, has its maximum value ; that is, When c2 = gh.
Then we have

S 2 cos +(2 +) 7r. (37)
-i 21 /27r;t 12

The value of the ratio means a deviation from the steady value of about
0"8 per cent. when n = 31, that is, when the system has travelled through a

dit -ance 7-,rk.
• Lamb, 'Ilydrodynamics,' 1932 eda. p. 410.
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Some Cases of Wave Motion due to a Submer?1ed Obstacle.

By T. H. HIAVELOCK, F.R.S.

(Received May 14, 1917.)

1. As far as I am aware, only one case of wave motion caused by a
submerged obstacle has been worked out in any detail, namely the two-

dimensioual motion due to a circular cylinder; for this case, Prof. Lamb lias
given a solution applicable when the cylinder is of small radius and is at a
considerable depth.* The method can be extended to bodies of different

shape, and my object in this paper is to work out the simplest three-
dimensional case, the motion of a submerged sphere.

The problem I have considered specially is the wave resistance of the

submerged body. In the two-dimensional case, this is calculated by considera-
tions of energy and work applied to the train of regular wivcs. But for a
moving sphere the wave system is more complicated, like the well-known
wave pattern for a moving point disturbance, and similar methods are nut so
easily applied; I have therefore calculated directly the horizontal resultant

of the fluid pressure on the sphere. Before working out this case, the
analysis for the circular cylinder is repeated, because it is necessary to carry

the approximation a stage further than in Prof. Lamb's solution in order to
verify that the resultant horizontal pressure on the cylinder is the same as
the wave resistance obtained by the method of energy.

The stages in approximating to the velocity potential may be described in

terms of successive images; the first stage 01 is the image of a uniform
stream in the submerged body, the second stage 02 is the image of S6 in the
free surface, the third S63 is the image of 02 in the submerged body, and so

on. In order to keep the integrals convergent, a small frictional coefficient is
introduced in the usual manner; after the calculations have been carried out,

the coefficient is made zero. Further, the solution for uniform motion is
built up so that expressions can be found for the velocity potential at any

time after the starting of the motion, although only the final steady state has
been studied in detail. The wave resistance of a sphere is found to have th6
form const. x c /2e-a/2 W1, I (a), in which a is 2yf/c0, with f the depth of the
sphere and c its velocity; W1,1 (a) is a confiuent hypergeometric function.
In order to graph the wave resistance as a function of the velocity,

expansions have been found for this particular variety of the function

*H. Lamb, 'Ann. di Matematica,' vol. 21, p. 237; also 'Hydrodynamics,'

6th edn. (1932) p. 410.

119



521 Prof. T. IJ. Havelock. Some Ca, of

Wk, .(a); it belongs to the logarithmic case for which a general expansion is
not available.

In general form the graph of the resistance is very similar to that of the
circular cylindei.

Circular Cylinder.
2. The steady state for unifurm motion of the cylinder may be attacked

directly, as in Prof. Lamb's solution, but we shall adopt his suggestion of
building it up from simple oscillations. Take the axis of x in the free
surface of the water, and the axis of y vertically upwards. A circular
cylinder, of radius a, is making small oscillations parallel to Ox with velocity
c cos at, the axis of the cylinder being horizontal and perpendicular to Ox,
and the mean position of the centre being the point (0, -f). A first
n.ppproximation when the depth f is sufficiently large is found by ignoring
the surface effect altogether and putting

= ca2 (xrr 2) e='1- -2 = a+(y+f)2 . (1)
This satisfies the boundary condition at the surface of the cylinder. For the
next step, add a term X, to the velocity potential so as to satisfy the-
conditions at the free surface, but ignoring meantime the disturbanc6
produced thereby at the surface of the cylinder. The term X1 must be a
potential function and it must satisfy the condition for deep w natmely,
aXiay -- 0 for y = -- oo ; these conditions are fulfilled by

Xl = ei--t I% (K) ev sin Kx dK, (2)

where a is a function of K to be determined. This form is chosen because we
can satisfy the conditions at the free surface by using an equivalent form
for (1), since

x/7- = E CjK(Y+f)Sin KXdK; y+f> 0. (3)

The surface elevation is expressed similarly by

S= e' J08 (K) sin xx dK. (4)
0

In order to keep the various integrals convergent, we assume that the
liquid has a slight amount of friction proportional to velocity; in the sequel
the results are simplified by making the frictional coefficient A tend to zero.
In these circumstances the pressure equation is

p/p -- const. + -±- -- gy + go-- q2. (5)

Hence the conditions at the free surface are, neglecting the square of the
velocity,

ao/tt--gy+ j.,9 _ const.; -- a/oy = aq/at.
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Here 0 is the veloeity potential after (2) has been added to (1); thus the
equations for a and )3 are

ca'v-•f-/cot= ioj3 (0)

iaca2e-f + iaa --gf + lca•c-•If + pot = 0

From these we obtain the expressions for X, and q, namely

-o gic + a2 --itao -f-Y) sin ix d,7
gK C0+i6i-ClfYSflXlc (7)

S =ca2e f 2K (IL-+ iC)
.CiaJt gf - a c-f sin Kx dK. (8)

The expression for X, can be divided into two parts

X = --ca2ei° Je-Kf-hY)sin xdK- 2ca'2ei-t g1Ke- (U-Asi-n xdx i - K (9)
0 0 U2 -iLa-gK

If we regard X, as the image of the oscillating cylinder in the free
surface, we see from the form of the first integral in (9) that part of- the
image is a negative doublet at the image point (0,f). We obtain next the
velocity potential of the motion produced by a sudden small displacement of

the cylinder, and we take this to be equivalent to a momentary doublet of
constant strength. Suppose then that at a time T a doublet is suddenly
created, maintained constant for a time ri-, and then annihilated. The
velocity potential at any subsequent time t is given by a Fourier synthesis of
the preceding results for an oscillating cylinder, and we have

- &-(t - 7)e -"p[]do-, (10)

where [4] is the sum of (1) and (9), omitting the factor eý01.
Carryiag out this integration for the value of 0 in (1) and for the first part

of (9) gives simply the momentary doublet at the centre of the cylinder and
the -negative doublet at the image point. These doublets last for a short
time 8T; the subsequent fluid motion is contributed by the second part of

,%:4' (9). For this we have to evaluatc the real part of

Jo _zijpagx da ; t-T>0. (11)

We obtain the value by contour integration; further we simplify the
result by neglecting p2. We shall make p zero ultimately, but we must
retain it sufficiently to keep the integrals convegent; however, at one or
two stages, superfluous terms may be omitted when it is clear that the final
limiting values will not be affected. We find for (11) the value

--w e-M(t•) sin IKV(t-1r)l KV
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writing V for V/(gq/K) whenever it serves to simplify the notation. Hence
the velocity potential of the subsequent fluid motion after the cylinder has
been given a small displacement at timeT is

0 - 2ca .e-iA(t-') YVe-W(f-Y) sinKxsin XV(t--r)di. (12)

Finally we obtain the velocity potential for a cylinder in uniform motion
by substituting x+c(t--T) for x, noting that hereafter x will refer to a
moving origin immediately over the centre of the cylinder; we then
integrate with respect to r from the start of the motion up to the instant in
question. We could in this way obtain results for any stage of the motion,
but we limit the discussion to the final steady state ; for this we take -- o0 as
the lower limit in integrating with respect to -. Before writing down the
result, we must remember to introduce the integiated effect of the original
momentary doublet in (1) and its negative image, which were not included in
(11) ; these clearly add up to steady doublets. Hence N -e find for the steady
state

- D--D+2ca2 e-(-Y)(A sin x+BBos CKx)d1c, (13)

where D represents the doublet ca2x/r2 at the point (0, -f), D, an equal

doublet at the point (0, f), and

2A--- V(V+c) + C2V(V-c)
K2 (V+C)2 +j/ 2  K2 (V-c)2++ A21'

4B = /UCV _ PKV (14)
=•2(V-c)3 +¼ 2  iV2 (V+..)+ • 2 *

3. Before proceeding further we may obtain the surface elevation from (13)

for comparison. The surface condition is now

Hence we have

-= 2a'f/(,?+f 2)-2a 2  J0(AcosX -- Bsinxx)e-VfdK, (15)

in which x0 = gy/. Further, since 1A is to be small, we may omit irrelevant

terms aid put

A = -X, (K-xo)/{1-(io+is/c)j} {x-(0-ii/c) },
B = ,o(,!/)1 {,-(,,o4.,1C)} {x-(io--i•,IC)}. (16)

The integral in (15) can then be written as

",,•i•/" -eo+ix,3 . •. dC. (17)
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We transform these integrals by contour integration in the plane of a
complex variable K, treating separately the cases of x positive and x negative;
after making p. zero in the final results we obtain

Sin2ax - 2( I cos mrf- Ko sin rnfS= + 41ralxoe Sf io 2 1b c ,

S= 2a2f + 2aKo M CoS Mf-K 0 sin nýf,,,x dm x > 0. (18)
X2J 0o Ml2 +K 2

These agree with Lamb's results for the circular cylinder in a uniform stream.
The wave resistance R is derived from the regular waves in the rear, by

considering the rate of increase of energy and taking into account the
propagation of energy in a regular train; we have

R = ¼gp (amplitude)2 = 47r2ypa4,Co2e--2 '. (19)

4. We have now to obtain the resistance Il by direct summation of the
horizontal component of fluid pressure on the cylinder. It is clearly
necessary to proceed to a further stage with the velocity potential, since we
have assumed so far that the surface effect is negligible in the neighbourhood
of the cylinder. If we write (13) as

S= D + Xi, (20)

the doublet D iq the first approxim-tion, satisfying the boundary conditirns
on the cylinder; X, is the image of the doublet in the free surface, found by
satisfying the conditions there. The next step is to find X2, the image of X,
in the cylinder, ignoring then the effect of X2 at the free surface. It follows
that X2 is the image of X, in the cylinder, found as if the cylinder were at
rest in a field defined by X1. Taking polar co-ordinates with the origin at the
centre of the circular section of the cylinder, we liave

x = rcos9; y+f-= rsin0; (21)

also the conditions for X2 are that it should be a potential function, the
components of velocity must vanish as r becomes infinite, and

3(X 1 +X 2)/a?- = 0, for 9- = a. (22)

But from (13), X, consists of a summation of terms of Ehe form

elty C.OS AM.

sin

We obtain Xa by replacing each term by the expressions

e"- f"B'ill /C cos ( /a.),sin

and the above conditions for X2 are then satisfied. This process amounts
simply to inversion; we may think of X, as due ro a line distribution of
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sources and X2 is then a circle of sources on the inverse of this line with
respevt to the cylinder. We have now for the velocity potential to this stage

4)= D+2ca2 e-.(f-*){(A-k) sinKx+BcosKx}dK

+ 2ca2 f e-f -P'y/r? {(A--j) sin (Ka 2xr 2)+ B cos (Ka2x/r 2)} di. (23)

We have put A-- for A so as to include under the integral sign the
doublet previously denoted by )1.

The method could theoretically be carried on step by step; however, we
stop at this stage because it is sufficient for obtaining the wave resistance
R from the pressure equation to the same approximation as by the energy
method.

2
1r

We have R = ap cos 0 dO; (24)

p/p = -cao4 x,--gy+j4--jq2. (25)
If we write (23) as 0 = D + X, + X2, and omit ternms which obviously

contribute nothing to the value of R, we have, when r = a,

_ -C (Xl+X 2) +;&(XI +X2)- a2(X X2)p 8

= (2c/a) sin 0 (X 1 + X2)/0)0+ A(XI + X 2 ), (26)
where we have used (22) and the value of D. From (23), omitting the
doublets D and D1, which will from symmetry give no contribution to R when
Sis zero, we have

p = 4ca2 e-2x/+xasinG{21cA sin 0 sin (0-0)+,+ AA sin 4

+2/ccBsin0cos(4--0)+ABcos4)}dK, (27)
where = xaacos 0. Substituting in (24) we have an expression for R. We
may now change the order of integration and. take first that with respect
to 0; we can carry this out, after some transformation, by means of the
integrals

Je Chcub 0cos (h sin 0 -nO) dO = 7rh~ r (n + 1),

fCI 8oocos(h sin + O)d8 = 0, (28)

where n is a positive, odd integer. In fact the integration with respect to 0
gives simply 7rxa (GcB + /AA); hence we have

R =: 47pca'0(ccB + /AA) e-24d, (29)
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where A and B are given by (14), or by (16) since we suppose z small. Thus
we have

It 4.n-pca4 LimJ A~KOK C- K'I

0-?0 1K- o+ZijL1G,,} {IC (KU-ipjkC)}

- 4irpca 4 Lint A {27riKaC-"'Co/ 2i (/z/p,) + finite quantity}

= 47'•y?3t4c-4C-2if/c2
.• (30)

which is the same as the previous expression (19).

Sphere.

5. A sphere of radius a is at depth f below the' snrface and is moving with
uniform velocity c parallel to the axis of x. The origin is in the free surface,

the axis of z being drawn vertically upwards. As before, the first approxi-
mation is a doublet D given by

4) - ca3x/2r3 ; r2 = X2++y2+(z+f)2 . (31)

For the purpose of satisfying the conditions at the free surface we have

S= D = -- ca3 3-ý oe-K(z+f)Jo{cx/aK@2+y2)})d; z+f>O. (32)

This suggests at once suitable forms for the i.ext approximation and for the

free surface; the equations are similar to (6) of the previous case, ard we

obtain in the same way

0 = T)-D 1 +Xl, (33)

where D, is a doublet at the image point (0, 0, f) and

= • ca3 ' afV,(uYc) -•d-Ac•f '•Ad,,/c Jo['c{ (x + c2,) 2 + ?1 sin (,Vt) du.

(34)
The corresponding surface elevation is

17 = a3J•C-afJoxv(X2+Y2)},xd,

-_a3  K) /, f ,)K-dKc, Jo[',cV{ (x+ cu)2 +y,} ]sin (,Vu) (,i. (35)

The first term represents the effect of the doublets D and D1 . It can be
verified by approximate methods that the second term includes a main part
like the well-known wave pattern for ship waves. Since the expression in
(35) gives finite and continuous values for the surface elevation, it might be

of interest to examine some points in detail; for instance, the elevation near

the lines corresponding to the lines of cusps for a moving point disturbance.

However, we pass now to the calculation of the resultant horizontal pressure
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oil the sphere. We have to find X2 the image of Xi iL the sphere ; for this
we first put X, into a different form by using

7rJo [K {(x + cu)2 + y2 }J] - Jeos {j (x + cu) cos ob} cos (Ky sin o) dlb. (36)

From (36) and (34), after carrying out the integration with respect to m,
we obtain

7rX, = ca8 f C-"(f-z) KdK {A sin (K xcos 0))+ B cos (xx COS 4)) }

x cos (Ky sin 4) cos 4 do), (37)

where A and B are given by (14) after writing c cos 4 for c.
For convenience in the following analysis, we transfer the origin to the

centre of the sphere, noting that in (37) we shall have exp. (-2f+ Kz) in
place of exp. (-xf+ Kz). Also we use polar co-ordinates

x - rcosa; y = rsinoccos/3; z = r sin a sin/3.

The conditions for X2 are that it must be a potential lunction, the
disturbance due to it must ultimately vanish as we recede from the sphere,
and on the sphere

a (XI + X2)/ar = 0. (38)

To avoid repetition of expressions like (37), we take out of it a typical term
and write

X, = eCz sin (Kx cos ') cos (,vy sin 4). (39)

We know that the function

.),-le aKa5f sin (Acatv cos 4)/r2) cos (Ka2y sin )/rj2) (40)

satisfies the first two conditions for X2, but we find it does not fulfil (38).
An additional term is required, and it can be found in the following way.
Suppose that on the sphere we have

eCI sin (Kx cos 4) cos (:-y Sin 4)) - ZAmY, (o, /), (41)

where the right-hand side is an expansion in surface spherical harmonics.
Then for the term (39), all the conditions for X2 are satisfied by

ar-Iea"E'I" sin (Ka2x cos 0/- 2) cos (Ka2y sin 4)/r2)- Za'+i AYm/(r + 1) r"+l.

(42)
Suppose, similarly, that on the sphere we have

e' cos (Kx cos 4) cos (Acy sin 1) = BY, (a, 6). (43)
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Then the complete expres3ion for X2 is

7rX 2 = ca3 f "!'" ,cdK, ar-lc'atzIrlcos(at2y sin 4/r2 )co(s

x {A sin (Ka2x cos 0/r7 2 ) A B cos (ica2x cos 0/r2 ) } do

-CCY'3J0e-2'1Kdff I (AA,,, + BB )(7n + 1)1 I(a/r)-'+' Y.. cos 0 do.

(44)
We have now

k = D-Di+Xi+X2 = D+X, (45)

and the pressure equation is

P/P =- -- c ax-gz+• -?,2. (46)
The wave resistance, or the resultant horizontal pressure on the sphere, is

It 'oJ da o a2p sin c Cos a d$. (47)

Omitting terms which, from symmetry, will give no contribution to R, we
have

P = DX +x @D aX 1D @ aX I D aX (48)
P T T+ Fr 5r r2  Fa -;Tsin2% (48 T-'

But when r = a, we have

OD/@/3 = 0; D1)/ ao = -ca sin a; aX/ar = 0,

hence p/p = (3c/2a) sin a 6X/ a +,aX. k49)

We must now substitute (49) in (47) and use the value of X given by the
sum of (37) and (44) on the sphere ; it is clear that we may omit the doublet
D, as it will not affect tic limiting value of R when p is zero.

6. Consider, in the first place, the contribution of the first term in the
value of p given in (49). In the repeated integrals which are obtained, we
may change the order of integration, and we shall ca,ry out first the summa-
tion over the surface of the sphere. We notice that, when r = a, the first
term in the value of X2 in (44) is equal to the value of X, ; the additional
part of X2 is the term involving the expansions in spherical surface
harmonics. Choose a typical term from the latter po.rt, and we find we have
to evaluate

jisina cos a ( /a) dS, (50)

taken over the surface of unit sphere.
But this integral is equal to

- 3 r P2 (cos a) Y. (O, 8) dS. (51)

Hence, the only term which has a value different from zero is the term in
Y9, the -urface harmonic of the second order. From the manner in which
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the expa,1*ions were introduced, in (41) and (43), it follows that the contri-

bution of the second terin in (44) is one-third of that of the first term;
hence, summing up the result so far as the first term of (49) is concerned, we

have

-R' = -5ea 4p C -rdJos ( d , sin e 1P2 (cos 0) c i'lasin A

x cos (Ia sin a cos sin 0)

x { A sin (1a cos o cos 0) + B cos (Ka cos cos ) } dlc. (52)

Taking the integration with respect to 8, we find it is equal to

2 jca SialCOScos(Kasin a sin 0sin 0)do- = 27rIo(Kasin acos ), (53)

where Io (a) is the Bessel function Jo (ix), a result which may be obtained by
direct expansion and integration term by term. For the integration with

respect to a the term in A in (52) obviously gives zer o, and we are left with

2r J To (/ea cos 0 Sin a) Cos (Ka cos 0cos C) P2 (cos a) sin d(. (54)

Here also we may expand in powers of ma and integrate term by tern;
it can be shown that the integral of the coefficient of (Ka)n vanishes except
for the single term K2a2 ; thus we find that (54) reduces to

-( 27r/5) K2a2cos,¢2 .

7. We have now to consider the term /X in the value for p in, (49). We

might omit this term, on general grounds, as giving no contribution to R
ultimately when 1A vanishes ; for X is the velocity potential for a sphere at
rest in a given field X1. However, it may be left in, and we have a similar
calculation. Taking the second integral in (44), we find it is now only the
term in Y, which counts ; hunce the contribution of this part is one-half of
that of the first integral in (44). Further, it is the term involving A which
gives a value different from zero when integrating with respect to a, and
instead of (54) we have

2 •r fjo (/a cos 0 sin %) sin (Aa cos 0 cos a) P, (cos ) sin ada,

which reduces to (47r/3) Ka cos 0.

8. (Collecuing the various results, we have now

R" 2cap , f- xfK2K J (Kc B cos 0 +AL) cos 2 0 d, (t5)

a form which may be compared with the corresponding expression for the
cylinder in (29).

128



lWave Motion due to a Submerged Obstacle. 530

A and B are given by (14) when we replace c by c cos 4; putting thesL
values in (55), we see that we may change the order of integration. Further,
as we make p vanish ultimately, we may use simplified forms of A and B
corresponding to (16). These give

ER = K2c6p 12 fx, d K 20-
2 1f dic

"-4oacaeplz sec2 ) d Jo (xV - c0 see2o))2 + (;L/c) 2 sec2 4)

To obtain the limiting value for p zero we may treat this like the similar
expressions in (30); or, alternatively, we may put (p/c) sec 46 = 1/n, and use
the general result

i b nf(x) dx _ _7r
Lim = - j(-)fa01
n_-ofa +,0 (x-a)2 2

The apparent difficulty with regard to values of 45 near 7r/2 is overcome by
noticing that with the particular functions involved in R no extra contribu-
tion arises from such terms near the upper limits of the variables. Carrying
out the integration in i in this way, and changing the remaining variable by
putting tan 4 = t, we obtain

R = 47rg4pac-6 -2gfc' J(1 + t2 )3/22c-2gft2/, dt. (56)

The remaining integral can be expressed in terms of known functions.
Possibly the simplest method is to use the confluent hypergeomnetric
function* defined, for real positive values of a and for real values of k and m
for which k--m-m- < 0, by

Wk, = L'(A-akm) U-k-1+m (1 + u/o)k-itmc-u dt. (57)

We have now the wtave resistance of the sphere given by

R = *,V~upas-'Ve-w,,(•); • = 2tf/lC. (58)

8. For purposes of calculation, we require expansions of W1,1 (a). This
function belongs to the logarithmic type of confluent hypergeometric function,
and general expansions are not available in this case ; however, they can be
obtained without difficulty for W1,1. In the first place, the differential
equation satisfied by WI,I is

d + 1 +1_ 3(r9),'T.• V+ 0-t+ z- / y = o. (5-

We use the ordinary methods for solving by means of power series. The
roots of the indicial equation are 3 and -. •; hence one of the fundamental

* E. T. Whittaker, 'Bull. Amer. Math. Som.,' vol. 10, p. 125 ; also Whittaker and
Watson, ' Modern Analysis,' Chap. XVI.
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solutions will contain logarithms. Calculating the coefficients step by step,
we obtain as a fundamental system

Y r T (60)
y2 = yJ log a + a-312(--1-I + +

We know that WI, I is a linear function of y, and y2; however, it is simpler to
obtain an expansion directly and use (60) to verify it. For this purpose we
use the equivalent contour integral for the confluent hypergeometric function,

Wkm ake-42 0 r(s)r(-s-k-i-m+½)F(-s-k+m+) ads, (61)
27rwJ r(-k-rn+½)r(-k+m+½)

where the contour has loops if necessary, so that the poles of r (s) and those
of r(-s-k-m+½)r(-s-k+m+j) are on opposite sides of it. The
integral can be evaluated by the method of residues. When k = m= 1, the
poles at which the residues have to be found are simple poles at s = -- ½, --.•,
together with double poles at s = ½, 3 ., .... The latter series gives rise to
logarithmic residues. Carrying out the calculation, we obtain

W1,I = r-Vae-"rJ (-42+ 3-112 3 3/2e- 2 {logr (p +)(+ 3) P

j~r# 2 lg 2- 1 -(62)
2-o / r(p+l)F(p+3)} (

where y is Euler's constant 0"5772.... The coefficients may be put into
alternative forms more suited for calculation ; for instance

d r(p+½)
Spr(p+1)r(p+3)

1.3.5 ... (2p-l1) ri 1 2+,+21-2P.T !(v+2 ," -2 log 2 + -- I
-- 2 (p+2)! n (27L--1) , 1J

For numerical calculation we have

3 7-1+2026_+p4r 8 4 3 5 11 l+1_7 3 .
83a2 -a 236 38 12801

--( +log 1 )(1+1&+l'%+-La3+...). (63)
-( 4 6g~ 32 192 (3

The expansion may be confirmed by comparison with the fundamental
solutions of the differential equation given in (60); we find that

(8/3)•r7 W1,, = (2 log 2-,-y--) yi-yg.

For large values of a the general asymptotic expansion of Wi, . is available;
and in this case we have

WI+ 1 12 ) (64)
S 1a 302 ;2 128 ;9
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9. With (63) and (64) we can now calculate the resistance R from (58).
For a given depthf, the variation of the resistance with the velocity is shown
in the following curve, for which R has been calculated for various values of

R

12 a

The curve is very similar in form to the two-dimensional case of a circular
cylinder. For small velocities, that is a large, if we take the first term of the
asymptotic expansion (64), we have

It = -'(27r 'gl/f). pa c-le- 2o ,
which may be compared with (30) for the cylinder. It is of interest to
notice the similar law of variation of wave resistance with speed for the few
cases of rigid bodies which have been worked out. The method adopted here
can be applied to bodies of different forms, and it is hoped to illustrate later
some interference effects.
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Periodic Irrotational Waves of Finite Height.

By T. H. HAVELOCK, F.R.S.

(Received May 21, 1918.)

1. The method of Stokes for waves of finite height on deep water consists in

working upwards by successive steps from the infinitesimal wave towards the
highest possible wave. Although lacking formal proof of convergence, it is

generally accepted that the method is valid, but that it does not include the
highest possible wave when the crests form wedges of 120W.

For the highect wave itself we have Michell's analysis by a distinct method,

also involving an infinite series whose convergence has to be assumed.*
The theoretical position of Stokes' method has been stated concisely by

Prof. Burnside in a recent criticismt:-
"The complete result would be to express the co-ordinates x and y in terms

of o and * in the form

x - - + be* sin o + X P P. (b) en* sin no,

y = -#.+ be" cos 4+ XbQ Q.(b)e cos n,(1)

where P, (b), Q. (b) are power series in b.
"These results have a meaning and can be used for actual approximate

calculation only, if P., Q. are convergent power series when b does not exceed
some value, say b0, while for suitable values of b and for real negative values
of J, the series for x and y are convergent.

" Until the form of the power series P. and Q. have been determined, it is
impossible to deal with their convergence. Assuming that they are

convergent, it is clear from physical considerations that there must be an

J 3. H. Michell, ' Phil. Mag.,' Ser. 5, viA. 36, p. 430 (1893).

t W. Burnside, 'Lond. Math. Soc. Prcc.,' Ser, 2, vol. 15, p. 26 (1916).

132



39 Prof. T. H. Havelock.

upper limit b' for b in order that the series for x and y may be convergent for

negative values of *, and there are no means of determining b'."
Prof. Burnside concludes that Stokes' method cannot be used for numerical

calculaton as it is not known whether the corresponding value of b is less
than the above value b'.

In the 4,llowing notes a general method iS suggested, which includes waves

of all possible heights, ranging from the highest wave down to the simple
infinitesimal wave. The method consists of a simple and direct extension of
Michell's analysis for the highest wave. The advantage is a theoretical one
which may be expressed in this form: the parameter does not have, as in
Stokes' series, an undetermined upper limit, but it enters in the form
C-2a, where a may have any positive value, including zero.

It should be stated that here, again, we have infinite processes for which no

formal proof of convergence is given.: we have to rely meantime upon a
numerical study of the series. However, in addition, we can compare the

method with that of Stokes for waves short of the highest; in this case
numerical results obtained by the two methods are the same, as might be
expected.

Extending this comparison to the highest possible wave, we get a value for
the quantity Y referred to previously, that is, the value of the parameter for
which Stokes' series for the elevation become divergent. We obtain b' as
.-- bl, where bi has the value 0"0114 approximately, or we have Y = 0"291...,
the value for bi being slightly less than the true value.

The discussion is arranged in the following order : Michell's form for the
highest wave, its generalisation by means of the surface condition, method of
approximation for the coefficients, calculation for the highest wave, the values
when e 2 --2, comparison with Stokes' series, determination of b', further
numerical examples and remarks upon the values of the coefficierts.

2. It was shown by Stokes that the highest possible wave, under constant
pressure at the free surface, has crests in the form of wedges of 1200. It
follows directly from his argument, as a simple extension, that the crests
will meet at the same angle for the highest possibie wave under any assigned
surface pressure provided the pressure is stationary in value over the crests.

Consider any assigned surface pressure of this character which is finite,
continuous and periodic. To determine the form of the highest possible
periodic wave, we may follow Michell's analysis for the case of constant
pressure up to the stage at which the coefficients are determined from the
given surface condition.

We might then begin with thA form given in (5) below, but we may
recall briefly Michell's argument. Take Ox horizontal, Oy vertical and
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downwards, with 0 at a crest. Let the successive crests be given by
O--= +nr, n integral; and let the upper surface be *- = O. If 0 be the
inclination of the wave line to the horizontal at a point 0, assume

ao
= a + a cos2+a 2 os 4o +4.... (2)

This is equivalent to assumhiig hat under the given conditions for the surface
pressure, the ratio of the curvature of the wave line to the velocity is finite
and continuous throughout a wave-length; in that case ae/a4 can be expanded
in a uniformly convergent Fourier series. In the numerical calculations
which are needed later, the practical success of the method of approximation
depends 'upon a,, a2, ... , being small compared with a0, and, in fact, upon the
series converging rapidly.

With the notation, w + € + i,, z = x + iy, U = log (dz/dw), Michell showed
that

d._U -- i(ao -- aj e~w -t-a~e'iw+--..) (3)
dw-

is a function which is real over the surface if 0, and possesses only
simple poles, which are at the wave crests.

Suppose that near a crest, say w = 0, we have dz/dw = AwL, then
q2 = const. x r-24/(1+1), where q is fluid velocity and r is distance from the
summit. But, since the pressure is constant in the neighbourhood of the
crests, we have q2 = 2gy, and hence n = --. It follows that the function
(3) differs by only a constant from the quantity -- S (w-n7r)-1 . Hence,
after adjusting the constants and integrating, we find for dz/dw the form

dwW- __ (--isin W)-" P8-iW/o (1 +cje~i• ÷Cq4i• ÷ ... ), (4)

the real root of (--i sin w)- 1I being taken along 0 = 0. The units are such
that the wave velocity V, or the velocity at 4 - o, and the wave-length L
are given by

V = 2-'P; L =7r/V= 20iw.
It is convenient to invert (4) and write

dw
= (-i sin w)13e4P/3 (1 +bje2'w+ bact+b30~iW +...). (5)

3. The coefficients bl, bs, ... , are now to be determined by the pressure
condition at the free surface. So far, we have stipulated only that the
pressure at q = 0 shall be finite, continuous, periodic, and stationary at the
points -= n-r. For our present purpose we shall leave this pressure
distribution undetermined, except for these conditions. We shall assume
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that it is possible for some assigned streani-line below the surface, say the
line q* = a, to be a line of constant pressure. Thus we shall determine
bi, b2, ... , directly by applying the condition for constant pressure to (5) when

a a. The surface i--a will then be a possible free wave surface, and
free waves will be given by assigning any value to a in the range zero to
infinity ; thus, by working down from the highest possible wave, we include
in one scheme free waves of any permissible height.

Tha condition that the pressure is constant for a = a is

q2 = 2gy+constant. (6)

It is convenient to use an equivalent form obtained by differentiating (6)
with respect to 4, namely

' = 4g (7)

This has to be used when
dw
d { -i sin (4 +in)}cl(+ia)/3 (1 +,8e10i4' +±,e4 t +...), (8)

where 1 =- be 2 ,- 1 -...

Multiplying by the conjugate complex and squaring, we obtain

2 = e-4/S(sinh 2 a+sin2 OYt3(Do+ 2D1 cos 24)+ 2D2cos40+...), (9)

where

Do = 1 +4•2 +(2,.2 +,8,2)+(293+2/,82)2+....

D, = 2,8 + 2/, (2/82+,812)+ (2,82+,912) (2833 + 2,9102) +...,

D2= 212 +, 812 + 2,81 (2833 + 2,812) + (2/82 + ,12) (2,84 + ,822+ 2,8103) +...,

D3 = 28a + 2,81,82+ 2# (2R4 +/322+2/3/a)+...,
........ L .~o....., .o..o..o.........o.........o....o...o.,oo....,,o.....~......oo.................

Differentiating (9) with respect to S5, we can take out a factor

(sinhla + sinS4)-)13, and can collect the other terms into a sine series in
even multiples of 4. However, we take out also the common factor sin 4),
because we then have aq4/aS in a form which reduces directly to the proper
form for the highest wave (a- 0), and, in addition, we find that the
numerical calculations converge more rapidly. After some reduction, we
obtain in this way

e- We4  sin 0 (sinh2 a + sin24)- 1I3(A cos4)+A cos34)+ ... ), (10)
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where
Ai = Do-i- D + 6D 2 + 3 (3D 3 + 4D 4 +...).- 3 (DI + 2D2 + 3D3 +...) cosh 2 a,

A3 = 5 ), + 4D2 + 3 (3D 3 + 4D 4 +...)-3 (2D2 + 3D3 +...) cosh 2a,
A5 = 4D2+ JID)3 + 3 (4D 4 + 5D 5 +...)--3 (3D3+ 4D4 +...) cosh 2a,

A7 -Da+7D + 7 , + 3(5D5 +...)- 3 (4D4 +...) cosh 2a,

• .. . ...... .. .. I ............o....o.o.....o . ........ o . ...., , o.. ...... ..... ,...... .. °..o.. ...

For the other side of equation (7), using I to denote the imaginary part Q
of a complex quantity P + iQ, we have

- I e-/ 3 (sinh2 a+ sin2 4)1•e- i(G- )/3 • , (11)

where Rei = cos .0 sinh a- i sin 0 cosh a.
To expand this in a form similar to (10), we notice that

e-i(0-0)/3 = (1-e 2 ae2 ii)1I 6 (1--e--2 e-2i.)- 1 6,

(sinh2 a + sin2 4k)112 = g (1 _-- e-ic)112 (1 -- e- )e-12 24)2.

Hence we have

-I je2a 3 (sinh2 a+sin2 O )113 1-e 1 e ) c2
r

4
,

(12)

We now expand the two binomial factors after the sign of summation in
series valid for the whole range of q5 and for all positive values of a. We
can then write down the coefficient of e-O'O, and so obtain @01/y, involving a
series of sines of c %en multiples of 4'; as before, we take out a common
factor sin €, and obtain the result

-= e-4./3 sin tk (sinh2 a +sin 2 O)-P'/(B 1 cos 0+ B3 cos 30'+...), (13)

where the B's are linear functions of the f's, with coefficients which are
functions of e-2a. In practice, these can be obtained directly from (12) to
any required degree of approximation; general expressions can be put in the
following exact forms

B•n+j = Bo,2%+l +/•Bl,•+• +... + rBr,,+l +...,
B,, •,+ 1-= C-2,- 1 C,,

sn+r+l 8=--r1t

02, = 3

C-2, - 3 (--+ +1)'"(--e81+--1) F(--- +s,-- j,s+1,c-'),

Co = 3'6F(--,--,le-), (14)
where F represents the hypergeonietric series.
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We can now apply the surface condition (7) by substituting the expansions
(10) and (13) and equating coefficients of cos q, cos 3 ....

We obtain, as in Stokes' method, an infinite series of equations of the
form A2,,+, = gB,+l, from which the quantities .q, 81, 82, 83, ..., are to be

obtained in practice by successive approximation from the equations taken in
order.

Up to te:ms of the third order the equations are

1 + 5/38 + 12,82+ 10,812 + 28/3182 + 5P/3 + 18/,3
- 6 (01 + 2,2 + /302 + 5/31/2 + 013 + 3,83) cosh 2a

= g (B01 + RIB,, + 03B 2 1 + /3313),

5#1 + 8/32 + 4 8 12 + 28/83j/2 + 5,83 + 18/3- 6 (2/2 + fl? + 3/1832 + 3,83) cosh 2%

= g (Bo3 + /31B13 + /2B2a + /33Ba),
8•/2+ 4P,2 + 118182 + 1183-18 (31,8 + #33) cosh 2a

= g (B0s + /31BI5 + /32B2 + 8 3B%),

1103 + 11/31/02 = g (B07 + fB• + /32Bn + #3Bn). (15)

It might appear, from the quantity cosh 2a on the left, and from the
factor e0" in the expressions for the B's in (14), that there are terms in these
equations which become infinitely large as a increases indefinitely. But we
have #I- = be-2 , 82 -= b--' #3- = b3 -", ... , therefore, if we write the

equations (15) as a set of equations for the coefficients b1, b2, ... , this
difficulty disappears. In this connection we may recall the initial assump-
tion that the series in (5), namely, 1+bI0ew+hbeci+..., is absolutely
convergent, otherwise the analysis has no meaning.

The infinite set of equations, given to the third order in (15), has to be
treated by Stokes' method; that is, assuming the process to be convergent,
the equations taken in succession yield approximations to g, /, /2 ...o, for any
assigned numerical value of a. But there is a difference between these
equations and the corresponding set in Stokes' analysis. In the latter, the
first coefficient, say b, is arbitrary, and the successive equations have their
lowest terms of order zero, one, two, and so on, respectively; thus y and the
remaining coefficients are found as power series in b. But in (15), we have
a term independent of the /'s on the right-hand side of each equation ; thus
the solution, if practicable, leads to a set of numerical values of g, #1, 82,...

for a definite numerical value of i. We may notice, in passing, that for a first
rough approximation gBo1 = 1; and as Bul does not differ much from unity
for any value of a, the coefficients #I, ,..., are of the order of magnitude of
BM6 Bo, ... , respectively.

4. The method of approximation used in the following calculations may
be described by considering first the simplest form of the equations, namely,

137



Periodic Irrotational Waves oJ Finite Height. 44

when a - 0. The hypergeometric series in (14) can be summed in this came
and we find

Br,,2 + 1 = 18 V 3  6r+ 1
7r 

9 (2a+ 1)-(6r+l)2 (16)

The equations (15) reduce to
1---- = 3 1l-,81 + 4RII - 2,81,2 -BI ,83 k(Q-- V 3-- Y ,2 -- "-83),

5,81-4.8-- 2,811+ 10,89192 + 5,83 k ( + 7 '81 - 1 82- 1 ,3)

8R2• + 4,8?-- 7,8,/2- 7,8,3 = k (.zr4- + T-YB,T8 + •/?-"3 -9 3,

13113,2+11 3 =k(l-+ 1+TW/32±1/%), (17)
with k = 18gv/3/7r.

These are Michell's equations for the highest wave. Without specifying
any definite method of approximation, Michell states that sufficiently close
values are given by

S- 0"832, 8,1 = 0"0397, 2 =-- 0"0094, /3 0"002. (18)

In order to compare results for different values of a, it is desirable to adopt
some consistent scheme of approximation.

In general, in the equations (15), we substitute

gBo1 = 1 + ki,8 + k,8 + k3,8s +
#2 = b•p + b3813 + ...,

#a = c&813 + c-,81 +...,
... ...... I.......................
S ............................................ (19)

For a first approximation, write down the first two equations up to terms
in 81, and we get two equations from which to determine k, and R1. The
first of these equations is, in fact, independent of 81 on account of the form
of (19).

For a second approximation, retain the value of k1 so determined, and
write down the first three equations of (15) up to the terms in 61, the first
of the three being again independent of $1; from these, we determine
k93, 92, and a second approximation to 81. For the third stage, using the
values of kI, k-2, and b2 already found, and writing down the first four equa-
tions of (15) up to the terms in 1, we determine k3, b6, c3, aud a third
approximation to 01. Using (19) we obtain the corresponding values of
9, 02, 83. ... , at any stage. The nth approximation to 01 is given by an
equation of the nth degree in $9k; but there is no difficulty in practice as to
the particular root since we follow it through from the first approximation.

The method is simple in plan, if somewhat tedious in practice; so it is
not necessary to give the details of the following calculatiui;.
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Taking the particular case (17), we may write down one set of equa-

tions to illustrate the type. After the first two stages, we obtain
k, = 0'4, k2 = 7'6, b2 = 4"67: using these values we find for the next stage
the equations

k3-0"65b 3 -O'432c3 = 1'18'

•1, (0"1k 3 + 282b3-0-543c 3-44"25)+17"745/312--321l+0"1 = 0

/3 'i (00 3 6 k/a- 614b3+ 588c3 +41"68) - 3468,1i2 + 0332,1 -0"036 = 0

R313 (0'01813 + 0"38b 3- 91c3- 5377) + 2'1512± +0'15/i + 0-018 = 0 f
(20)

Eliminating Z3, b3, c3, we get a cubic for /31, of which the required root is
0"0407, the previous stages having given the values 0"0311, 0"039. Also
from (20) we find k-3 = 30, b3 = 35, c3 = 40. Collecting the results to this

stage, we find

g = 0"833, '81 = 0'0407, /2 - 0"0106, 83 = 0'0027. (21)
These values are rather higher than those given by Michell (18). In

order to determine 81 more closely, the approximation has been carried to
the fourth stage, with the result

g-= 0"833, A = 0'0414, 82 = 0'0114, 83- = 0'0042, e4 = 0"0014. (22)

With these values, the ratio of h, the height of the wave, to L, the wave-
length, is given by

h/L = (velocity at trough) 2/2gL

- (1-181 +32 -- 3+ 4)+2 /94 "g'.r = 0"1418. (23)

An interesting point about the series 1+/,8e 2i(A+i82e"'i+... for the highest
wave is the smallness of all the coefficients 831, ,82, -.., compared with the

first term, namely, unity; on the other hand, the numerical values obtained
do not suggest a rapid convergence of the series after the first term. It
appears, from the method of approximation, and from the fact that all the
quantities B01, B03, ... , are positive, that successive approximations will increase
the values of the coefficients. A test for the sum of the series, compared
with the value of g, is obtained by considering the velocity near a crest.

Near SS = 0, we have dw/dz = 01 3C-6,/6 (1 + 13, +,•2 +

Therefore 92  ( +••4 , -P(1+/3+±i+ ... )2 and - = 3 02/3eiri•( +j +g+

and since q2 = 2gy, it follows that we should have (1 +/81+/3+ ... )2/g = 15.
But with the values given in (22), this expression has the value 1"42. This
is perhaps a severe test; a simpler criterion is to write down the successive
convergents to any one coefficient; for example, these for the leading
coefficient R, are 0"0311, 0'0390, 0"0407, and 0'0414.
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6. Returning to the general equations (15), we consider a wave short
of the highest and we select the case e-l= j. We shall find that this
corresponds to a value of about I for Stokes' parameter b.

The coefficients Br,2 ,+l have to be calculated from the relations(14);
the hypergeometric series are, of course, convergent, and the values can
be obtained to any required degree of accuracy. Substituting the numerical
values in (15) we obtain the equations

S- 1"25,81 - 0"5,2 + 3"75/2-3-25/31,62 - 125919-0"75198
-g (1081-2"58419-- 1'53j3-- 1'281fts),

581 -4"5,82- 2"25,812 + 9"25,8f8 + 58193- 0"75/33
= g (0"0166 + 2 "133 ,81- 2"32292- 1-429,83),

8,82 + 48192 - 7"75/8R2 - 7"7583 - g (- 0"0157 + 0"2767fp, + 2"23782- 2'274,83)
1l183+ 11,•1,82 = g ( 0'0125 + 0086581 + 0"324.3,82+ 2254/83).

(24)

We carry oat now the successive approximations described in the previous
section. At the third stage, we find

g = 0"9246, 81 - 1'00273, 82 = -0"0034, 183 = -0'0013. (25)

"Pomparing these values with those for the highest wave given in (21).
we see that the 8's are much smaller; on the other hand, there may be
greater difficulty in obtaining their values accurately, because of the later
stage at which the /3's begin to diminish steadily in absolute value. We
shall find this impression confirmed later when we try smaller values
of e-2a.

To find the ratio h/L for this wave, we have

(velocity at crest)2 = 2- 2 /3 (1--C2 )2 /3 (1+1,81+ 2 +,+3+ ... )2,

(velocity at trough)2 = 2-20 (1 + e-2 )23•3(1 -- ,81 +8 2 -3+ ... )2.

Taking the difference, and dividing by 2g, we find h; and since L = 21/3r,

we have h/L = 00898. Stokes' parameter b is, to a first approximation,
,7rh/L; hence tlis wave corresponds to b equal to I nearly.

6. We have now two methods for a wave of finite height, namely, that
described above and Stokes' method. The two can be shown to be in
agreement in any particular case.

From (8), we have, on the wave surface i/ =

dw -- (1.-e-2 'eP')-' (1 + e +1/2 e• + ... )-+. (26)

For any wave below the highest possible, that is provided a is not zero,
the first factor on the right of (26) can be expanded in a series valid for
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all values of 0; hence, under these conditions, we have on the surface a,

2-IM dz _1 +Ahie2' + A 2e40+ A3 e6i4,+., (27)

where

As1 =j- Ie-i ,

Now Stokes' method gives z, and dz/dw, in the form of a series like (27);
write this as

cz = 1+ CIC*+ C2e40+ C3e6i0+.... (28)

From Stokes' equations, C2, C3, ... , are obtained as power series in CI;
these have been carried up to the tenth order by Wilton,* whose results
we quote now-in so far as they are needed here-

-CI = b,

0, = b2 + 05b4 + 2"417b+ 15"597b8+ 6408b10

-Cs = 1"5b 3+ 1583b5+ 8 '215b7 +55"01b9,

04 = 2'667b4 + 4347b6 + 24'0lb8 + 166'2b'0 ,

-C5 = 5"208b6+11'53b +67'40b 9 ,

27rc_ = 1+b2+3.5b4 +19.08b 6+ 154.7b68  1297b10. (29)

With the units adopted here, the last expression corresponds to 1/g.
Further, in Stokes' investigations the wave-length was taken as 27r, while
in the above work we have used 7r; the result is that in comparing the two
methods by means of (27) and (29), C1, C2, C3, C#...., correspond respectively
to A&, IA2, kA3, ¼A4,....

For the numerical calculations in the case e-9 = , we use the values of

,38,,2 , and Ra given in (25); then from (27) we obtain

A, = 0,24727; *A2 = 0"06385; s-A3 = 0'0249;

¼A4 = 0"0115; *Ae = 0'0058; ...... (30)

On the other hand, if we take b equal to Ai, we get from this series
in (29) -C, = 0"24727; C2 = 0'06382; -Cs = 0-0248;

C, = 0"0114; -C, -= 0G058; ...... (31)
* J. R. Wilton, 'Phil. Mag.,' Ser. 6, vol. 27, p. 385 (1914).

141



Periodic Irrotational Waves of Knite Height. 48

It is unnecessary to carry the calculation further to show the numerical
agreement between the two methods for waves short of the highest. It
may be noticed that in the above comparison we have gone up to the
coefficient fR3 of the present muthod; to obtain the agreement shown above,
we have bad to use the Stokes' series as far as the tenth order in the
parameter.

7. From the comparison between (27) and (28), we see that, for waves
lower than the highest, we are in effect dealing with a Stokes' series whose
parameter has the value - If we applied Stokes' method directly
to (27), we should obtain A2, A3, ... , in the usual way as power series in this
parameter, and the quantity e-2 would be a superfluous arbitrary parameter.
On the other hand, the present method gives a definite value of 83 for an
assigned value of a, or theoretically gives a functional relation between
,81 and a. The method definitely connects a wave of any height with the
highest possible wave, and any possible wave-form is given as one of a family
whose limiting curve has crests consisting of wedges of 1200.

Consider the expansion from the form (26) to the corresponding Stokes'
form (27) or (28). Assuming the convergence of the series with the
,8-coefficients, the expansion is valid over the whole rangc. of 0 for all
positivw values of u, excluding zero; it is also valid for a zero, with the
exception of the points S6 = n'r, n integral. In other words, the comparison
confirms the view that Stokes' series for the elevation is valid throughout,
with the exception of the actual crests of the highest possible wave.

We can now estimate the limiting value of the Stokes' parameter b for
convergence at the crests. To do this, we compare the series (27) for the
highest wave with a Stokes' series, for points other than the crests.

For the highest wave a - 0, we found

A = 0"0414, 9 2 0"0114, 83 = 0'0042, $4 = 0"0014.

Hence the expansion should be a Stokes' series with the parameter
s--0"0414, or say 0"2919. Making the comparison between (27) and (29)
with these values, we find

Al = 0'2919 ; iA, = 0'0993; iA3 = 0"0523;

-C- = 0'2919; C9 = 0'0914; -0Ca =-J0429. (32)

The agreement is sufficient to justify the comparison, when we remember
that the 8-coeffici,•.ats have only been determined to the fourth stage, and
further, that the Stokes' series (29) for the C-coefficienti presumably converge
slowly in this extreme case.

It should be remarked that we do not gain information from this com-
parison about the convergence of the Stoke&' series for the separate coefficients
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for higher values of the parameter; the result concerns the series for the
elevation. We find that Stokes' series for the elevation becomes divergent
at the crests when the parameter has the value 0"291..., so far as the

numerical calculation has been carried.
In this connection reference may be made to Wilton,* who concluded that

the Stokes' series certainly diverge for a 1)paranieter greater than 1/c, and
who estimated the limiting value to be in the neighbourhood of •.

Wilton works out in detail a numerical example with the parameter
b = 0"316, for comparison with the highest wave. According to the present
analysis, this is beyond tOe limiting value for b; the series should be
divergent at the crest. This may well lie the case, notwithstanding that the
coefficients C•, as calculated by Wilton, diminish steadily as far as the order
shown; since the series is supposed to be divergent only at the crests, one
might expect the divergence to become evident numerically only after
calculating a large number of terms. The example may serve as an illustra-
tion of Prof. Burnside's criticism, that it is necessary to know the limiting
value of b before Stokes' series can be used with confidence for numerical
calculation.

8. We may examine briefly the present method for waves of simall height.
It is of interest first to consider the exact expression

din_= -2_13 ((1 _-ew)l 3 . (33)

We can integrate dz/dw and so obtain the equation of the stream-lines
in finite form, and also exact expressions for the variations of pressure along
any stream-line. To find how far (33) satisfies the condition for a free wave
under constant pressure at a stream line * = a, it is simpler to expand first
before integrating; we can then express 1,

2 and y as cosine series. In this
way we find at the wave surface 4 - a, writing down the variable part only,

Const. x (92-- 2gy) I- {jge- -( - -2-• V 6 e- 6"--ri c-89--...)}cos 2S6

+ ; -••o - 4a_ - - c-8G-...)}cos40
+i ,-, '.-_U o-'-( 1" c-(&M-...)}cos 6O

+ .............................................

(34)

Hence, if we take y- I=1 + -Ic-4a, the pressure is constant up to,
amid including, terms in e-"; and the next term is the small quantity
-rb- c-69 cos 60. This value for 1/g is Stokes' expression 1+b2, the

SJ. R. Wilton, 0c ci6. aunte.
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parameter b having the value e-2e to this order. It is, of course, impossible

to make the right-hand side of (34) zero for all values of 0 merely by

choosing g a suitable function of a. However, the fact that (33) satisfies

approximately, to the order shown above, the conditions for a free wave of

any height, explains the smallness of the coefficients 81,i82.... even for the

highest wave when a is zero.

Returning to the general equations (15), for a numerical example of a

wave of moderate height wo take e-2- = 3/10. In this case we shall only

carry the approximation to the second stage, to illustrate the character of

the coefficients. We have the following numerical values:

Be1 - 1"008; B11 = -8-24; B21 1 = -7'336;

B03 - -0002; B13 = 2"056 ; B23 =- 8'3

B =s -- 0004; B15 = 0"082; B25 = 2'1.

From these we obtain 81 -0"0018; 82 = -0"00066. Making the com-

parison with a Stokes' series, as in the previous sections, we find

A, = -C 1 = 0"1018, IA2 = C2 = 0"0104, JLA3 = -C 3 = 0'0016.

The numerical values confirm the impression that, while the /-coefficients

diminish indefinitely as the height of the wave becomes smaller, it is niore

difficult to obtain their values by the niethod of' successive approximation
used in dealing with the infinite set of equations for them.

The behaviour of the j8-cocfficients is inade clearer by studying the leading

terms Be1, Bo3, ... , on the right-hand side of equations (15). Over the whole

range for a, from zero to infinity, B01 only varies Loin about 1"24 to 1;

consequently, from the first equation, q is never much different from unity.

From the remaining equations, we see that 81, 82,03, ... , form a parallel

series to B03, Bo0, B07 ... , taken in order.
It is only for the highest wave (a-= 0) that all the terms of the latter series

are positive and decrease steadily to zero from the first term; for other

values, the series is not quite so simple in form, although in all cases the

terms converge ultimately to zero. The character of these terms is best
illustrated by numerical examples, such as are given in the following Table:

I
•-*.B(11. BMa. t B0,. Bo7.Bo.

1.0 12405 0124 0"0443 0 0225 0 O
0'9 1*Ill 0 'OH3 -- 0"007 -- 0013 -0010
0 "I0806 -- 0167 -H 0 "0157 -01)26 -0071
0"3 1 008 -- 00022 -- 0 0042 -0'0013 -0 (104
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The quantities B,1n+l, and, in fact, all the coefficients Bn,2 +1, can be
studied algebraically from the relations (14). The algebraic solution of
equations (15), together with a formal study of convergence, would be of
tgreat interest; meantime the numerical illustrations given in the foregoing

,J discussion may serve to show the possibility of a general scheme which
includes waves of any permissible height.

UiAIgo.ON AND SoNs, Printers in Ordinary to His Majesty, St. Martin's Lane.
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Wave Resistance: Some Cases of Three-dimensional Fluid
Motion.

By T. H. HAVELOCK, F.R.S.

(Received November 27, 1918.)

1. Calculations of wave resistance, corresponding to a pressure system

travelling over the surface, have hitherto been limited to two-dimensional
fluid motion; in those cases, the distribution of pressure on the surface is
one-dimensional, and the regular waves produced have straight, parallel

crests. The object of the following paper is to work out some cases wher
the surface pressure is two-dimensional and the wave pattern is like that
produced by a ship. A certain pressure system symmetrical about a point is
first examined, and more general distributions are obtained by superposition.
By combining two simple systems of equal magnitude, one in rear of the

other, we obtain results which show interesting interference effects. In

similar calculations with line pressure systems, at certain speeds the waves
due to one system cancel out those due to the other, and the wave resistance
is zero; the corresponding ideal form of ship has been called a wave-free

pontoon. Such cases of perfect interference do not occur in three-dimensional
problems; the graph showing the variation of wave resistance with velocity
has the humps and hollows which are characteristic of the resistance curves
of ship models.

Although the main object is to show how to calculate the wave resistance

for assigned surface pressures of considerable generality, it is of interest to
interpret some of the results in terms of a certain related problem. With

certain limitations, the waves produced by a travelling surface pressure are
such as would be caused by a submerged body of suitable form. The expres-
sion for the wave resistance of a submerged sphere, given in a previous
paper, is confirmed by the following analysis. It is also shown how to extend

the method to a submerged body whose form is derived from stream lines
obtained by combining sources and sinks with a uniform stream; in par-

ticular, an expression is given for the. wave resistance of a prolate spheroid
moving in the direction of its axis.

2. Take axes Ox and Oy in the undisturbed horizontal surface of deep
water, and Oz vertically upwards, and let C be the surface elevation. For an
initial impulse symmetrical about the origin, that is for initial data

po= F(w); 0=o;
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where 2 = x2 +y2', the velocity potential of the subsequent fluid motion, and
the surface elevation are given by*

=1 Jf(K) eJO(K )cos(KVt)icdK, (1)
1c0

.v= -- of(K)Jo (x )sin (xVt) K2VdK, (2)

where V2 = g/x, and

f(/) = 0fF(a) Jo(ca) oxda. (3)

We have assumed that it is permissible to use the integral theorem

F(w) = JJo(J M)Kdx F(a)Jo(lca)adoe. (4)

We obtain the effect of a pressure system moving over the surface with
uniform velocity c in the direction -x by integrating (1) and (2) after

suitable modifications. We replace t by t--T and x by x-cT, and integrate
with respect to 7- over the time during which the system has been in motion.

We shall limit the present discussion to the case when the system has been

in motion for a long time, so that if we take an origin moving with the

system a steady relative condition has been attained. In this case, with a
moving origin 0, we replace x by x+cu and t by u in (1) and (2), and obtain
the required resultst

P6= J e-i'u du Jf (K) en: Jo [,c/ {(X + C'z)2 + Y21 ] COS (KVU) x dx, (5)

g4p= - f 'e-il" dujf f (K) Jo [K./ {(X+ Cu)'+y~2}] sin (AVU) x'Vdx, (6)

where f(K) is obtained from the assigned pressure distribution p = F (i) by
means of (3).

The introduction of the factor txp (--u/2) is familiar in these problems
and needs only a brief explanation. It may be regarded a3 an artifice to
keep the integrals determinate, it being understood that ultimately /A is to be
made infinitesimal. Or, again, it ensures that the solution is the fluid motion

which would establish itself eventually under the action of dissipative forces,
however small.

In the steady motion with which we are concerned, we may imagine .
rigid cover fitting the water surface everywhere and moving iorward with
uniform velocity c. The assigned pressure system F(w) is applied to the

" Lamb, 'Hydrodynamics,' 6th edn. (1932), p. 432.
t'Roy. Soo. Proc.,' A, vol. 81, p. 417 (1908).
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water surface by means of this cover; hence the corresponding wave resist-
ance is simply the total resolved pressure in the direction Ox.* With the
usual limitation that the slope of the surface is everywhere small, this leads
to

R = JF(w) dS, (7)

taken over the whole surface.
The evaluation of the steady wave resistance for an assigned pressure

F (w) is to be carried out by means of (3), (5), (6), and (7). However, we
may obtain simpler expressions before applying them to particular cases.

3. For this purpose wa analyse the wave disturbance (5) into simple con-
stituents, in fact iat c one-dimensional disturbances ranged at all possible
angles round Ox, the line of advance. We have

rJo [AC((x+cu.) 2+y 2
11/] = 1,(.÷•)Co.# cos (ty sin 0) do. (8)

Substitute in (6) and we can now carry out the integration with respect to u;
for we have

2 J[ ei-Aiu e- 14C' sin (itVu) du

S(Kc COS +V + - (tc cos -CV + 2 li)-1 . (9)

We simplify this expression further by using the fact that P was
introduced only to keep the integrals dieterminate, and is eventually to be
made infinitesimal; we can therefore reject terms in 1 which are super-
fluous for this purpose. The process receives its justification in the course of
the analysis. Tbig being understood, we can use, instead of the right-hand
side of (9), the expression

- 2 (V/cl) sec2 x/{ -Ko sec2 0 + i (p/e) see (10)

where o- = g/c2. Using these results in (6), and making a slight trans-
formation, we can express the surface elevation in the form

2 wgp J-,[ .,-Iosec
9 o +i /s/c)sc

+ i K. (11)
x - ,to secl e ., " ") sec j, I

In (11) we have the surface elevation analysed into plane wave con-
stituents, each element mrving in a line making an anglo o with Ox. Carry-
ing out the integration with respect to t, we can express each constituent

* ,Roy. Soe. Proc.,' A, vol. 23, p. 244 (1917).
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in terms of a simple harmonic wave in rear of the line x cos 4 + y sin , = 0,
together with a disturbance symmetrical with respect to this line. We
might continue the discussion for general types of pressure distribution,
provided the functions are such that certain transformations may be used;

4 however, it is simpler to study in detail a few cases for which the conditions

are all satisfied.
4. At this stage it is convenient to specify the system

p = F (w) = Af/(f2 + wi2 )3 I2 , (12)

where A andf are cunstants. Using (3) for this case, we havef (x) = Ae -'f.
Ret.rning to the expression (11) for the elevation, we consider the element
making an angle 4' with Ox. We change to axes Ox', Oy' given by

X,-- X Cos 0 + y sin 4, y' = y cos 0 -x sin 0. The integral with respect to K

then becomes

A •J --eo sec 2
0 +i(.4c)sec 4 + _,c-iosec (--}c)e (13)

This integral can be transformed by contour integration; as it is of a
type familiar in plane wave problems" we write down the results when these
have been simplified by making / zero afterr the transformation has been
carried out. We have for the value of (13).

47rKoA sec2 4' e- j -'16 sin (Kox' sec2 4')
J- Kcose02 +bsinfin

+ 2A s + e-e mdm, for x' < 0
o0  cm + K0 m see,

2A xo+°se q5 c +o se't s' e--' indi, for ,x' >0. (14)

From (11) and (14) we could now write down the elevation ý as the sum
of the constituents for all values of 4' in the range from -r/2 to 7r/2. The
first term in (14) represents simple waves in the rear of the corresponding
wave front x cos 4o + y sin 4' = 0; hence the integration of this term

would only extend over elements for which the assigned point (x, y) was in
the rear of the wave front. The other terms in (14) represent a disturbance
symmetrical with respect to the wave front, and diminishing with increasing
distance from it. We shall not write down the expressions, as we do not
intend to examine the wave pattern in detail. From the definition in (7),
it follows that we can evahlate the wave resistance R by considering first a
simple constituent of the eltvation and then summing with respect to 46.

Since the pressure system is symmetrical with respect to the origin, the
symnuetrical local disturhance in (14) gives no resultant contribution to R

* Compare, for examplt, ' Roy. Soc. Proc.,' A, vol. 93, p. 524 (1917).
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also the part due to the regular waves in rear of the wave front

x cos i,+y sin -= 0 is given by

4 we"0 A sec3 oe-rofs• B 4ý dy' Af co- (s I ec 4)) dX, +, 2
Wx~y2 ±?/2 fl!. 2

S4 7r2A2 (•2 sec 3 Oe_2sc.fe 21O. (15)

Collecting these results we have, from (11) and (15),

w12
R = (4r/gp) A'K0

3  sec5 0et -f2sc. d (16)

We may express R in terms of known functions in two convenient forms,

If Wk,. (cc) is the confluent hypergeomnetric function defined, under c-rtain
conditions, by*

Wk,m4 e, -k-/ X)] U-'k+m-i (1 + u/a)'k+-ie-U du, (17)

and if K.(a) is the Bessel function for whicht

K (a 1) C c (18)

we find, after some reduction, that

R = (ir'/4gpf5 ) A 2,3/2cý-a' AV,, 1(2) (19)

- ('r/8gpf•) A', 4c- '/ {Ko(a/2)--(1 + 1/,) K,(a/2)}, (20)

where a = 2 Kof - 2g1/c2 .

In a previous paper,+ the same function of velocity, except for the con-

stant factors, was found for the wave resistance of a submerged sphere ; the

result was given in the form (19), and a graph was drawn to show R as a

function of c. The resistance rises to a maxintium in the heighbourhood of

= V(gf), and then falls asymptotically to zero.

Although there are few tables available for the functions K. in general? K0

and K, are given in ' Fuiktioueiitafcln' (.ahlnke iu. Erude) under the form of

(i'/ 2) H0o~) (ix) and (7r/ 2) H1 0) (ix) resIectively.

5. Reference has been made to the wave resistance of a sphere submerged
at a depth f large compared with the radils (1: this wa.- calculated directly

as the resultant horizontal pressure on the sphere. The conuection with the

present analysis is easily shown.

In the paper referred to, tle approximate solution for a submerged body

was found directly, following Prof. Lamb's nethod for a cylimher. It is con-

* Whittaker and Wataun, ' Modlern Anialy.ii,' p. 334.

t Grey and Mathewm, 'Bestesl Functioua,' p. 90.
S'Roy. Soc. Proc.,' A, vol. 93, p. 530 (1917).

(Note by Edltor: These functions have now been tabulated in G. N. Watson,
"Theoty of Bessel Functions (pub. C.U.P., 1922).
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venient to repeat here the expressions for the velocity potential and surface
4levation due to a cvliinle, and to a sphere, putting them into the same
notation for purposes of comparison. We have, for a cylinder

ca2x ca2d,
S+(Z+f) 3 +(L+f)2

+2ca 2  (U-,"/2 dv 'c-c(f-:)sin K(xV±C-) sin (IVU) KVdK, (21)

2 2a2f/(X2 +f2) -2 a' J c~q2 da Je-,f cos K (x + cv.) Sill (XVU) KVd0K, (22)

and for a sphere

ca3x ca'%

2 2{--+2 (z+ f) 2 P 2 2{;•+y2 +(z-f)2 }'2

-' CdvC -)Jo [K/ {(x+cu)2 +y 2 }] sin (KVu) KVdK, (23)

" =,f/(zA + y9+P)3

- a3 [f C- A,12 17t~ dv KrfJ0 [KV, {(X CU+ cv 2+ ] sin (KVI') &2Vdi. (24)

These expressions satisfy the conditions at the free surface, namely,

ao --&"ý -= 0 and 30/az = c•ý/&, when p is made infnitesimal. Oppor-
tunity has been taken to correct an obvious mistake in sign in the expres-
sions for the sphere ; in the former paper, the last terms in (23) and (24)
were given as positive instead of negative.

Returning to the comparison with § 4, consider the expression (24) for the
surface elevation due to a submerged sphere. The first part represents a
disturbance symmetrical about the origin, due to a doublet at the centre of
the sphere, together with an equal opposite doublet at a point a heightf
above the free surface. Compare now the second term in (24) with the
surface elevation given by (6) when the pressure system is (12), so that
f(K) = Ac-4. The two expressions are identical, with a suitable relation
between the constants; we must have a3 = A/gp, or the corresponding
moment of the doublet is Ac/2gp. We have then two related problems.
For the submerged sphere the pressure is constant at the free surface, and
the surface elevation consists of the two parts in (24); the wave resistance
depends upon the supply of energy needed to maintain the waves contain,)d
in the second part of (24), and this energy is supplied through the work of

the pressure at the surface cf the sphere. On the other hand, for the travel-
ling surface pressure,

p -- gpa'f/( 2 + 1 )5, (25)
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the surface elevation is the same as the second part of (24) ; hence the same

supply of energy is needed, and is obtained in this case from the work of the

applied pressure. Thus we inay assume that the wave resistance is the same
in the two problems.

From (19) and (25) we have

R - I 7r3 2gpf-aa.'•/ 2e-.2 SW1 , I (a), (26)

which agrees with the value for the sphere given in the previous paper. i'he

connection between the wave patterns of a submerged body and of a certain

surface pressure has been pointed out by Dr. G. Green in a recent paper,* in

which the correspondence is developed from a different point of view. In the

following analysis we deal only with combinetions of simple pressure systems
(12), and the correspondhig submerged body can be found from a similar
combination of doublets, as in the preceding case.

6. The foregoing results can be generalised for other symmetrical forms of
local pressure distribution, provided transformations such as are used in (4)
and (14) are applicable. Assuming this, it appears, from the analysis of § 3

and § 4, that for a pressure system p = F (w) we have
I-)

1 = (4 7r/gp) xk0' sec5 0 {f(Vo sec2 )}2de, (27)

where f(K) is given by (3).

7. Some points of interest in the theory of wave resistance can be

illustrated by combinations of the simple type (12). We consider first two
equal systems, at a distance 2 h apart, and advanc;ng in the direction of the
line of centres; that is,

p = Af/(f 2 + 1
2j)1• +Af/(f•+ M)2)112, (28)

where w? = (x--lip +?y2 and "22 -- + h) +y.

Writing, for the moment, 1i and pa for ti'e two component systems, and
ý1, ý2 for the surface elevations -'!-ch :'Al1!d be caused by these systems

acting separately, the waves dmi. to the combination are given by ýi + ý?, since
we neglect, as usual, the squares of the fluid velceities. it follows from the

definition in (7) that the wave resistance is the sum of four parts, R1, R2, R•3,
and 1•21. Here R, is the resistanec due to the pressure p, acting on the waves
produced by pi, R12 is thab due to pl operating on the waves caused by p2, and

similarly for R2 and 1il.
It follows from § 4, that

1= 12 = (4 r/YP) A2K03 sec5 oe-2 raf sec0d, (29)

*G. Green, Phil. Mag.,' ,,ol. 36, p. 48 (1918).
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The terms R12 and R2, represent the interference effects. Let Bi and B2

be the centres of the two systems p, and P2. To calculate R21, consider a
constituent plane wave-front through B1 ; take this line as a new axis O'y',
and a perpendicular line through B2 for the axis 0'x', as in fig. 1.

FIGY

0

Then, correspotding to the expression (15) in § 4, we have as an element of
R21 the quantity

4d' fA cos ( 0 x' sec2 4)dx .
s {(x'+2&cosS4))+y' 2 +f2}3fr (30>

The similar element in the value of R 12 is the expression (30) when we

have replaced x' + 2 h cos 4) by x- 2 h cos 4). Adding the two elements and

carrying out the integration with respect to y', we have, as an element of
R1 2 + R2 1,

8 7rfic2A 2 sec3 ,J~ -w~fsec2, cos (xv' sec2 q5) dx'
8e (x' + 2h cos 0Y)2 +f2

= 87r 2Ko2A' sec3 e -"2 sqjcP cos (2moh, see q5). (31)

Replacing from (11) the proper factor and integrating with lespect to 4),
we have

-12

R 12+ R12 " (8 7r/gp) Ko3A2 fo sec' oe-2mfJcc2 o COS (2Koh se 4)) d4). (32)

Finally, from (29) and (32), the total wave resistance R is given by

R = (16 7r/gp) A'K03 fo sec 5 eC- *QfV
2 * cos2 (Koh see 9S) d4). (33)

We can express R in series of known functions by expanding cos(2Kok see 4)
either in powers of Koh, or in Bessel functions J. (2 Koh); however, as these

series involve either Wk.. (2,tel) or K. (Kof)tt they are of no use for numerical

calculations.
It is not difficult to calculate numerical values directly from the integral

(33) for given values of the constants. To obtain a graph showing the

t"See note by Editor on page 150.
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variation of the resistance R, with the velocity c, the 101lowing method is
sufficiently accorate, at least for illustrating the main features.

Take as a definite examp1', h = 2f; then, writing ot for 2gf/c2 , we require

to calcu!rte the value of a3 J'sec5' eae-=' cos2 (a sec 0) do for various values

of ax.

The integrand can be obtained without much trouble, and it was found
sufficient to calculate its value at intervals of 10' throughout the range from
0 to 7r/2 ; the mean value was found from half the sum of the initial and
final values together with the sum of the intermediate ones. In the course of
these calculations, we have material for obtaining the value of

a3 I r/2scc& sc' 2 
(10

.0

by the same method; but this integral is equal to

-1 c3e-1 {Ko(ao/2)-(1 + 1/t) K1 (a/2)},

and we -.an find its value also from the tables of Ko and K, mentioned in § 4.

By comparing results we obtain some idea of the accuracy of this method of
numerical integration. The calculations can be lightened for present
purposes by choosing, from eneral principles, values of a which correspond
to important points on the graph.

By this method we obtain values of R for different values of c, for this
particular case. The result is shown in the full curve in fig. 2; the scale for
R is arbitrary, the unit for c is the velocity V/ (g f). The dotted curve is a
mean curve, and is equal to R, + R12 in the notation of this section ; that is
it represents the sum of the resistances due to the two systems, ignoring any
interference effects.

FIG. 2

0., .6 -8 1.0 1'2 1-4

The graph is of interest in its exhibition of the typical humps and
hollows, occurring in general when 27rc2/g is a sub-multiple of 2h. The
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prominence of thei interfereuce effcts depends Upon the relative niaguiude6
of the constantsf and ht ; the example we have chosen shows a pronounced
effect due to the final maximum of interference being near the maximum of
the mean curve.

8. We may note briefly the interpretation in terms of a submerged body
The surface of the body is one formed of stream-lines due to the two equal
doublets in a uniform stream ; the axes of the doublets are in the same
horizontal line at a depth f, which must be large compared with, at least
the vertical dimensions of the body. For instance, with suitable relations
between the conistants, the result would give the wave resistance of two
small bodies, of nearly spherical shape, one behind the other at a distance
large compared with their dimensions.

9. By combining simple symmetrical pressure systems, we may generalise
the previous results; this seems an easier process than the direct discussion
of unsymmetrical systems. We shall assume that the component simple
systems are all of the type (12) and have the constant f of the same value,
and that the centres of the systems all lie on the axis Ox.

In the first place we must extend time analysis of §8 to two components of
unequal magnitudes A and B, with their centres at the points (h, 0) and
(A,, 0) respectively. From the argument expressed in (29)-(32), it is easily
shown that the value (33) for the wave resistance must be altered by replachigr
A2 cos' (Koh sec 0) by

¼ [A 2+ B2 + 2AB cos { Ko (h-k) sec 5}]. (34)

Suppose further that the pressure system is given as a continuous line
distribution of components along Ox in a range from hIt to h2, the magnitude
of the element with its centre at (x, 0) being proportional to some function

S(x); in other words, suppose the surface pressure is given by

p = Af *(h)dh (35)

the function * (h) being such that the transformations used in the preceding
analysis are permissible. For the system (35) we have to Rum (34) for all
possible pairs of elements; this is performed by taking the double summation

k L*(h)dh 4* (k) cos {Io(h-k) sec 46} dk. (36)

The wave resistance for the system (32) can be completed now from (33)
and (36); we have

R = (47r/gp) Ko0A2
h, *(Ih) A (A-) d, kJ1 sec5 e-',c 'f * cos {tKU (h-k) sec 4'} d4. (37)
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10. Consider as an examlple the case when *(h) is constaut, so that tie

surface pressure is

p l A f = -, ,h

x-h x + h (38)
(y2+2) {(x-h)2+y2 +f3 }1'" (2+f2) {(x+ h)2 + y 2 +ft} /2  (

This may be regarded as the combination of two equal systems of opposite
sign, with their centres at the points (h, 0) and (-h, 0) but not symmetrical
round these points.

In this case, after carrying out the integrations with respect to h and k
(37) gives

1"12
R = (16 •rrgp) A2 o f o sec3 0e-2 #°fsec2 0 sin2 (K0h sec 4)) d4). (39)

The integral may be treated similarly to (33). One of the main differences
lies in the factor sin2 (Koh sec o) instead of cos82 (Klh sec o)); this is because

we have now two equal positive and negative systems instead of two positive

systems, and in consequence the series of humps and hollows on the resistance
curve will be interchanged.

We have chosen this case partly because of the corresponding problem in

the motion of a submerged body at depth f. Integrating a line of doublets

of constant strength results in a simple source at one end of the line and an

equal sink at the other. Hence, the submerged body is one of the oval-

shaped surfaces of revolution formed by combining a source and sink with a

uniform stream; it follows that, as in § 5, the strength of the source is

Acl2gp. It may be noted that the coefficient A in (39) has different

dimensions from that in (33), agreeing with its introduction in (38). By

making h small in (39) we regain the former result for a sphere.

11. If a prolate spheroid of semi-axis a and eccentricity e is moving in an

infinite liquid with velocity c in the direction of its axis of symmetry, it can

be shown that the velocity potential may be written in the form

A) = (0 -( h) (x -zh)A (40)

where A = 1/[4e/(1--e2)--2 log {(1 +e)/(1--e)}], and where we have, for the

moment, taken Ox along the axis of symmetry of the spheroid. This

expresses S) as due to a line of doublets ranged along the axis between the two

foci. Hence the surface pressure corresponding to the motion of the spheroid

with its axis at depth f is

p = 2gpfA ad (A2Z-h2)A} (41)
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reverting to axes with the. origin in the free surface. It should be noticed
that, as in § 5, the sui*face pressure (41) does not give the same surface
elevation as the moving spheroid; the surface condition in the latter case is
that the pressure should be constant at the free surface. But (41) does give
the same wave formation as the spheroid, and that is the part of the surface
effect upon which the wave resistance depends. The complete surface eleva-
tion can be easily written down by direct methods as in the case of the
submerged sphere.

Using (41) now as an example of (35), we find the wave resistance of the
spheroid from (37) ; after integrating with respect to h and k, the result is

R= 128~r2gp~e3A2  
/2 sec2 0e- -2Kdf {J31 (Koae sec S6) }- do. (42)

It can be verified that this gives the result for the sphere by making e zero.
For a given relation between f and ae, the value of R can be obtained

approximately by the numerical methods used in the previous examples;
judging from rough calculations, it appears that the resistance curve does not
show prominent humps and hollows. This might be anticipated from the
surface pressure (41), which can be evaluated in simple form; if we repre-
sent the pressure distribution by a surface with p, x, and y as co-ordinates,
then (41) gives a single oval-shaped peak with its longer axis in the direction
Ox. On the other hand, the pressure distribution (28) represents two
distinct peaks. We may compare in this respect the behaviour of ships'
models; it depends upon the shape of bow and stern, and the relation
between them, whether the resistance curve has marked interference effects
or is a continuously ascerding curve.

12. We have limited the previous cases to combinations of simple pressure
systems ranged along the axis Ox. The method can obviously be extended
to systems with their centres on Oy; or again, for systems situated in the
plane xy, a four-fold summation in the manner of (36) would give further
gcnerality. For the corresponding problem of the motion of a sibmerged
body, one could obtain the wave resistance of any body whose surface is
formed of stream lines due to the combination of sources and sinks with a
uniform stream.
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TURBULENT FLUID MOTION AND SKIN FRICTION.

By Professor T. H. HAVELOCK, F.R.S.

[Read at the Spring Meetings of the Sixty-first Session of the Institution of Naval Architects,
March 26, 1920.]

INTRODUCTION.

1. IT is generally admitted that our knowledge of the laws of skin friction for a
solid moving through a fluid is not very satisfactory. This may be 'iscribed to two main
reasons: in the first place the inherent difficulties of the theory of turbulent fluid motion are
great even in the simplest cases, and in the second place most of the experimental data
which are available have been gathered, not with the primary object of building up a
consiqtent theory, but with more immediately practical aims in view.

Although no general investigation is attenmpted in the following notes, it is hoped that
they may be of interest as a critical discussion of certain aspects of the problem. The
work may be summarized briefly as follows.- :----

(I) An examination of experimental results with a view to defining or estimating the
(apparent.) velocity of slip of a fluid in turbulent motion pa-t a solid.

(2) The expression of the frictional force per unit area at any poiin of a plane surface
in the form K v , where ? is the relative velocity at the point: determination
of the -'alue of K from experimental results.

(3) The calculation of the total frictional resistance in the case of a p)lank for which
the distribution of velocity is known: remarks on the distribution of velocity
for a long plank.

(4) Two numerical calculations to illustrate the assumptions involved in applying a
similar method to curved surfaces.

(5) Connection with the law of similarity : the effect of the ratio of breadth to length
in the case of planks ; remarks on the extension to long planks and high
velocities ; general problem of ship resistance.

RELATIVE SURFACE VELOCITY.

2. When a liquid flows in steady turbulent motion through a pipe it is usual to
express the resistance of the wall in terms of the mean velocity over the cross-section,
because it can be defined precisely and measured accurately. Further, in any theoretical
study of the motion, it seems necessary to assume that the fluid velocity at the wall
is zero, there being no slipping of the layer actually in contact with the wall. However,
in many cases it is found that the velocity varies little over a large part of the cross-
section and is an appreciable fraction of the mean velocity at points very near the wall;
this occurs when the turbulent r~gime is well established, either because of high velocities
or of large diameter of the pipe. It may t)e then, for some purposes. a matter of prac-
tical convenience to treat the motion as if there were a velocity of -lip at the wall. The
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2 TURBULENT FLUID MOTION AND SKIN FRICTION.

magnitudes involved may be illustrated by some numerical cases. Taking indirect calcula-
tions first, we may quote an instance from Lamb's llydr'ýdynamics (6th edn., p. 666).
Assume that the resistance per unit area of the wall of the pipe is given by K pV,
where p is the density and v, the mean velocity of the liquid. Also suppose the velocity
to be approximately v. over the cross-section, except in a thin layer of thickness 1
in which there is laminar flow. In order to obtain the same resistance per unit area,
we must have P v%/1 = K pV2, or I- V/KIv%, where p. is the viscosity and v the kine-
matical viscosity. For water moving with a mean velocity of 300 cm.isec., this gives
I = 0"024 cm.

For the cognate problem of the motion of a solid through a liquid, take an example
from Froude's data for planks. The resistance of a 2-ft. plank at 600 ft./min. is given
as 0"41 lb. per sq. ft. ; the thickness of the equivalent layer for laminar motion giving
the same resistance is found from l.v/l -- 0-41, or 1 - 0"007 in., approximately.

But these are indirect estimates, and we turn now to experimental determinations
of the velocity. Here the velocity is obtained by means of a Pitot tube, and it is obvious
that the nearest point to the wall at which an experimental value can be found depends
upon the dimensions of the Pitot tube. For the motion of a plank through water we
have Calvert's measurements of frictional wake.* In this case the Pitot tube was one-eighth of
an inch in diameter. It wý_. found that the relative velocity at the surface of the plank
decreased from full speed at the front end to about half that speed at the aft end of
a 28-ft. plank moving at about 400 ft./min. For turbulent flow through pipes, passing
over the earlier work of Bazin and others, we may take an example from measurements
by Stanton.t The Pitot tube was of rectangular section, the external dimension in the
direction of the radius of the pipe being 0-33 mm. With a smooth pipe of 2"465 em.
radius, the velocity at the axis being 1,525 cm./sec., the velocity at 0"025 cm. from the
wall is given as 592 cm./sec. Further, the mean velocity is about 0",1 of the velocity
at the axis.$ Hence we may deduce that the (apparent) velocity at the wall is 0"475 of
the mean velocity. A similar result is obtained from other cases given in the paper.,
quoted, the value of V d/v being in the neighbourhood of 50,000.

We shall assume that we can refer to a relative surface velocity which is sufficiently
definite for certain purposes, the limitations being indicated by the numerical examples
which have been given.

PLANE SURFACES.

3. We wish to see if the frictional force per unit area on any p)lane element of surface
can be expressed by K p v2, where v is the relative velocity of the fluid and wall at the
point, p is the density of the fluid, and K is a non-dimensional coefficient of ruughness.
One of the earliest attempts to analyse turbulent fluid motion, by Boussinesq, involved
a surface friction of this kind, together % ith a constant effective coefficient of eddy
viscosity, or of mechanical viscosity as it was called by Osborne Reynolds. Experimental
results on flow through pipes can be fitted more or less by a scheme of this kind, but
it is generally recognized now as only an approximate statement. In the first place0 th,
mean friction on the walls is not simply proportional to (velocity)", hut depends also on
the diameter ; so that the friction on an element of the wall may include a term involving
its curvature. Further, the effective eddy viscosity is not found lo he vonstant over the
cross-section, though it varies little except near the walls. A similar theory has been
applied recently by G. I. Taylor .1o the turbulent motion of the atmosphere and the skin
friction of the wind on the earth's surface.

Rankine, in his method of augmented surface, assumed a skin friction prolortional

* C. A. Calvert, Trans. I.N.A, Vol XXXIV, p. 01, i•893.
t T. E. Stanton, Proc. Roy. Soc., A, 85, p. 366, 1911.

Stanton and PanoelU, Phil. Tran.. A, 214, p. 205, 1914.
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to (velocity)2 ; but the working out of the idea involved various assumptions which
are no longer regarded as legitimate.

In these notes, the scope is much more limited. The method is applied, in the first
instance, only to plane surfaces ; and, without further theoretical elaboration, some experi-
mental results are examined from this point of view

To obtain a value of the coefficient K for smooth surfaces, take first some of the
earlier data: Bazin's results for water flowing in open smooth canals of great breadth
compared with the depth. These have been expressed in various empirical formule; we
shall quote one numerical case.* If R is the skin friction per unit area. V the mean
velocity, vm the velocity at the open surface and v the (apparent) velocity at the bottom
of the canal, we are given

Vm = V (1 8181 V); v = V(1- 3"62%/ý)

where • 2 R/p V2. With a mean velocity V = 142"9 cm./sec., and 0 00044, this gives

R = 0"0022pV 2 = 0- 0038 pv 2

However, we have a more accurate expression of recent work in Lees' formula for turbulent flow
in smooth pipes,f namely :-

R = P V2{0 0009 + 0"0765 (v/V d)0° 5 }

This formula includes the results of Stanton and Pannell quoted in the previous section
we may therefore use for the relation between the velocity v at the wall and the mean
velocity V the equation v =7 0"475 V. Further, if we assume the formula to hold when
the diameter d of the pipe is made very large, we deduce an expression for a plane
surface in the required form, namely :-

R == 0"004pv 2

We shall use this expression to estimate the frictional resistance of a smooth plane surface, t

being the relative velocity at the sumface.
4. In order to apply this method, it is necessary to know the distribution of velocity

over the surface. Unfortunate'y there are very iew determinations available for this
purpose, although no doubt others may have been made in recent years. The only
direct observations which have been published appear to be those of Calvert, given in
his paper on the measurement of wake currents to which reference has already been made.

A ,lank, 28 ft. long and coated with black varnish, was drawn along the surface
of water and measurements were made with (Pitot) tubes projecting beneath the underside
of the plank. "The speeds recorded at distances of I ft.. 7 ft., 14 ft., 21 ft., and 28 ft.
from the leading end were respectively 16 per cent., 37 per cent., 45 per cent., 48 per
cent., and 50 per cent. of the velocity of the plank; and these proportions appear to be
maintained at all speeds between 200 and 400 ft. per minute, the latter being the highest
speed that the arrangements would allow."

The relative velocities at these points are thus, respectively, 0"84, 0'63, 0'55, 0"52, and
0-5 of the velocity of the plank. The width of the plank is not stated, and we must
assume the effect of the finite width upon the distribution of velocity to be small.
Summing up the friction along the plank, supposed of unit width, we have:-

Total skin friction =0-- 004 p v d l

From Calvert's observations we may draw a fair curve showing the variation of tv/Va
along the plank, where V is the velocity of the plank ; it is shown in curve A of Fig. 1.

0 Data from Von Mises, Elem. der recA. ftydromeoh., tail 1, p. 97.
t C.H. Lees, Proc. Roy, Soc., A, 91, p. 49, 1914.
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4 TURBULENT FLUID MOTION AND SKIN FRICTION.

The integral can now be evaluated approximately from the graph: applying Simpson's
rule with intervals of 1 ft., the integral of v2/V" along the plank comes to 10'2. With
a velocity V = 400 ft.imin. this gives a total resistance of 3" 51 lb.

The resistance of the plank was not measured by Calvert. Hcwevcr, we may obtain
another estimate from W. Froude's results (Brit. Assoc. Reports, 1874). Using Plate II.
of that report, we can read off from the curves the resistance of a 28-ft. varnished
plank at 400 ft./min. ; it is 3"51 lb., as nearly as can be esti:mated. Naturally one
need attach no importance to the coincidence ; except that with a constant coefficient
K = 0"004 and taking account of the actual distribution of surface velocity, the value
of the total friction is in agreement with direct measurements in similar cases.

5. It must not be supposed that this method means that the total skin friction is
proportional to the square of the velocity V of the body. From the theory of physical
dimensions applied to similar bodies we have :-

R = p Vf(V l/v)

On the present statement, the only difference is that it is the relative surface velocity
which is some undetermined function; for instance, in the graph of Fig. 1, if x is the
distance from the leading end the graph must satisfy an equation of the form

vj2/V2 - F (xl1, V lIP)

After integrating along the plank, we obtain then R in the general functional form given
above.

6. Assuming the value 0 004 for K for smooth planks we may deduce some informa-
tion as to the fall of surface velocity, for the mean resistance per unit area divided by
K p gives the average value of v2 over the surface.

Taking Zahm's experiments * on varnished planks in air, using a suitable value of
p and taking the results as they are given in the table for the resistance -f planks of
various lengths at 10 ft./see., we obtain the following:-

l ength .. .. .. 2 4 8 12 16
Average v2/V 2  

.. .. 0"574 0"543 0"516 0.497 0"49

From the similar tables of W. Froude for planks in water at 10 ft./see., we find-

Length .. .. .. 2 8 20 50
Average v 2 /V 2  

.. .. 0"529 0"419 0-359 0'316

There is a much quicker fall in water than in air, but of course the Vl/V values do not
correspond in the two sets. Froude gives a column which is said to be the resistance
per square foot of the last foot of plank; this is, one may suppose, obtained as the
difference in resistanive of two planks differing in length by I ft., and it obviously
assumes that the addition of 1 ft. to the rear of a plank doe-; not alter appreciably
the distribution of velocity over the rest of the plank. Taking the figures as they stand,
we may deduce the average value of v- over the last foot of plank for various lengths
they give :-

Length .. .. .. 2 8 20 50
Average .. .. .. 0" 503 0"340 G'309 0"291

the second row being the average value of vO/V 2 over the last foot. Taking the square
root, we may estimate the relative velocity at the end of a 50-ft. plank moving at 10
ft./see. as about 0"54 of the velocity of the plank ; and this estimate will be on the high
side. It may be compared with the value 0-475 which we found for the similar ratio
in flow through pipes when the steady state has been reached.

A, F. Zahm, Phil. Mag, 8, p. 58. 1904.
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CURVED SURFACES.

7. If a body is moving through a liquid we may suppose the force on an elem.:nt
d S of the surface to be resolved into a normal pressure and a frictional force R d S;
the latter will be in a direction opposite to the relative velocity and, if we suppose it
to make an angle 0 with the direction of motion of the body, we may define the skin
friction as JR d S cos 0, taken over the wetted surface.

For plane surfaces we have shown that there is some justification for taking R equal
to Kpv 2 , where v is the relative velocity in the general case onie would urobably have
an additional term involving the curvature of each point. Consider first the case of "two-
dimensional - flow, when the longitudinal cross-section of the body is of ship-shape form.
Here each element is curved in the line of motion, and if the curvature is smrall and we
assume R =K p v2, the effect of the curvature is to be found in the di.(tribution of velocity.
The effect of this kind of curvature has been discussed by Mr. G. S. Baker by e.timating

FCC I

&, &

67

4

the distribution of velocity in stream-line motion. It should be noted that it is not the
.same as the effect of the Ot!,ape of midship section', for there the curvature is at right
angles to the line of flow. Naturally in three-dimensional flow both effects are superposed,
and cannot be di,,entangled. No experimental determination. of surface velocity appear to
have been published, at least for ship forms in water The extension from plane to
curved surfaces is thus to a large extent speculative : however, a!4 the cxtcnxuin has bu:ei
made already in other methods, two numerical examples are given here to illustrate the
various assumptions.

8. For tw,-dimensional motion, suppose that the model is 28 ft. long, as for Calvert's
plank, with a longitudinal section shown, aA to the upper half only, in model C of Fig. 1.
This is a formi for which Baker and Kent * have calculated tihe pressure distribution in
stream-line motion ; from the curves given in tl,at paper we can draw a curve of the
distribution of v;- V" in stream-line motion, v being the relativw surface velocity and V
the velocity of the model. Now. as an arbitrary assumption, suppose that in turbulent
flow v0 diminishes for the model according to the same law as for the 28-ft. plank;
that is, we take a reduction factor at each point from the curve A of Fig. 1. We obtain
thus the curve (' of Fig. I as an estimated distribution ,,f relative velocity, or "ather it

G C. S. Baker and J. L. Kent, Trans. IN.A, Vol. L., Pt. UI., p 37, 1913
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6 TURBULENT FLUID MOTION AND SKIN FRICTION.

shows the values of v2 'V2 for tne model. Also the total skin friction, per unit breadth
-RdScosO -= Kpv2dl

taken along the straight axis of the model. Estimating the area under the curve C, and
the curved length of Model C, we can calculate the mean resistance per unit area. It
appears that the model has a mean resistance per unit area about 11 per cent. greater than that
of a plank of the same length.

9. For a three-dimensional case we take similar preliminary data from a paper by
Mr. D. W. Taylor* on solid stream forms. We carry out the same process as in the
previous section, and it is unnecessary to reproduce the corresponding curv'es. The only
difference arises froin the fact that the solid is one of revolution with pointed ends ; coni-
sequently the element of area approaches zero at the two ends. If y is the ordinate of
the ,hip form at any point on the axis, we have to graph the values of y v2 on the
straight axis of symmetry as a base, instead of simply v' as in the two-dimensional
problem. As far as the numerical approximation has been carried, it appears that the
mean resistance per unit area for this model is about equal to, or slightly less than, that
of a plank of the same length.

10. The resistance of a small appendage on the surface of a ship must depend chiefly upon
the relative surface velocity in its neighbourhood. It is appropriate to refer here to some
experiments by Mr. Baker t to determine the added resistance due to local roughness
of a model. If the rough area were small enough relatively so as not to ,affect appreci-
ably the flow over t"he rest of the model, and if the slope of the surface and the direction
of flow were known, it might be possible to deduce information about the velocity di.itri-
bution ; however, one cannot analyse in this way the results to which reference has been
made.

In regard to skin friction for curved surfaces especially, one may venture to quote
and endorse a remark made by Professor Lees $: " It is of prime importance that further
measurements should be made on bodies which lend themselves to simple theoretical
treatment in order to build up a satisfacto , theory."

LAW OF SIMILARITY FOR PLANKS.

1H. The law of similhrity in its usual form :-

R = p V2f (V 11 v)

applies to bodies which are geometrically similar in form, and are similar as regards
scale of roughness. In experiments With planks we may perhaps neglect the thicknesA
and suppose the motion to be in two dimensions only ; but the planks will not be similar
unless the ratio of breadth to length is constant. In other words, the general formula
from physical dimensions is:-

R = p V2f (b/l, V l/v)

where the undetermined function depends upon two quantities, the ratios b/1 and V I/P.
In most experiments the ratio b/i has not been kept constant, but the planks have

been of constant breadth and varying length. Consider, for example, Zahm's results,§
which he expressed in the empirical formula :-

R = k 1-0-07 V 1 '8 5

* D. W. Taylor, Trans. I.N.A., Vol. XXXVI.. p 234, 1895.
t G. S. Baker, Trans. North.Eaat tCoaal Inst., Vol. XXXII., p. 50, 1915.
SC. H. Lees, Trans. I.NA., Vol. LVIII., p. 64, 1916.

SZahm, loc. cit.
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It is usual, following Lord Rayleigh, to correct this to 8atisty thc law of similarity
and to write :-

R = Const. x p VI (v/V 1)'15

It is probably true that the experiments are not sufficient to decide between these two
forms. The present point is that without altering the empirical law as regards I and V,

the formula can be made to satiffy the dimensional equation by writing it, for instance,
in the form :-

R = Const. x p V2 x (I/b) 0'08 x (v/VI)0 '15

Similar remarks may be applied to Froude's experiments with planks in water. For instance,
with planks coated with fine, medium, or coarse sand the resistance is proportional to the
square of the speed. Hence in these cases the quantity R/p V2 is a function of the ratio
b/i and of the coefficient K, which may be called the ratio of roughness ; but it is not
possible to separate the two effects in the results.

12. Consider the distribution of relative surface velocity from front to rear of a long
plank. Neglecting the disturbance of the edges, we may divide the distribution roughly

into three stages ; firstly, one in which the
velocity falls rather rapidly, then a long
stretch in which it is practically constant,
and finally a relatively short stage in which o*
the influence of the end is appreciable. For
a very long plank in which the middle
stage predominates, the mean resistance per
unit area will approximate to K P V2, where

Sis the steady value of the surface
velocity. On the other hand, for shorter
planks a two-term formula may be
sufficient, which may possibly be of ihe type VIA

p V 2WA + B (v/V 1)"}.
Again, if the breadth is tak.ien into account such a formula would be incomplete.

Here in the extreme case of a loig plank of finite breadth, the analogy of steady flow
through a pipe is suggested; and the mean resistance should approximate to a two-term
formula of the type just given, with the length 1 replaced by the breadth d. This is
the argument which has been worked out by Professor Lees in the paper * already quoted ;
in that analysis d is taken as. the diameter of an equivalent circular cylinder and deduced
by a, certain method from the dimensions of the plank.

13. On the analogy of i-he law of similarity for flow in pipes, Mr. Baker t has collected
results on planks and models into one diagram in which R/p V2 is graphed on a base

V i/v. \Ve have seen that certain reservations are necessary in grouping the data from
planks in this way ; but the general trend of the cuives obtained is very suggestive. Fig. 2

shows the main points in a diagrammatic sketch, not drawn to scale, but based on the
paper quoted.

The stage A B represents simple viscous fluid motion when R is proportional to V.

B C is an unstable condition when the flow may be partly simple and partly turbulent;
after C the latter rdgime becomes permanently established. If :he resistance R is repre-
sented by a single-term formula f V', it is clear that the best single power is V2 In the
neighbourhood of the points B and C. It may be noted that Froude gives V2 for short
smooth planks of 2 ft. in length, and it may be presumed that the region .near C was

then under observation. As the length is increased, the best single power decreases to, say,
V1`11 near D, if we take this point to represent the limit of available data. Froude's

* C. H. Lees, loc. cit.
t G. S. Baker, Trant, North.Fai Coaet Inat., loc. cit.
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extension to very long planks is equivaleitt to exfending tile curve beyond D) so that
it approaches the base-line ultimately. Oti the other hanud, the 'analogy with the problem
of flow through pipes suggests that the curve approximate.4 ultimately to a line at i
finite distance above the base-line. In the latter case, the best single power must
increase again at some stage and ultimately approach V2 again. However, it is generally
recognized that all that can be said is that any reasonable extension of the curve beyond

D must lie within certain limits, that in fact being the statement made by W. Froude*
in this respect; we are not able yet to decide between alternative methods.

14. In conclusion a few remarks may be made orn the general problem of ship resist-
ance. It is usual to divide up the total resistance into three parts: frictional, eddy-
making, and wave-making resistance. An alternative method is to think of the direct
action upon each element of the wetted surface; this action may be resolved into a
normal pressure p and a tangential force R at each point. The integrated effect of R
gives the total skin friction, while the resultant of the pressure distribution may be called

the body or form resistance. In the shi) problem it is assumed that the latter corre-
sponds in the main to the wave resistance, together with thatc due to eddy-making of
the more obvious kind; however, in general, the distribution of normal pressure and of
tangential force will be interdependent and will each be affected by all the circumstances
of the motion. It would be of interest to have some case analysed in this way, with the
pressure distribution determined experimentally. This method has been adopted in the
corresponding problem in aeronautics, which is simpler in some respects. For an airship
envelope, in the form of a surface of revolution, the pressure distribution can hbe found
experimentally ; the difference between the resultant and the total resistance then gives
the skin friction.t If there were, for the same case, experimental determinations of the
distribution of velocity over the envelope, it would be possible to compare the total skin
friction with the resultant of a distribution of tangential force k- p v2 taken ovor the ;urface.
Results for submerged bodies in water might. be deduced from those in air by the law

of similarity ; but it would be preferable if direct results could be obtained, experimentally,

for the distributions of normal pressure and of velocity for simple forms intermediate
between the plank and the ordinary type of ship model.

* NV. Frou(le, Brit. Assoc. Reports, 1874, p. 255.
t Cf. L. Bairstow, Applied Aerodynamics, p. 357.
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The Stability of Fluid Motion.

By T. H. HAVELOCK, F.R.S.

(Receimed January 31, 1921.)

1. The following notes on the stability of fluid motion arose from a desire
to use the energy method, introduced by Reynolds and modified by Orr, as a
measure of the comparative degree of stability of' various types of flow under
different boundary conditions. A few exampiles are worked out to illustrate
this point of view: in § 5 a case which resembles the flow of a stream with a
free surface; in § 7 flow which approximates to a uniform stream between
fixed walls without slipping at the walls; in §§ 6, 8 motion with other
boundary conditions. Before proceeding to these, it seems desirable to give a
short account of the method in the fbrm, in which it is used later, together
with some remarks on its relation to the classical method of small vibrations.

2. We shall consider only two-dimensional motion of an incompressible
viscous fluid limited by the planes y = +a. Let the steady state under an
assigned forcive and given boundary couditions be specified by a velocity, U,
parallel to the axis of x. Let the disturbed state have velocity components
(U + u, v) and let the additional pressure be p. Then, by taking the difference
of the two sets of hydrodynatnical equations for the two states and neglecting
squares and products of the additional velocities, we have

au +U + ýE= _12au VU

at a py P
together with the equation of continuity.

It is convenient to introduce non-dimensional variables given by

x= aý; y= aq; ar = Uft;

where U is the mean velocity over the cross-section in the steady state.
Further, we write UU instead of U, and take the current function of the
additional velocity to be Ua#. Eliminating p from the two equations (1), we
obtain

R v+ V --RU" -- 2', (2)

where U" is written for d2U/1b1,, and R is Reynolds' number 2aU/V. There
are in addition the appropriate boundary conditions for the disturbing
function, 4P. The classical method of examining the stability of a given
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distribution U consists in assuming a solution of (2) of the form

cxp. {i(nT+pý)}f.(q). For any arbitrary real value of p, the corresponding
possible forms of f,.(?) and values of n are found from (2) together with the
boundary conditions. The distribution U may be said to be thorcnghly
stable if every possib!3 value of n has a positive imaginary part, and if this
holds for all positive: values of R.

The uisual bouindary conditions, which we shall assume in the first place,
are u = 0, v = 0, or

* = 0 ;q =o: V= +- 1, (3)
From the work of Kelvin, Rayleigh, Orr, Hopf, and others, it may be taken

that the simple shearing motion, U = 1 +7, is thoroughly stable in this sense;
and probably a similar conclusion holds for motion under a constant force or

pressure gradient, namely U -1- (1 -2).

There are various possible explanations of the well-known d(ivergence
between these results and tile ehaviour of actual fluids. In the first place, it

is obvious that the physical properties, whether of the fluid or of the walls, are
inadequately specified in the mathematical statement of the problem. But,
apart from this, the disturbances have been supposed small, and second order
terms neglected. Again, in a system of this type, a disturbance may be
small initially and may converge ultimately to zero, but may be very large at
intermediate times, and may thus give rise to practical instability.

The energy method of Rleynolds is in a different category from these in
that it takes thi mathematical problem as it otands and does not necessarily
involve the actual magnitude of the disturbance ; in fact, it forms a new

criterion or measure of degree of stailelity. The energy of the disturbance
being defined by

E pa 2U2jJ a dý dV (4)

we have from (2) and (3), after integrating by parts,
(IL~ U2l{JU'a? L ~ i f (V2ik)Vdýdi (5)

Here dE/dt means the rate of increase of E in a region whose end boundaries
move with the steady velocity U. We may replace this by Li/at for a region
with fixed ends, and we shall then have additional terms on the right of (5)

denoting flux of energy across these e-ds. The latter terms may be omitted
under conditions which cover the usual cases: namely, either the disturbance
is periodic in ý, or it is limited or localised so that * and its derivatives
converge sufficiently rapidly to zero for = ±+oo. We shall assume such
comiditions to hold in what follows, and references to boundary conditions
mean those which holh au the planes ., = ± 1.
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Reynolds' method of using (5) to determine a criterion of stability
consisted in assuming a suitable form for * and finding the least value of R

for which the right-hand side of (5) is zero. It is usually stated that this
method assumes turbulent motion to be already in existence, and it then
gives a criterion to show whether the turbulencc is increasing or decreasing
momentarily; but this is somewhat misleading without defining what is
meant by turbulent motion. Equation (5), ar, stated above, applies to any
small arbitrary disturbance, neglecting terins of the second order, as in the
ordinary method of small vibrations; further, U is a laminar fluid motion
satisfying the usual hydrodynatnical equations under the given conditiolls.

On the other hand, Reynolds defined U as the mean velocity at each
point, taken over a small region or during a short time, and this principal or
mean motion need not satisfy the ordinary equations. The extra velocities
u and v then play a double part, in that they specify the disturbance, and at
the same time give a measure of the turbulence ; they must satisfy certain
conditions as to their mean values, and then equation (5) holds in the same
form when mean values are used. However, in applying it to find the
criterion for flow under a constant pressutre gradient, Reynolds, and Sharpe
following him, did, in fact, take U to be the usual form, C (a 2 -y 2 ), for steady
laminar flow. But in turbulent flow, although the variations of velocity at
any point are small, yet they may cause the gradient of the mean velocity to
differ appreciably from its value in laminar flow, as is obvious from a corn-
parison of the curves of distribution of velocity across a pipe in regular and
in turbulent flow.

However, it is unnecessary to dwell on this distinction, as it has been
pointed out clearly by Lorentz* and other writers: further, we shall
consider here only small disturbances.

3. Under these circumstances, the energy method has been given a precise
and definite meaning by Orrt from the following considerations:-

If the right-hand side of (5) is positive, the energy of the disturbance is
momentarily increasing. But, for a given velocity distribution, U, it may b,,
impossible to find any function, * satisfying the boundary conditions, such
that that expression is positive, unless It exceeds a certain value. If such lie
the case, this least ,alue of R is a critical value ')f definite significamnce. Tho
corresponding critical dicnturbance is fonnd by taking the variationi of tie
eq uation It U CU ' • d f- i, -2 ff (V 2* )2  

(1. l 7 = 0 , (6 )

subject to SI) = 0.
* H. A. 1Lorentz,' Abhbi ndlungen iiber Thenmi. Lhys.,' vw,. 1, p). 43.
t W. Mc F. Orr, ' Proc. Roy. I riih A cadI.,' vl. 27, p-. ) (1907).
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Carrying out tie variation, and using the houndary conditions (3), we
obtain

4v4r +.2RU' (7)

To find the critical value of' R, we assume first that e occurs in * as a
factor exp. ipt, and then solve (7); using the boundary conditions, we have
an equation from which we can find the least value of R for a given value
of p, and finally we take the minimum value of I with respect to p.

The process has been expressed in a different form by Hamel.* Using the
corresponding Green's function for the equation V1fr = 0, the equation (7)
may be replaced by a linear integral equation for *, of which the required
value of It is the lowest characteristic number.

Returning to equation (5), if dE/dt is positive for any as3igned initial
disturbance, it does not follow that the motion is unstable in the ordinary
souse. But, if there exists an absolute wininmum for R in the manner
explained above, it follows that, when P is less than this value, dE/dt is
negative for every initial disturbance, and must always remain negative.
Thus the system has at least a much higher degree of' stability for such
values of R compared with those greater than the critical minimum.
Obviously, this method does not produce any new information which is
not implicit in the ordinary equations, such as equations (2) and (3); but it
presents part of that information in a different form, so that tie critical
mininimutn of R may be used as a measure of the degree of stability of various
distributions of velocity under different boundary conditions.

4. It is convenient to classify the boundary conditions under which the
energy equation (5) is valid. For this purpose we use an alternative form
derived directly from equations (1), with the ordinary notation

all (P)

We have

+ &v

where ds is a line' elonuent. of the boundary and (1, mi) the normal.
We have specified the conlitions at the end louidarie., and we are con-

corned now with the planes y- = a. It follows that we get the energy

* G. Haniel, 'GOtt. Nachr., Math. Phys. Klawe,' 1911, p,. 261.
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equation (5), without any surface integrals expressing transfer of energy across

the boundaries, with the following combinatiuns:

(i) U = 0, v = 0 ; (ii) u = 0, pYY = 0 ; (iii) v = 0, Pn, = 0 ; (iv) p.Y = 0, Puu = 0.

We may also verify that, under these conditions, the variation of (6) leads
to the same d'iferential equation (7).

5. Most of the fluid motions whose stability has been examined, come under

case (i) of the above. A different case of special interest is a stream with a
free upper surface, the conditions at the upper surface being as in (iv). These
conditions, however, do not lead to simple expressions in terms of the
disturbing function, f; moreover it is not perinissible to regard the upper
free surface as rigorously plane. We therefore, following Kelvin,* replace

the problem by one which is very nearly the same but is more easily
specified; it may be described as a broad river flowing over a perfectly
smooth inclined plane bed, the upper surface being fitted by a parallel plane
cover moving with the water in contact with it. The conditions at the
upper surface then come under case (iii) of the previous section.

We take the origin in the upper surface in this case, so that a is the depth

of the stream and R is aU/,,. The steady state is given by

U = 3(1 (10)

Using this in (7) and assuming * to be proportional to cPt, the differential
equation becomes

d0, (11)

where a = pn, and k = 3iR/2p3.

The boundary conditions are u - 0, v = 0 at the bed of the stream, and
v = 0, py = 0 ct the upper surface; these reduce to

S--0, d2*/da 2 -0; = a-O;

4--0, ,l,#/da = 0; a =p. (12)

Equation (11) was solved by Orr for flow between two fixed plaves with u
and v zero at both boundaries, and it was found necessary to consider only

solutions in even powers of a. We shall require here the corresponding
solutions in odd powers. Writing a solution in the form

* = IS A ,"In!

we have the sequence relation

A,+ 4-2A.+ 3+j{1-(2n+1)k}A. = 0. (13)

Kelvin, ' Mat],. and Phys. Papers,' vol. 4,)). 330.
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Denoting by *k0, *1, +k2, *3 the soltitions beginning with 1, o, O2, 23

respectively, it follows from (12) that the boundary conditions lead to

/ = 0 (14)

where a has to be replaced by 1).
Calculating the coelficients far enough to give suflicient aecuraU3 for our

pt~rpose, we have

*1 = -t4 2a,1/3!+ (3 + 3k) oc/5 ! +(4 + 20k)) 7/7

+(5 + 70k + 33kc2) a/1,) !+ (6 + 180k+ 3660t) al/11 I

+ (7 + 385k + 2029k + 627k) a' 3/ 13! + (8 + 728k + 7832P + 9672Z -1) 15 /15:

+ (9 + 1260k + 240301 + 73500k',1 16929 1) a 7/17 +
*3 = e:313 !+ 2a1/5 !+(3 +71k) a,/7 ±+(4+3:.Q) %"/9'

+ (5 + ll0k + 105k2 ) all/11 !+(6 + 260k + 894k2) 23/13

+ (7 + 525k + 4213k0 + 2415kc3) .5/15 ! + (8 + 952k + 14552k-2

+ 28968k0) M17/17 ! ±.
Forming equation (14) we have

2/3 !+ 8p1/5 ! + 3 2p1/ 7 !+ 128 1 13/9 :'+(512+ 192k-2)p p/1

+(2048 + 2244k2 )p1o/13 !+ (8192 + 19456kL)pl2/15

+(32768 + 139264kC2)p' 4/17 ! + (131072 + 9011V20k2

+129024k 4 )p1 6/19:+... = 0. (15)

Only even powers of k appear in this equation, thus giving a check upon
the arithmetic; further, the terms independent of 1: may be sumncel. Taking
the least root of (15) as an equation for kV, we have approximately

R2 sinh 2p-- 2 p (16)
9P/192 22441)2 19456p4 13926.1pt+ 901120i• 8 . 16

S13! 5 : + 17 ' + -' +19:

Instead Af forming an equation for th. mininunm value of lt, it is simphlr
to find it by trial. We find, with sulfi, ient 8mecuracy, that it occurs near
P2 = 11, and then, approximately,

It = 96. (17)

The corresponiding value, found by Oi-1., for 1lw tin1der .illlilar conditions

but with a fixed plane at teit, jiper !Simrfairpe, is 117. Ve conclud.e then that
flow in an open canal has a low,,M miedegr, Jf staibility than Ilow b 'etween fixed

planes.
Turning to experimental resuilts, the mntutier um.ally uioted for flow

through a tube is 2000 approximately. This was obtained ehiefIN from
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experiments with smooth glass tubes ; a much lower number, of the oriler of

400, has been found fronti metal tuibes. The only available direct, resuilts for

flow in i~n open streami appear to. h)e those given by Hopf,* who found It to

be of the order of :300. These results agree in character with the thieoretical
calculations, which is all that could be expected.

It is of interest to note. that this appears to conitradictai statement bly

Rcynoldst in one of hiis earlier papers. Hie cla~ses separate-ly circumstances
Conuluzive to steady itioti- ii and those coudniwie to unsteady miotion :among

the formier a free surface, anl in the latter solid bounding walls. However,
this opinion seems to be boased on vistia-l observation of eddies causedI by the
wind~ bencath the oiled surface of' water. "At a sufficier't distance from

the windward edge of an oil-calmied surface there aire alwayvi eddies beneath

the surface, even whien tie wvind is light. .Without oil I was uinable
to pierceive any indication of edldies."

This introduces a diflerent p~rop~erty of a botindoary surface, namely, that. of

initiating (list urbances. The nmathe1Ia ticali statemnent ignore,, this property

and sp~ecifies only control oL' the velocity functions :the distutrbances are
supposed to be initiatedl by some extraneous agency, and it is tacitly assumied
that all types of (listurbaniee are equially inolahle. It 11ay, be, for instance,
that thbe theoretical resuilts, for flow through pipes should be comipared wvith
experiments on rougah pipes rather than those withI perfectly smooth waliS.

However, we may conlImdc that at solid b)oundary is condncjve to stabiliity InI
so far' as it ensure~s thatt there is no slipping of time fluid in contact with it.

6. I1 determnining the mnininimun valuie of 11 fr mi the (Iificrein tial eqiuathion (7),
there are only two factors: time distribution of steady, velocity, U, and the
bounda ry conditLions for the dis;turbanice. TIhe comiparison iii the lpie~timus

section, between an open streami and flow betweenm fixed walls, involvedl
changes in both these factors. W~e ninimy seplmrate the ellect of the bouindaiy
Conditions by asso nming the same value of U ats in (10), buit expressing the
property of' the stipposel nmoviimg plane in contact with time upper surface by
11 = 0, v = 0, instead of by r' 0, 1), = 0. To anticip~ate the argument of
the next sections, we shouild expect A value of 11 intermediate betweent 96
and 117.

We have the same equation (11) for 4t, together with *=0, (*doe/d = 0
at a = 0, and & = 1). It follows that only thle 8out160ioS *2 and *a are
involved, and we have

*2d3d r 12(0=0,(14

L J. I1opf, ' Ann. der' Vhys.,'vol. 32, p. 777 (1910).
t 0. ReYOWNod, 'Scielitiie 1'Apers,' Vol. 2, pp. 57, .59i. Sce also A. 11, Gibson, 'Phil.

Mag.,' vol, '15 p. 81 (1913).
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when a = 1). The series for iJ3 is given in §5; also we have

*2 = a2/2: + 2a 4/4!+(3 +5k)A 6 /6 !+(4+28k)a 8 /8!

+ (5 + 90N + 65k2) alO/10 ? + (6 + 220k + 606k-2) a12/12!

+ (7 + 455k r 3037k-2 + 1365k') al4/14 ! 4- (8 + 840k + 10968k2

+ 17880k3 ) al6/16 !+....

The boundary equation (18) leads to

2/4 :+8•2 /6:+32p4 /8!+ 12816/l10 :+(512+ 280k,2)p/12!

+ (2048 + 3136k2 ) p"'/14 + (8192 + 252162) p12 /16!

+(32768+174O8O0k)p14 /18!+... = 0. (19)

The minimum value of R seems to occur for about p2 = 12, though it is

not a sharply defined minimum ; however, with a similar approximation as

in previous cases, we find the critical minimum of R to be 110.

7. It is well known that, when fluid motion through a tube has changed

from laminar to turbulent flow, the distribution of mean velocity over the

cross-section alters so that the velocity becomes more nearly uniform over

the greater part of the section, while falling to zero at the walls. This

suggests a study of the comparative stability when the distribution of

velocity alters in this manner, the boundary conditions being unchanged.

However, it must be noted that we assume the distribution to be a steady

state which has been acquired under a. law of force, which may be deter-

mined from the hydrodynamical equations, so as to give the required form

for U.

A simple form, which illustrates the points in question, is

U = (1 + 1/2n)(1--12). (20)

As n is made larger, the velocity approximates more closely to the mean

velocity, U, over the greater part of the cross-section, while remaining zero at

the walls. The corresponding law of force is, in the usual notation,

X - v(4S--1)(U/a2) 72-2. (21)

The greater the value of n, the more is the field of force concentrated near

the walls, quite apart from the value of the viscosity. The flow approxi-

mates to a uniform stream, but retaining the condition of zero velocity at

the walls.
The usual case of flow under a uniform field of force is given by n = 1.

It is sufficient for comparison to work out another numerical case, say n = 2.

We have then
U = *(1--'). (22)
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Equation (7) becomes

Sd-2-- 1)-*-2k•2.,"•-+3.2*) = 0, (23)

where k = 5iR/8pW.

The boundary conditions are

* = 0; d,/da = 0; o = +p.

Solving (23) by a power series ý_A "n/, n!, we have.

A =+6 = 2An,+4-A+ 2 + 2k(n +l)(n+ 2)(2n+ 3) A.. (24)

As in the simpler cases, it is sufficient to choose fundamental solutions
involving only even powers of a; denoting these by *o and *2 we have

4ro = 1+a 2/2!+ 14/4.+(1+12k)aI/6 +(1+192k)o8 /8

+(1+10321k,) old'/10!+(1+3552k +20160k) •1z/12!+(1+9492k

+ 696960k 2) Oe4/14 + (1 + 21504k+ 8162256k2) ,,/l6 +

*2 = O
2/2!+2'4/4!:+3, 6/6 !+(4+168k10a/8 !+(5+1656k)o'0/10O

+(6+8184k)&,]2/12 !+(7+28392k - 574560k 2) &l4/14!

+ (8 + 789601,.+ 11204352k2) a16/16 '+ (9 + 188496k

+ 10226649609) a1s/18 !+....

From the boundary condition

9"° dj'2ldO9-- d*/d•e = 0,
we obtain the equation

p + 2 p5"/ 3 !+ 8p 15 ! +:I2) 7/ 7 ! + 128p9/ 9 + 5 12p 11/11!

+ (2048+ 129024)1)1 3 /13 ! +(8192+3280896k2 )2 p'5/15!

+(32768+7753296k 2 )pt7/17 :+... = 0. (25)

Using this as an e(tuation for R, we find by trial that the minimum value
occurs near p2 = 3 ; and the critical iminimnum value of I is 280 approximately.

The corresponding value for the ordinary paral~olic distribution (n = 1) is
117. Thus, the critical value of R increases as the tlolw approximiates ,nore
closely to a uliiori1 strcni, without slipping at the walls ; and, in this sense,

the Mn'tion1 becoilies increasingly stable.
8. It has been stated ti it, uider' tile boundary conditions i = 0, r- = 0,

tht-re is throlugh .fallilit,v, in tie or(linairy sense, for simple shearing [notion
and I prtbably ako I;r laminIar flow between tixel planes. III view of the

beaviwir of actinal fliids in siniflar eaiditions, another stggestion has bet, n!

put forward hy l lpf. lie proposes to Uxl~ress the influence of a wall by

making the extra norminal pressure, due to the disturbance, constant at tie

TL. 1lopf, ' Ant. dei Phys.,' vol. 59, 1). 538 (1919).
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wa~ll, together wvith no tangential slipping; in fact, his boundary conditionsa

come tinder case (ii) of § 4, namely ut = 0, 2pyy = 0. With these asstuuptionis,
he applies the method of small vibrations to simple shearing motion between1*a fixed plane and a parallel ixovinig plane. It appears that the motion is
unstab~le for disturbanices whose wave-leingth exceeds a certain valtie; for

smialier wavae-lengtbs it is stalble or unstable accordinig to the valhi'6 of R.

Thits the motion is not thor, a(hly stable. W~ithout discussing how far theqe:

assumiptions expiess the behaviour of actual fluidA and1 boundaries, we may

see how they affect the energy m~ethod.
We shall take the case of lamninar flow between fixed planes, for which the

previotus calculations are available.
The stream fauction *, satisfies equation (11), and the boundary conditions

are
it = 0; -p+2 4 1zav'/y = 0.

Ronm the equations (1), these are equivalent to

u = 0; pvdU/dy-'43a/a1y2 0,

or, in the present notation,

d*4/da = 0; c~rd oe/d& 2k-afr 0; a +P. (26)

Using the solutions *o and *,?, these give

4o (2"- k*2-~2'(#" -2Ap~)= 0, (27)

where accents denote differgi~tiation with respect to a.

Fromn the previous work, this equation involves odd powers of 1C. But k is
3iR/4p-I and we have to determine R in terms of p from (27). It follows that

in this case there is no real solution of the problem of finding the critical

inirmimtun of R.
It seenis probable that it is only those motions which are completely stable

in the ordinary theory which lead also to a real iiiiniinuni for R. The suggestion

may be stated in this mianner: if a fluid motion is thoroughly stable when

conisidered by the mnethod of ,ýnall vibrations appliedl to equation (2) and the

boundary conditionis, then it dso possesses. a real nminiimnuiii value of It found
fromn equation (7) and the bouindary co~iin. It has been pointed out

tha t the latter equation is derived d1irectl v from the former, and it may be
presumed tli~t the mininfium value tif It depen(Is in some manner upon the

rates of decay of elementary vibrations and so may be used as a mea~sure of

the degree of stability of time system.

)IAKRISON A14D SON$S, Ltd., Printer* in Ordinary to His Majefty, St. Murtiin's Lane.
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The Solution of an ildeyral FJuaIion orcurrhng in ,'e)tain
ProIle,,,is (y' 1'iscuoi ll0l(1 Motionm. By T. J1. HIAVl•LOCK,

1. q'IIERE are a few well-known solutions o) prohlems of
Jlk viscous fluid motion in which a solid body starts

from rest anid moves through the fluid under the action of
given forces : for example, the fall of a sphere under gravity
when the square of the ttind velocity is neglected, or the
corresponding sipjlified l probhlem of the fall of a plane in
which this limitation does not arise. These l)roblems lead
to integral equations which ii.ve been solved by an applica-
tion of Abel's theorem t. In these cases the fluid was

t Ilog,)io, Rend. d. .uecd. d. Linr'vi, xvi. pp. 613, 730 (1907) ; Ba'sset,
Quart. J)uran. of .Matii. xli. p. :309 (1910) ; Rayleigh, Phil. MIag. .. xi.
. 6197 (1911).
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supposed to be of infinito extent, mnd it seemcid to hýe of,
initerest ti) so] ye- similar cases of ulotii loll~iiie tile fluid hioe-
a fixed oumter' boundtary. Il tilte following paper consiulera-
tionl has been i limii e I to tile lllotiofl of I la lie bet ween fimed
parallel planes anid to slimillar prohlemg with cN] jil~ers, tile
ordinary hydrodynamnical equations for nonl-turbuflent motion
not involving terms of the seconid order inl such 2miditioiis.
The results are perhaps not of practical iml),2rtaiine, but,
apart fromn tho particular prohldens, the ineth nld of soluition
may bo of interest. Stating tile p~rob~lem as inl the cases to
which reference has bieen mfade, we are Iell to all initegrla
equation otr Ioissoiis, type inl which the mlicletis is ill hiihiiite
series of expomieltials. This equatitoliCn c ll~ be I soved lv fol-
lowingo a miethodi suggested Ly Whittaker *; tihe solvingo
funcetion is ol itaiinod ais an inifinite ~eries of ex ponieit:ils, the(
exponlelits Ileillpg tile roots of a certainl equationl. It seemils
that examples of this muethod0( have not 1 'eii given hitherto,
though eq nation~s or this typje Thumild arise niat urally ill
various physvical prohlems. Thle, particular caises wor'ked
out, ill (letaii are thle fall of a thii minaterial ilaiie ill a liquid
lioutideI b)y two fi xed parmalle wc alls~, a iiul the Ilot ionl of a.
cyli tidrival shell til led with liqjuid alid acted( onl h I a vistalit
Cc tpl]). The saime mlet hod gives tile soluitioni mlivii thle force
is anil ýssglled functioni of' the time, ior ilit a mice ii ll oilr-
niatiiig Force wvhichi is sudldefid'v a ppiciil. iMot loll ill all
ilfilhmite fhlid may he ci inclded iii thle scheme by replaecng
the inifi~iite sivrios of expollenltials iv Colrespoliuidim illfi Ilite
integrals. Tile case of systemls with a na~tural period of
oseillatiii wvillI be considered ill a subseouelit paper.

It wvill be clear, fromi the examp~hles, thiat the meetholid of
slolmtiomi could be formiulated iii aeneral ruiles for obtainhiiýi
the sol vim, ftitict.ion. Th iis has not beeni attemliptedI here, as
,illI exallillaztiOn of convergence Nvoihld lbe miweessa r to esta-
lisli ally greneral thieoreml. A know ledge of' tie differential
equiatioiis and tile i~ouimdary and miiiiial coulit ions eniables uts
to verify the results which are given ; iml tile,,,e I-ellumlstances,
of' course, they cali he olitaiiied by oth~er molictls withiout
diff thelt~y. However, C'here are probiably other physical
lprollemýl, inl whichli lei coiiditions, are miot so completely
kniowii, whose statement leads to an integral oqilatiofl of
the, saino type, atld its sluhtiou cani ho obtained ill Ohe samell
mitatuilier.

2. tonsider laliiuiar flunid motion betwvecn two fixed pdaiies
x = ± h, tile fluikA velocity being paralltil to Oy. Let tho

*F.T'. Whittaker, Proc. Royal Socy. A, vol. 94 (1918), p. 367.
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lalae ,t'o,,/ Ic ;I thin rigid harrie r which i made to move
parallel to 0,/ with 1 velocitv V't).

Since the e~qiu tioi of fluil motion is

ý?. = V 1." " . (1)

with the boundary conditions c=0 for a.=h and v= V(1) for
x=0. we may write down the solution ýis in a similar problem
ill the Conld(uction of' heat ; we have, for 6 >0 and t >0,2' " , ?r A' 0 \dtV(,T) A•"' ',l , '-2

The frictiomal foree, per ulit. area, on the plane of yz is
lie valuo of 2,Lj•rl/x,) for .'=(), counting b1th sides of' tie

1p'ale if we suppose the p'allo(to stai rt from rest, so that
V -(I) -, this gives, after iicgrating by parts,

(2/,-<h) VN (r) I + e A 1T.. (3)

In thle clays of plrobleis we are considering, V(/) is the
fim ti,, to he d et, ','i,,ed and it is the forcus on Iil(. plane
wlhiih are gi eii. As a first example, consider motion tinh r

v. Supposo thait the plane of',;t is velical and i hat. it
Iam :1 Illass aY- per urit area ; we requir'e tile Iliatio ol ' tlle
pihlie as it falls uder gravity, starting Irom rest al!d having
i: x.d paraIhlel walls at a li:i4:ticeo 1 on citlivi side. Using (3),

the equation of motion or the plan-. can bt put at once into
t hi folti

V'(t) +(21-/oa') N(7 V f1. +-• 2 e- (IT=P. (4)

This is an integr.d ev,i,:tion of' loisson's type, which can be

solved for V'(r) il I lie f':lhwiug manner.
3. Ill tie pa'l'r already quoted, W\hittaker considers an

eyuation
4,(.,')i+ 0'r.,)K,( I' - i),s=/.'(d), ,()

in which the nucleus is the sum of' p exponentials, or
K (X) = 1)1 -'+ C ) -+ ... +v:. V

The solution is oltained as
0 (d') =f(,,'r) -- f•.(s) K (,v-- s) ds, (7)

where the solvinig Iunction is also a sum of p exponentials, oe

ý (')= A Bet'r .. ... + N e T. . (8)
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Ii is sho NAI IthII (b(a') = K(.') a11 ft11 ) =K( a') s=K (. ,I'v S i I I
Ivlnee hv .•t1:;tit utii a ld oi , sijht, ting coe iciet s t si tilahr
exPOliieVItia Is, it is 1,u01 :1 thIt a, I/,ý, .... v1 art the routs of, lim
Shgehiraic equilatioln

P QV
-p-P-+ Q! + .... + + - + 1=0, (,
d'-] .t-( d' I

whlIile the coefficients in K(.zr) satisl'y lie ejuations

A B N- + - + + +1=0

• • • • • ° ° • • . ( 1 0 )

A B N,-+- " -- + .... + + --- +1=0.J

The solution of (10) leads t.

(-- 3 )(a- Y).- -...
(a - _ (a,- v,) ,, ,)..(,-,) . )

u,-,ff-)..(-,,-i)

Before proceeding, we may note alternative forms o' tlhcse
results which are of use later. If %% e write

F (,v) =- (x -p,) "(.e-q)Q.. . (x,.-,.), (12•)

the equation for the new exponents a, ,8, y ... is

F'(x) +F(x) =0. . (13)
Further, if we put

f(x) - (x--a)(a--,8 ... (.v--v)

ald 0 (.') =(.r- ) (x - q) ... -),

the coefficients in (11) are -¢(a)/j'(o), where a is a root
of (13).

Whittaker remarks that if Ote number of exponential
terms in (6) is s4ipposed to increase inlldelniiitely, a theormni
ap;peals to he indicated, namely, that in the solution of a
l',,isson's integral equation whose nucleus is exlressiblh as
R Dirichilot series, the solving function is also expressible
as a )iiichlet series, but with a different sot of exponanis
for thle oxt)nentials.

4. lReturniug now to equation (4), we see that it is an
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eoidn;ll' or' such a thorem ; without attompting any di•(eI1-
'4:mI of tl1l, general tl (,r mil, wo( J)I'Oe lod to solve (4) (dire(ctl y

il tho linc,. inLdie•atd ill equations (9)- :1). Ill tile nota-
Am)11 (or these O•( :iOll.i, wv lIunv4 'lOlil (4)

1)=O, q=-7rv/h2 , r= .2 2 V/4 2,

1'= 24h, Q=lt= .... = ,l.o-h,

FQu:(tion (9) (ecomes a transcendental equation, narmelv
S-oth + 1=0 . .. . (14)

The roots of thi.. e((11:tio, aroe negative, and it is (1onvonfiIt
to writp ,= - vX2 //h, then the values of X are the po.siti y
roots of the equation

X tan X = 2phl/o. ...... (15)

UTsing A,, A2, -. hor the coefficionts of the solving function,
equations (10) hbecouie

Aj2  ± A3 + AX3 -o (1t)

where n= 0, 1, 2, . and X1,,X2,... ar, the positive roots
of (15).

Assuining that a function f(x) can be exlpanded, ill tie
range - <x< 1, in a series

Q(x) = 1 1 cos Xa,

"WO have
-- .f(x) cos Xx tlx, (17)

X + sin X cos X I_

where X is it root of (15). Taking .1/(x')=cos n~rx, we obtain
the set of exp~ansionis

1) =iýi X 'cos X

"( X + Sill X S X))( X •(1 n''$)

iHnce the solution of the set of equations in (16) is
2• X,• ,•n cox X,. 4,u X. 19

A,.= -~X2-sill- __ _

,. 2 (X.,.+ si t X, cos X,) - h X- I- + Z,( I + /.)I

where A = 2 phl/o. These results can also be derived directly
i)y extellniing the forms (12) and (13) to include infinite
product1s.
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Suiistituting in (7), we have

,IV 4/u.,i X2 -•( .. •

4t = - a , T,+ A,( I -t A,.)

4- - X.-t-(1. +/-)

the trlis ihdeplendenlt of t eali'1lling out on sunimathn.
The velocity at any time is given h"

4,pl=:ý V I -- e-' A2 (21)
O . -__13 X" I.• v, +1 Z.( I "+ 4.') . " , - ( . )

It can b~e verifie.d hy sum mation that the limiting/ steady
velocityV has t he vn iOhl2t. The fluhi velocity at unY
point can bo ohtained by suhstituting V from (21) in (2)
anId re.,Iucing the expressions, but it is. of course, Sinupb r to
insert suitablo functions of x directly in (21) ; we obtain

.IMA ,. _.-)_ 4Thp sin{ X(i--X'1,} (22)
ý= : 1- t, Grp -X2{X,2-+k~l +/.)}.sin X'

In this 't(ilulI lirohmni the result caln also lie oltinod
from th, dilfferentit'al miu.ation together with the hIoundar'
and initial coniil ions, Iz as,,qmlilig 111e exiktelce o1' a
limiting Athadv state. In th.) preceding analvSis til
existence of a final stead(y state is associated with ithe oceir-
rence of zic' as one of the exmonents in tie nucleus otf the
integral .quation (4).

5. It is inioresnnng to deduce the ,notion in an infinite
fluid from these results. In solMin1 g thks case directlI',
Rlayleigh obtains the equation of metVio as

(IV + ,•, ' I(t-'=) ( .....IT (23)

Applying Abel's theorem, this is reduced to an ordinary
differential equation whose solution is given as

47r1ApV/grg' - 4ipi--ro*,.i- 2aeIo P'' a e 'du. (24)
,. 2pi.tti,/

We obtain (23) from (4) by giving the nucleus its liliing
value, sinceo

]i (~f ii)~e- ri(t-r~hii = (2pzA/a'7r) e'0 2
(1 - )de
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In tho salme way, the solvinrg funmction has a liiiti ing uform
which follows directly from (15) and (19), namely

aPr f 4p--r~ j _c t2 + 4 p~t V1 • •

Using this value as before, we obtain the same result (24).
6. It is clear that tihe same procedure is sufficient when

the applied force is any assigned function of the tim1e.
For' example, if the accelerative force is a cospt and the
motion starts from rest, we have

d(V t

d- =a cos pt-- acos PT. IAe e-,,(t-),'-2 T . (25)

where the summation extends over the roots of the same
equation (1.5), and the cooffi,:ients are given by (19) The
solution foilows on complet ing the integrartions ; it co!ti5sts
of a periodic ,motion in di tlte'nt phlase froum t','o -I:pl, ; ed
force, togther with the disturbance due to taking into
account tile initial conditions.

7. A final example may ho taken from cylindrical motion
when there is no limiting steady velocity. Suppose tho
illotiol to he s\ 'nIimetrical roul!,l Mild axis; then if r is dis-

taiirce fronm tine axis and v is thle tuind velocity, supposed
pi 1ir'ndiceular to the radius vector, we have

Consider tile motion of a hollow cylhinder, of r.adius et, filled
with thle liquiid. Suppose the motion to start front re(,t ainil4
let twe velocity of the cvlihndr I~e 12(t). Theri it milay i;(
shown tlhat the anguilar velocity of the fluid it viny tine is
given by

•= t , 2--t•l"a e- (I-T"" ',- (27)
0, l )l p. (,

where the summation extends over tile positive roots of
J I(p)) =().

Let the clii drieal si:ell stirt froth rest under the aietion
of a Constant eouple N, and let I be its nromnent of inertin,
both quintitivs being for unit le,,g:h ailong the axis. The
retarding coupile du:u to 1luid friction is thie value of
"27rg)r•),o/Br when r==,. lIlence die equation of motion
of tire C) lindc,' Ui

!') ) 4 (47rpA( 2 Il) 11'(Tr)IeT=2-l"4 tlr NI1, (2$)

1 /3
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;i1 Certain J)roh/'Is '() FI" i s F/1'i.d M ,,t4 ,l. 6;27
wheire tire s111mmat1ionl exhi-1111 over1 the positive, roots of,

Tho e(quation for th,, exp)olents ol tho -olvino. flinction i.-

4___ + , 1 . + " (. (34)

W ri tinl ,, = -- v-/ , e t1 11:tion (3()) red lceS to

/,J•(X) 4- ýL~t ) = (0 . . . . . . (

where k-= 27rpr' :1. 'l'hie eoiiatiun c'an he deuliccl from (29),
hv h)'arithmic differentiation, as inidi'ated i (12) aind (13).

Tie e(ludati(,)s fol.r te c oelhieits of (hIe solving u'liction

A1  A,, A, v
,- A + .__ . . . -- + do (3)0pl --/I)-t"IL -1:a

A, A,,1 A 32

X1 2  " + + +
' X - -/'2 X32 /2

whecr¶ PI) P2, ... are the roots of (29), and X•, X. ... the roots
of (31).

To solve these equatim0.s. we may ndopt the same plan as
h,,fore. Assmnning that a function f(r) can Ie expanded, in
the range 0 < r < 1, in the series

f(r') = X BJ ,.(Xr),

the gummation extending over the positive roots of (31)
we have

2
+k(k+!)}J 2

2 ( (
Now take /(r)=J 2 (r) where = 1 a po2ii ivo root of (2.)

after obtaining the expansion mid putting r= 1, we arrive at
the result

2k1k2. . (3,4)
-+ A-.(k +4 )}(X2_1-,)'

p being any one root of (29) and the summation being with
respect to the rovts of (31).
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;28 Prof. T. H. Havelock

Conparing with (32) it follows that

A,=2.'X.,2/a2{X,+k(k+ 4). (35)

With this expression fur the solving function, (28) gives

J!I N - 2k N ( I ~~ 2 (Y~ T .. (36)i= I - ,+k (k + 4)

Bly expanding r' by (33) and putting r=1, it can be
shown that

S2(k+4) (37)
1 x2+ k(k+4)........

f(arryihg out the integration in (36) and using (37), wefind
(M N 2kN e - (38

(it -+ -rpa+ + I + k(k + 4)

The angular acceleration has a finite limiting value in this
case, the same as if the cylinder and enclosed liquid were
rotating like a rigid body. We notice that in this case zero
is exclu&d from the roots of the equation (29) for the
exponents of the nucleus.

Integrating (38) we obta'n the angular velocity of the
cylinder at any time ; then, using the differential equation
(26), we may coniplete the solution by writing down the
angular velocity of the liquid. It is found to be given by

N r r k+6}
+ 12 I a 4 •r +8Y 12(k• 4)

2kN anJj(Xr/a)e-PA t/"2
I ZIrx2{x2+k(k +4)}Jt(X)"
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(bi the Jbewft of Owillalwn ofa Zodid 1Tha''j in (iI ViSowms
¶F/did. By T. 11. fiAVEE~oCK, L.R.S.

1. Edeeay of rotational oscillatio n of it t-vlin(
Tnor at sp)here in it viscous liquid is it Nvell -k o w

proIbl em in I ly drodv nani i-s ; amlong 11101,0 Nccehi t rt,;ea reles,
Ne It itie mI ay Ito mxade ito thew work of \Ve rsc I ifcltiel -
(Costex l, anid othecrs. III tho~c. pa p r-S it i., jcmrxakeri Ilat

i ft. E. V'ersvi ti~tflt Ams~terdami Iroc. xviii. 1p. ,-10 (116 t); ;lý

1 ). Go~tcr, Phil. Al'g. xxx~ ii. p.5S7 (19110.'



629 Prof. T. II. Hiavelock on the DeTay of Oscillati,,

the ordinary solution of a damped harmonic vibration re(quires
modificatic when the iiniti a conditions are taken into
account, but no explicit solution ot' this nature seems to have
been given ; in certain expcriinental refinements, the dis-
turbance may be of soine importance. In the following
notes, I have worked out in detail first the simpler case of a
plane oscillating between two fixed planes. The I)Iolclm
can be solved by various methods : by normal functions, or,
more readily, by operational methods. I have chosen, to use
it as an example of a type of integral equation, for which
reference may be made to a previous paper*. In this case
the equation of motion is an integro-differential equation of
Volterra's type, and it can be solved by a repeated al~pli-
cation of Whittaker's method which was used in the simpler
cases ; the solution may be of interest apart froom thi- parti-
cilar problem. The results are then verified by using
Bromnwich's meliod of complex integration. Fimally, the
solution is indicated for a sphere oscillating within a fixed
outer sphere, and the results are discussed in comnexion
with the experiments to which reference has already been
Inlade.

2. Suppose that a viscous liquid can move in laminar
nmotion between two fixed planes x-= +h. Let the plane of
olz be a thin rigid barrier of mass a' per unit area, and let it
iic acted on by an elastic force parallel to Oy such that, if the
liquid were absent, the plane would vibrate with a natural
period 2-ir/p. Further, suppose the motion starts from rest,
with the plane displaced a distance a from its equilibriunm
position. The equation of motion of the plane is

ad•. _ 2,,('•v) -,,.,=pgO'
Sdt" a-x-] .. 1

where v is Cie fluid volocity.
Now i! ide plane of yz has a velocity V(t), the fluid

velocity may be wr,'tA,,n in the form

2 - y ,/2 9,s T"v= :4 T, e sin V()e"'," . (2)

Taking the value of bv/•az for x=O, integrating by pa,-,s
and noting that in this problem V(O)=0, equation (1) gikes

d J'y 'I S.td 2 , L 2,
2  d! d. l+2 e- "'jr•••',.Y=O. (3)

* Sumpre, p. 0320.
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'Ihe( iii]icos a are tile rook of the oyI~tatien

C1',01vii er if' Nve form the fiii ctions

it. Illv be lP lhwh that tilt), coeffictiets of the Solvingi fuinction
are given iiy

NAlier(' 9 is a root, oif(). It should be notedc that, if p, is
z"I'ro, 11114 N"v Write *fr(.) =.(1 -IV 1)2) . . . (-xp.te

A = -4r(-L)/I1Pt'(-) ......... i

W\e sball as,.iýuie thint thie,'.o restults ]to](i inl the limi!it when~t
the numbnerio' w: poiieiltiai terms, ilecoiiie infillite. L"liuationf

3~) thenl colnie 11ndeu thisi formu, exceplt, that it, is an) illtegrU-

4i t1"'ronlti-1i ejiiut ion. 1L Jutatioii (8) for the Ce.,poilunlts of the
SOli ihig fulletiol -i ves, on1 suttimaiitie!),

2t, hol 4- 1=........(12)

AIS'O wo hiav-'

0(.r) =C0Sh (hi!, v¼ý + (qsi
2 ~inlil (l.,/iA)
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631 Prof. T. 11. llavciock on the .Decay of O(scillatim?

Tie method of formation of 0(.,) is cloar from the cyta-
lions for a finito number of terms ; multiply the left.hamn
side of (12) hy •r(x) and a factor to make the value unity
for xv zero. From (11) and (12), we have

A=-,+ -.

Writing tf.e roots of (12) as a=--v'X2/l 2 and collecting
the results from (6), (12), and (13), the first step in the
solution of (3) gi.ves

-d-i12 OIt f- -- 0 x 2+ k(l+ k)

where the summation extend(s over the positive roots of
X tan X=2ph/'o-=k. .. .(5

Following the method of reduction for this type of equa-
tion*, integrate (14) with respect to t from 0 to 0, using
Dirichlet's formula to transform the order of integration
of the last term. Since the initial value of dy/dt is zero, tills
leads to

-- -- 10--- a fYO" XX2 + k(,l+k)dr" (16)

Integrate (16), in the same manner, with respect to 0
fr,)n 0 to T; finaily, for convenience, replace T by t and
t by T, respectively, in the result. Then we obtain

"~YT) •-p' /Ph• a. (17)

+I/ F9k4 - V X21X2_ +___________

The solution of (17) can be completed by means of (6),
(8), and (il). The new exponents are given by

aph+ 2)l•hx ph ,h X2JA+k(l+k)t(.+VX2/I'.)+1=°' (18)

Resolving the summation into one of simple partial fr'c-
tions amid using the properties of the roots of (15), this
equation can be reduced to

2X2+ coth ii-+ 1_=0. • (19)

Voltterra, 'l_-ons sur les llquations 1nt6grales, p. 140.
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of a Solid Biofh/ l (i laisoous FIlid. (32

fn thie previous notation, we have

* ( X) = X Co h 0 + 2 p siuIII 0( 2 0)
~ (20)

-\X) + f 'h; s i n h l -! + 2 / c o shehs

the fbrmation of the L.itter being clearly indicated in the
redulction fromi (18) to (1D). The coefficints of the solvin i

finction can now be formed by (11). Finally, stistitutimy]
in (6)) and carrying out the integration, we arrive at the
result,

3/-4gp~ a • .... .. . . . .aeaf

oh cz-- (2/•h) 1 + 2ph,!o)a, + ' p ,' .. (;•p2alah + p4

(21)
tbh summation extending over the roots of (19).

3. We may verify the result by other methods which ara
available in this case. We choose Bromnwich's mnethod of
complex integration *, referring to his paper for the gener:il
principleE, and writifig down the results briefly for the
present problem.

Suppose the fliid velocity and the displacement of the
plane to be given by

V . eat da; . 7 ealtda; (22)

where u and 77 are functions of a, and the paths of integration
are in the plane of a complex variable a and enclose all the
poles of these functions. The diflorential equation of fluid
motion, 6r/l.t=vb 2 /bir 2 , with the conditions u 0 for x=h
and u=dq/dt for v=0, gives the solution, for x positive,

d= -u a {i•( - .)v . (23)- dt sinhn (- h/l) 0)

From the boundary condition (1), after introducing terms
due to the initial eon'ditions y=a and (iy/dt=O for t=-O, and
using (23), we obtain

aOaq+ -- a--2 coh-aih + (rp2=.aa+ 2  oth- ) a. (24)

Hence we have

1 fa{a+(2p•q-v6) coth (hai)h, )e''da

Y 1rja2 + (2 ,ax'/rvl)coth (/`z/i) +p 2  (25)

Forming the residues of the integrand at the zeros of the

* T. J. I'A. Bromwich, Proc. Lond. Math. Soc. xv.p. 401 (1910).
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633 Prof. T. It. Havelock on the I)eccaY of Osfilldion

denominator, we obhtain tfie same solution (21). Th e com-
par'ison brings outt the connexion between the mut]hodI of
solution of the particular form of integral equation and the
use of normal ft'wtions in dynamical problems. The latter
kiethods would not be available if we had not a complete
knowlhdge of the differential equations of ihe problem : for
instance, if it were stated directly as an integro-diffcrential
equation like (3) in some problem of 'hereditv.'

4. The nature of the roots of (19) may be studied most
easily by graphical methods, or by using the form (18) or
equivalent expansions. It appears that,, leaving aside the
possibility of mnltiple roots, there is an infinite series of
real negative roots and, in addition, a pair of roots which
may be complex, or real and negative. In the latter case
the motion is aperiodic; in the former, the two complex
roots give the damped harmonic vibration while the re-
maining roots complete the solution according to (21.) for
the given initial conditions. In the theory of determinations
of viscosity by oscilliting cylinderh or spheres it is usual to
assume a damped harminic vibration, neglecting all the other
ter'ms.

Versehaffelt remarks that for a motion that is not purely
dampged harmonic, the proportionality of the resistance to
the velocity no longer exists, and that it would then probably
be impossib)le to establish a general differential equation for
the motion. We have seen, however, that it may be cx-
prossed by an integro-differential equation as in (3). It
seems that in experiments under usual conditions, the final
state cF a damped harmonic motion is practically reached
aftbr a comparatively short time (a few minutes).

With numerical values of the usual order, it is e.9sy to see
that the lowest real negative root of (191 is mucd, larger
numerically than the real (negative) part of the complex
roots. The matter would require closer examination if the
motion were ent'rely aperiodic,° as in some experiments.
In the case of a sphere making oscillations of finite alipli-
tmie, Verschaffelt has studied small damping effects due to
approximations involving the quadratic ternis in the hydro-
dynamical equations ; this introduces dampin~g coefficients
of' three or five times the first approximation, and it may be
that in such cases the purely aperiodic terms in the solution
should also be taken into account.

5. It may be of interest to record the complete solution,
neglecting quadratic terms, for a sphere oscillating in a
liquid enclosed within a fixed concentric shell.

Lot wc be the angular velocity in the liquid, 0 the angular
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of a Solid Rody, in a Visc',,s Fluid. (13.t

disjpl;itelmlt of tho splhere, ,t it.i radius and I its moment
of iIIri.tia ; mii let 4 be the radius or tho fixed outer spliere.
Thou the equation of motion of the rotating sphere is

1- - •k~r.' ,, +t,2jo= (26•)

with 0=0o and d9/dt=O for t=O.
1n the fluid we have

-, -V b , CO ,, 4.. (27)

wilth o=O rb, and ui(10/dt for r=a.
Using the method of § 3, we write

Io" 2 e"-'.. e da ; 8=2i ed.()

Then equation (27) gives the solution
3: ,10 k, ,- r.) cosh• fk•b- r) + (k•/,,,- I ) ,ih { k.(b ,.

= t k(b-a) cosh {fk(l -a) } + (.k2ba - 1) sinh {Ik'(b--a)
S.. . . .(29)

where k =rA3/u.
Modifying (26) so as to take account of the inititil con-

ditions, we have for n the equation

whereq (a) = () . . . .. . (30)
wI tore

1()CLa2 + Spmu -a~ + Ip,2 + .1'n-pa 5, 2

bk eosh k(b-a)--sinh k(b-a)
X k(b-a) cosh k,(b-a) + (kub- l) sinh k(b--a)

F(ce) aI + 8 + 17rpa'a
hk cosh k(b-- a) - sin h k (b -a)x k(I,-a) cosh k(b--a) + (k2ab- 1) sinhi k(, -a)

Thus angular displacement of the sphere is then

S C (a') eat dot= OOY!IF(Oeat, (31)
-7i AIX) J,(00)

where the summation extends over the roots off(a))=0, and
it is assumel that these are all simple roots.

In practice we may usually separate the roots into two
classes : first a pair ok roots wlhuci may be either complex or
real and negative, then a serios of real negative roots in the
nt1ighbourbood of - 7r2 V/(b -a) 2 , -47r 2 v/(b -a)' and so on.
Il deducing the foim of (31) for a spihere in an infinite
liquid the sunm of the ternis froin the latter seriw, of roots
must be replaced by a eorrespondiiig intinite integral.
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The Effect of Shallow IVater on Wcave Resistance,

By T. H. HAVELOCK, F.RS,

(Received October 28, 1921.)

1. Tho ,;Yneral charaG'or of experimental results dealing with the effect of
shallow water on ship resistance may be stated briefly as follows :-At low
velocities the resistance in shallow water is (greater than in deep water, the
speed at which the excess is first appreciable varying with the type of vessel.
As the speed increases, the excess resistance increases up to a maximum at a
certain critical velocity, and then diminishes. With still further increase of
speed, the resistance in shiallow water ultimately becomes, and remaims, less
than that in deep water at the same speed. The maximum effect is the more
pronounced the shallower the water. For further details and references one
may refer to standard treatises, but one quotation may be made in regard to
the critical velocity: "This maximum appears to be at about a speed such
that a trochoidal wave travelling at this speed in water of the same depth is
about 1¼ times as long as the vessel. . . . It was at one time supposed
that the speed for maximum increase in resistance was that of the wave of
translation. This, however, holds only for water whose depth is less than
0"2 times the length of the vessel. For greater depths the speed of the
wave of translation rapidly becomes greater than the speed of maximum
increase of resistance."* In a recent analysis of the data, H. M. Weitbrechtt
c.cpresses a similar conclusion by stating that for each depth of water there is
a critical velocity, but that the critical velocity does not vary as the square
root of the corresponding depth.

It should be noted that experimental results are for the' total resistance.
If we assume that this can be separated into three terms, which di, simply
additive, namely, eddy, frictional, and wave-making resistance, it must be
admitted that piobably all are affected by limited depth of water. However,
the main differences are due to the altered wave-making, and the general
explanation is to be found in the fact that there is a limiting velocity, V(g/t)
for simple straight-crested waves on water of depth h.

Leaving mside the difficult problem of a solid body towed or driven through
the water, we may study the allied problem of a given distribution of surface
pressure and the associated wave resistance. Previous calculations 6f wave
resistance have been limited to a line distribution of pressure, involving
*D.W. Taylor, 'Speed and Power of Ships,' vol. 1, p. 114; also G.S. Baker,

'Ship Form, Resistance and Screw Propulsion,' p. 134.
tH. M. Weitbrecht, 'Jahrbuch d. Schiffbautech. Gesell.,' vol. 22, p. 122 (1921).
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500 Prof£ T. 11. Havelock.

therf fore, only straight-crested parallel waves and so emphasising the connec-
tion between the critical velocity and thot of the wave of translation. In
the present paper I obtain an expression for the wave resistance of a surface
pressure symmetrical about a point, and moving over water of finite depth.

The result is in the form of a definite int*ýgral, which has been evaluated by
numerical and graphical methods so as to give graphs of the variation of
wave resistance with speed for different values of the ratio of the depth of
water to the length associated with the pressure distribution. The graphs
are of special interest in the cases intermediate between the two extremes of
deep water and shallow water. They show the double effect of limited

depth, in loweriiig the normal wave-making speed of the ship and in
increasing the magni tude of the effect as the speed approaches that of the

wave of translation. The results are discussed in their bearing upon the
exýperiimental results which have just been described.

2. In a previous paper* I worked out the case of a symmetrical surface
pressure moving over deep water. The present analysis is on exactly similar
lines, exc~pt for suitable changes in the expressions; it may be sufficient,
therefore, to set forth the calculation briefly, referring to the previous paper
for further detail in the argument.

Take axes Ox, Oy in the undisturbed horizontal surface of water of depth h
and Oz vertically upwards. For an initial impulse symmetrical about the
origin, that is if the initial data are

poo = F (w), ý = 0, (1)
where M2 = X2 +y2, the velocity potential and surface elevation in the
subeequent fluid motion are given by

pO = Jft (1) cosh ic (z + h) sech ch Jo (xw) cos (ict) x dx,

gp = f' (K) J, (xv) sin ( JVt) K2 V d, (2)

where V2 = (g/,i) tanh Kh,

f (ic) = fj0 F (ac)Jo (Ka) a da. (3)

We obtain the effect of a travelling pressure system by integrating with

respect to the time. We shall suppose that the system has been moving for

a long time with uniform velocity, c, in the direction of Ox. Transferring

to a moving origin at the centre of the system, we replace x in (2) by x+ct,
and we find for the surface elevation

pýC- 1 2 4-dt f (Ac)Jo [x{ (x+ ct•)•-y2}J1/] sin (xVt) ,c'Vd, (4)

S'Roy. Soc. Proc.,' A, vol. 9 5 , p. 354 (1919).
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where f(K) is found from the assigned p)ressure distribution, p = F(m;), by
means of (3). The factor exp. (-Jo/t) serves to keep the integrals deter-
minate, so that they give a solution which corresponds to the main part of the
surface waves trailing aft from the moving disturbance. It is to be noted
that ultimately p is made zero in the final results, and it is only retained in
the intermediate analysis to a degree sufficient to attain its chief purpose. It
should be stated also that all the analysis is subject to the usual limitation
that the slope of the surface is supposed to be always small.

We take the wave resistance to be the resolved part of the pressure system
in the direction of motion, or

R = (Fm) dS, (5)

taken over the whole surface.
The disturbance (4) may be analysed into plane waves ranged at all

possible angles to Ox. Substituting

7rJo[K{ (xK -ct) 2 + y2 1}12 ] e x CiK(x+ct)COB4 cos (cy sin 0) d4), (6)

we can integrate with respect to t, and obtain, after rejecting superfluous
terma in a,

Csi (KVt) V sec2  (7
KOs2 -dg sec 2 0 tanhAh + ittc secq. (7)

Using this in (4), the surface elevation can be expressed in the form
'/ , K (x cos •+. sil 4))
2-/ec (1 f () tanh Kh Kc2 -- sec2 4) tanh Kh + i/yc sec cO

e-iO(rXcosO+Y sill 4) )8)
+ Kc--g sece2  tanh Kh--ijac sec dK (8)

3. We simplify the calculations by specifying the surface distribution of
pressure as

p = F (w) - Al/(12 + 02)•2/, (9)
where A and 1 are constants. It follows from (3) that f(K) = Ac-K. Now
in (8) consider an element making an angle 4 with the axis O.r. Change to
axes Ox', Oy', given by x' = a cos 4+y sin 4, y' = y cos 0--x sin 4. Then the
integral with respect to K becomes

Igo eitXX1
KC-' tan~l /cb k'd0 {Ci2--g sec2 4 tanh Kh + ilIC sec -

Jice~+ tanh Kh an ih
+ -g sec' 4) tanh h--iUc sec } dc. (10)
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As in siinilar plane wave proble:ms, this integral can be modified by ijte-
grating round a suitable contour in the plane of a complex variable ; the
expressions then divide into two types accorolin,, as the integrand has or has
not a pole within the contour. The surface disturbance corresponding to (10)
is seen then to consist, in general, of a surl'fae elevation symmetrical with
respect to Moe line x cos do +y sin 4o = 0, togeth(er with a regular train of waves
in the rear of this line; but the lat~er part only occurs if C2 cos 2 o<gh. In
evaluating the wave resistance by (5) for the symmetrical distribution (9),
we see that we need only consider the regular train of waves. By calculating
the residue of the integrand in (10), collecting the iesults and finally making
p, zero, we find that the regular waves, when they occur, are given by

47rAc2K2eKI sin (Kx')
9 SeC2 4) (c0 - gh sec2 0) + (1'

where K is the root of

IC 2-- g sec•24 tanh Kh = 0; gh sec2 4) > 02. (12)

From (5) and (11), the contribution of this element to the wave resistance is

47'Ac2K3 eC- cos 0 Al cos (Kx') dx'
g sec2 4) (•2 -gh sec2 4) + •, •_6 _ (x'2 + ?'2 + l1)3/2

47r2A 2 3e--2 l cos (13)
g se,32 4 (c2 -gh sCC2 4) + K2c'h (

Summing for the different elements, from (13) and (7), we have finally for
the wave resistance

R - 47rA 2c 2 
/.1
2  

K3e-
2
'K see (14)

p J.,. g see-2 ) (0 -gI sec2 P))-+- .C4h)

where K satisfies Kc2 
- g sec2 4) tanh Ich, and the lower limit Oo is given by

= 0, for c2<gh; 0V are cos (gh/c2 )'12 , for c2 >gh. (15)

4. We may notice, in the first place, that (14) reduces to the expression given
previously for deep water; making h -o, we find

R = (47rg 2A'/pc6 ) f/12 sec5 o e-4 2 (gl¢') VeC2 4 d4o

__7r
2A2XAe-1 fiHl 1j\_ 1+ 2XHI() 1621pl 2x

where x = gl/c2 , and the result is expressed in terms of Bessel functions of
which Tables are available. For finite values of the ratio h/l, the value of R
for given values of c can only be obtained from (14) by numerical and
graphical methods. After some preliminary trial, the following plan was
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adopted. With p = h/l, and a = Kh, using the relation between K and 0, (14)
can be put in the form

47rA 2x]/l (rt
2  UCI2e-jp coth 1/2 3

I 2  d (17)

with a coth a = px sec2 0. (1.8)

For a given value of p, tl:c integrand of (17), which we may d(enote byf(a),
was calculated for values of a ranging from zero to 3 at intervals of 0"2, and
in certaini cases also at unit intervals up to the value 10. Taking next an
assigned value of x, the value of 0 corresponding to each value of C was found
from (18). The integrand f (a) was then graphed on a base of 0, giving a
curve for each value of x; the area of the curve was takeii by an Amsler
radial planimeter, and then the valh, of (17) was obtained. The calculations
are rather lengthy and it is unnecessary to repeat them here.

The process was carried out for p = 2, 1"43, 1, 0"75, with about a dozen
values of x in each case; some estimates were also made for p = 0-5, to
confirm the general deductions. Further, the values for p = oo were
calculated from (16). The results are shown in the figure, where the unit for
R is 47rA2/gpl3, and for c is v/(gi).

p IiiI I I

-0.24

-0.16

0.08

C/VJLgl
0.4 o.6 0.8 1.0 1.2 .4.

5. The curve for deep water, p = oo, has a single maximum at a velocity
slightly less thwn V(yl). At this velocity the corresponding length of
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simple tra inise•v waves is ibot 2 r/; tlli.i may I, ('1w ihoIi Ow 1,ei ilpal iV,-

MIakilmg length of thIe diStmldJUCO, to Use J t(erm fromli lime t1,iomry of shill)

resistance. Taking next tile cm ve for p = 2, we can RAe immdicUaiol n (If two

imaxinma. The first occurs at aboait the point 0,97 o(t tle velocity scale it

clearly corresponds to the d.eep water lmaiaimni, and (-Aines lower down time

scale, becausc waves of given 1,wrgth occur at a lower velocity as the depth

diminishes. There is also a second maximmum at a velocity of about 1'25;

this is due to the other factor in the resistance, namely, the increased effect

as the velocity approaches the velocity x/(g/) of the so-called wave of

translation, which in this case is at the point 1'41 on the velocity scale.

From the next curves, ) = 1'43 and p= 1, we see the increasing

importance of the latter effect as the depth becomes less. For the curve

p = 1"43, there is a maximum near the velocity 1"1, the corresponding value

of v/(gh) on the scale being 1-2. There is no other actual maximum, but

there is an enhanced resistance at about 0'92, followed by a flattening of the

curve betweeii that point and the point 1'05 ; we may take tile increased

effect at 0"92 to corresp)on(i to time deep water maxiiuum in the lower

curves. Similarly for the curve p = 1, the corresponding values are:

increased effect at about 0"81, diminished slope of curve between 0'82

and 0'9, maximum at 0-97, velocity of wave of translation 1"0. The last

curve, p = 075, shows that, as the depth becomes small, the second effect

becomes the predominant feature; the excess, resistance increases rapidly in

magnitude, and occurs practically at the velocity V'(gh). This effect is still

more pronounced for p = 0"5, but the results are not shown in the figure.

It is obvious that, as dhe ratio of h/1 dimuinishes, the disturbance becomes

more like that due to a line disturbance ; in simple calculations on the latter

assumption, the resistance increases indefinitely at the velocity ,/(gh), and

falls suddenly to zero above that velocity. It will Ie seen from the figure

that in all cases the resistance falls after the velocity x/(gh), as, in fact, may

be deduced directly from the expression (17).

In a comparison between these results and the experimental curves of

ship resistance described in § 1, it is advisable to consider in each case the

difference between the resistance in water of a given depth and that in deep

water; in this sense the results agree in character. Thus the first effect of

finite depth may be regarded as due to the lowering of the chief wave-

making velocity; it is only when the depth of wv'oter becomes of the same

order as the beam of the ship that the critical velocity is practically that of

the wave of translation.

In describing the experhnental curves, it was stated that the excess

resistance has a inaxiimum value at a certain critical velocity. But there is
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one exceptional set of curves, obtained at the United States Model Basin,*
which shows two maxima: a phenomenon which has not received Lxplana-
tion. It is conceivable that this may be a case in which the two maxima
indicated in the intermediate curves of the present paper have become
prominent through some unusual features of the model. In this con-
nection, it must be remembered that the present calculations are based
upon a surface pressure of specially simple type, one symmetrical round a
point; one could extend the calculations by integration, as in the previous
results for deep water, so as to apply to a pressure distribution, giving
a better analogy with ship form. It may be anticipated that the results
would be of the same character in general, though no doubt better agree-
ment could be obtained in certain details.

* D. W. Taylor, loc. cit., p. 115.

HA3R1BON A•D Sozzs, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Studies in Wave Resistance: Influence of the Form of the
Water-plane Section of the Ship.

T. H. HAVELOCK, F.R.S.

(Received April 5, 1923.)

Introduction.

1. The problem which is investigated in some detail in the following paper

is the wave resistance of a vertical post in a uniform stream. The horizontal

section of the post is of ship-shape form and the lines are varied in a certain

manner while keeping the area of the section constant.

A direct study of ship waves as a three-dimensional problem for a ship

of finite dimensions has not yet been accomplished. From one point

of view the problem has been attacked by the method of an equivalent

distribution of pressure on the surface of the water. Some advance has also

been made in the case of submerged bodies; I have shown previously how to

calculate the wave resistance of a body whose form is derived by combining

the stream-lines of a uniform current with certain .listributions aof sources and

sinks, under the limitation that the dimensions of the body are small

compared with its depth. On the other hand Michell," in an extremely

I J. H. Michell, 'Phil. Mag.,' vol. 45, p. 106 (1898).
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572 T. H. Havelock.

interesting paper, gave a general expression for wave resistance; but it
suffers from a serious limitation, in that the surface of the ship must be
everywhere inclined at only a small angle to its vertical median plane.

In § 2 a short synopsis of Michell's theory is given.
In 2 3 this is applied to the case of a submerged body and the result

compared with the work to which reference has been ,miade; the two methods
are quite different and have different limitations, but it appears that the
results agree when these conditions overlap and are common to both.

The main problem is treated by an application of Michell's analysis in
circumstances in which its limitations are not of serious importance, namely,
when the body is a vertical post of infinite depth and of small beam compared
with its length. We may regard this as a ship in which the effect of the

vertical sides will be exaggerated, and we may study the changes produced in
the resistance curves by varying the form of the level lines. The practical
problems which have been kept in view in devising special cases are such as

the effect of straight or hollow lines at the bow, the effect of finer entrance
and increased beam while displacement remains constant, and similar
questions.

In § 4 a set of parabolic curves for the level lines is specified so as to
illustrate these points, and the corresponding value of the wave resistance
obtained in general form as a function of the velocity. Certain new types of
integral which occur in the analysis are examined in § 5; they can be
expressed in terms of the second Bessel functions Y0 and Y, together with the
integral of Y0, and are evaluated numerically by meaus of recent tables of
Struve's functions.

In §§ 6-10, four types of model are examined, and the wave resistance
calculated for various velocities in each case. The chief results are shown in
the resistance. curves of fig. 2 For comparison with experimental curves
from ship models, the base is the quantity V/v/L, where V is the speed in
knots and L the length in feet. The madels with finer entrance, or with

hollow lines, have smaller resistance up to V/L = 1"1 or 1"2; but above
this speed the models with fuller ends have the less resistance. These, and
other results of some interest agree with deductions from the corresponding
practical study of ship resistance ; in § 11 a summary of these deductions is
given and a comparison is made with the results of the present calculations.

General Analysis.

2. Take Ox, Oy in the undisturbed surface of the water and Oz vertically
downwards; and suppose the ship to be symmetrical with respeut to the
plane y = 0. Assuming the ship to be at rest, and the water at a great
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distance to have a uniform velocity c in the negative direction of Ox, the
velocity potential is taken as cx+4; the squares of the velocity due to the
disturbance 0 are to be neglected. At the surface z = 0, the kinematical
condition is

S= • •,(1)
z ax'

where ý is the surface depression.
The condition for constant pressure at z = 0 gives c@0]@x-gý = 0, or

(2)

At the bottom of the water @0/&z =0; in what follows we shall assume
the water to be of infinite depth. The remaining boundary condition is that
0]/ay = 0 when y = 0, except over the surface of the ship; in the latter case,
with v as the normal,

(cx + 40) = 0.

If the inclination of the ship's surface to the plane y = 0 is everywhere
small, the latter condition reduces to

ay a f (x, Z), (3)

where 7- =f(x, z) is the equation tn the ship's surface; to'the same order the
condition (3) may be taken to hold at y = 0 over the median plane of the
ship.

A potential function to satisfy these conditions may be built up by a
summation of simple harmonic terms in the co-ordinates; it is sufficient here
to state Michell's expression, namely,

2 = -,cos (nz - L) cos (n.- e)
jj 0  j fo j'f (f, (Vj2 + n 2)112

cos {m (f--x) }e-y ("'+Y'•" d dýdnm dn
+ ; L =C= me- NIC2 * +C'l

+ Op 0 ,, _ ..f (f, 0) (mc'/g2_ 1)112

sin Iin (x - S)+ my (rn'c'/g-- 1)1/2) dý d dm

S•rg , fo

+ where tan e = -tn/lgn.

It may be verified directly that each term in (4) is a potential function and
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satisfies all tho above conditions except (3); and further that (3) is satisfied
by the complete expression on account of the expansion

f' (x, z) = ;P o oJJf f -0

cos (nz-e) cos (nt-e) cos vi (4-x) dt d~dm dn

+ •y ' • ) m e •"( +)ac s m( x) dý dý dm .(5

An expansion which may be verified without difficulty, e having the value
given in (4) ; it is assumed that the function f (x, z) is such that the various
integrals are convergent.

The expression (4) holds for y positive. The first and third integrals
represent local symmetrical disturbances, while the second integral represents

the waves which follow the ship if we imagine it to be advancing into still
water.

If Sp is the increase of fluid pressure due to the disturbance 0, the wave
resistance is given by

R= 2JIfSpL dx dz = 2pc fJ dx dz, (6)

the integration extending over the vertical median plane of the ship.
The first and third terms in (4) contribute nothing to R, and we have

R -- w f f ._ '(x , ( )/ ( ) 1( e-M2l 2 --1)'/
r) 2 o- (t / o21)1/2

cos m (x - •) dx dz dý dý d(m

(12 + J2) 912(71
=r 4pg JIC (I•J)1(,,2•4/?- 1)1/21

where I = - f'(x, z)e- _I
2 ZI0 cOs mx dx dz

= f- f' (x, z) e-'1"' 4 sin nx dx dz. (7)

This is Michell's expression for the wave resistance. We shall take the

origin at the nli(dship section and assume the ship to be symmetrical fore and
aft; in these circumstances, I = 0.

Subm enryed Spheroid.

3. The application of (7) is limited by the assumption involved in (3), that
the inclination of the surface of the ship bo the median plane y = 0 is always
small. To illustrate this limitation wi may consider a particular case in
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which we can compare the result by another iiiethod. In a prcvious paper*
I have shown how to find the wave resistance of submerged bodies of various
forms. Apart fromn the usual simmii ficatiuoi of neglecting the square of tile
fluid velocity in the wave disturbance, the specific limitation in that analysis
was that the dimensions of the submerged body should be small compared
with the depth at which it moves; but on the other band, the kinematical
condition at time surface of the body was taken in its exact form. In
particular, if the body is a prolate spheroid of semi-axis a, eccentricity 6,
moving with velocity c in the direction of its axis and at a depth f, the wave
resistance was found to be

R = 1287r2Ypa:Ae"-A 2  sec e-' f'P {J3 /2 (Kxae see €) }2 di1, (8)
JU

where K, = Y/C2 and A = [4c/(1-e")-2 log {E 2))/(-e)}]-'.

The limitation in (8) is that a is sniall compared with f, but there is no
direct limitation on the form, for example the expression includes the case of

the sphere with e = 0. Now, if we apply Michull's formiiula (7) to this case,
we shall obtain a result in which there is no limitation of the ratio of a to f;
but on the other hand the inclination of time surface must be small, so the

expression will only hold in the limit as e approaches unity.

The equation of the spheroid being

X2 + 2! (--Lf 1
a2  b ( -f = 1,

we have w/ax =,f' (x, z) = -b 2x/a {b2 (a2 -x 2)-a 2 (z-f)2 }l 2 . (9)

Thus from (7)

a J jb2(a 2 .- X)_1_t•) .. / sin xd1 d. (10)

where we have put -= z-f, and the integration extendr over the ellipse

x2/1+1/b 2 = 1.
Integrating with respect to x first, we have

I" xsin MX dX Jra (¶ /
_{a(b 2-- 2 )-b:2 }fI 2  b27

where p has been used for a (1-

Hence we obtoin

J = -- irb2 c- J'•OfIg e (m2c2bI)cos ni (ma sin 0) sin 2 0 dO

0
2- 1/ r 1 (it+j) 1, n2r2b,' (2n

* 'Roy. Soc. Proc.,' A, vol. 95, p. 354 (1919).
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If we use only the first term in this expPinsion in powers of b, we have

J = -(27r 3/ma) 1/22 e-''?tf/g J 319 (ma). (12)

With this value (7) gives

8Ir'PC4bt• J j (ma) }2 e_,m 9 I/g mdmn
R = a gI I J .1l2 (m(ma))cg4 g )1/2

=8n 2gpa3 (1 _6 2
? Jsec2 0e-2xofsec2 61 {J3/2(co a sec ) 2 4 . (13)

With e nearly equal to unity, it is easily verified that (13) agrees with (8).
On the one hand, the result (8) includes the sphere (e = 0), under the
restriction that f is large; on the other hand (7) and (11) give a formal
solution for any depth f, but only serve for e nearly unity. The two methods
are very different, and it is of interest that the results agree under conditions
in which the two approximations overlap.

Formulm for General Type of Model.

4. The limitations of Michell's formula do not admit of its application to
actual ship forms; for although the sides of a ship may be at small angles to
the median vertical plane, the bottom of the ship does not fulfil this condition.
It is proposed to use the method here in such conditions that this objection
does not hold, by supposing the ship to be of infinite draught. In other words,
we consider the wave resistance of a post extending vertically downwards
through the water from the surface, its section by a horizontal plane being
the same at all depths and having its breadth small compared with its length.
This enables 'us to elucidate certain points of interest in ship resistance.

We suppose the ship to be symmetrical fore and aft, and we take the
o-igin at the mid-ship section. Then since in (7), f'(x, z) is independent of z,
we have

R = 4gp J 2 dm
7r [/c 2 f (m~ c 4/g 2_ 1)1I, (14)

where J = JIf (x) sin nix d., (15)

the integration covering the length of the ship, and the equation to the half-
section being y = A(x).

We wish to study the effect of altering the form of the section while
keeping the length and the total displacement unaltered, the beam varying
slightly according to the curvature of the lines. These conditions can be
satisfied by taking the form of the water-plane section, for y positive and 'V.
ranging between +l, to be

Y= 1--*12/d2( T-1 6 (16)
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Here 21 is the constant length, and !b1 the constant area of horizontal
section of the ship ; the beam is

2b (1 -- / d /1 ' •'.(17)

The points of inflection in the curve are at x = +(d. For d = 00, we have
the ordinary parabolic fbrrn with beam 2b. With d = 1 the bow and stern
lines are still straight, but the ship has a finer entrance and a slightly larger
beam. With d<l, the lines at bow and stern are hollow, that is, the sides
are concave outwards. We shall study in detail later four values of lid,
namely, 0, 1, 1"25 and 1'5.

From (15) and (16) we have

2= /(1-1 2/5d 2) J(x ]x3/d2) sin mx dx.

Evaluating and putting in (14) we obtain

R = 647r- 1 gpb 2 1-4(_-1 2 /5d 2 )- 2 x

rC/i l3 21 (13 + 2 2 2
j'2 Lý71m 3d 2 1 d2 L3/ in, ~ 2 d, 4

dm
m• (,adc4/.q2 -)iy:. (18)

We shall use the notation

8 = ld; L = 21; p =gL/0.

Altering the variable in (18) and expanding the terms, it can be expressed in
the form

512gcos 3r4) {jl(i-*8 2)r1 2)2+ (1+282- 1 4) co(2 4

4 . 25 s7r 2 c) s )-8'P

P4 86

4 (1 --682+78 4)Co 64 82(1-282) cos04

45 cos0 0 cos(p see C)-cos'-' 0 2 (S

+ 3 2  o s(1_I 82) Cos3 0+ 128 + , cos, , sin(p see b)' d(. (19>

5. The integrals in (19) which do not seem to have been studied explicitly
are of the following forms

P.- (p) -- (- ) oc082" 0 sin ( p see o) do, (20)

w12
P2-+1 (p) -= (-1)+Y", cos2"1+14 cos (p see 0) do, (21)
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with u a positive ',at-ger. The cases which occur in (19) could be tabulated
directly by incaws of convergent series and asymptotic series. They call,
however, be derived by repeated inucgration of the second Bessel function, and
can be expressed in terms of functions of which Tables are now available.

The functions satisfy the relations

P.: = P',a+1,

1, = P(P,-l+P.- 3)-(?--1) P,- 2. (22)

Further, in reducing a function of positive order 2 by this relation, (22)
holds as far as

2P2 = p (1PI + P-0)--PO,

P, = p ( Po + P-2 ). (23)
Now we have

Po = sin (p see 0) d( - -2T (p)dp, (24)

where Yo is the second Bessel function defined by

Y= -- se2 ccos (1 sec)d. (25)
7/r

We shall use the notation

Yo- Y ()dp. (26)

Since we have

P-i= -' YO P- 2  - Yo, r YY,, (27)
22

it follows that by using (22) and (23), we may express the unknown integrals
in (19) in terms of Yo-1, YO and Yl.

Some numerical values of Yo- 1 have been published recently by G. N.
Watson; these are not sufficient for our purpose, but Watson also gives
Tables of Struve's functions H0 and H, ranging from 0 to 16. In terms of

these functions
Yo- -)Yo-- p (YoH--YlHo). (28)*

Watson's Tables of Struve's functions and of YO and Y1 have been used in
the calculations that follow.

6. Returning to (19) we evaluate the simple integrals and reduce bhe
others in the imtwner indicated in the previous section ; omitting thi algebraic
reductions, the final result is

* 0. N. Watson, I Treatise on Bessel Functionp,' p. 752 (1923).
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S52gobA [( 82)2 + 16 ,1 1) 512 2 1638484

R (I +--''•w: (28• + 1+ ' 3 ...
7r(1-"() 8 1- 8 85 Is 815 p 6

-7rN - 2 82 _ 4 1: 2+18)1
2 60 315 1620 2 6\5 42 ,

?r 1 2 2LL.4\ 8  7:3 109 8

2 3\0 315 • 1620 + 210 l 1890

+ 25682 (1- 18)41+ -JYo+35 Pj 1514

31C 51 16'20 15 4ý2 378/

(16 3282 841 82 163+4 1J+•-/ +. 10 1
G\15 21 3-5 )1) 35 21~>+"' sj* ~. (9

This, with p = yL/c2, giv(s the wave resistance as a function of th6

velocity.
For large values of p it is simpler to calculate directly from an asymptotic

expansion. This may be obtained directly from the integral expression for

R, or by substituting in (29) the asymptotic expansions of Y'o, Y1 and Yo-.

The latter method gives a check for the cocllicieuts in (29), since the positive

powers of p must disappear from the expansion; in this way the first few

terms of the expansion are found to be
512.qpb 2.1 [ 1 _ + •- 1

R (I-. - [I)(I_ L3' 82)2+15 (+21- ' -2

We shall consider now four cases numerically.

Calculations for .Foour Models.

7. In model A we take 0; so that the level lincs of the ship are the

parabolic curves
S= b (- /).

The expression for the wave resistance reduces to

512,/qp!,2 !{ +16 1-M ( 1 ,,•

7r---3 15 p2 2  0 12

""0--2 U 15 I5)•) 13")
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with the asymptotic expansion
5 51 'ýýPbh'2 16 1 / r 1' 7• i r\ 15 1

it __ 1-1 + -Bl :)T6CRý-j (32)

For small values of p, (31) is not satisfactory as the quantity within large
brackets is the small diflerelice between large numbers; it is better then to
use an ascending series in p which can b( found by substituting expansions of
Yo-0 , Yo and Yl. The first few terms are

5121 (1 \ 3(. 2 \
R=ý-Ypb -{- 6144 p~ P+ log -- _yI

+ 7(33)+ •ý p 230100

where y is Euler's constant, 0"57722.
From thest expressions the values in Table I have been calculated.

Table I.-Resistance of Model A.

P. clV' (,gL). 1O-3R/gP6l. p. c/(gL). 103R/gpb?1.

19 '64 0 226 6 9 7 "8 0 358 56
18'07 0 "235 13 "4 7 086 0 -376 131
It; "5 0'246 12-9 6 0"408 406
14 "92 0-259 8-7 5 0-447 897
14 0'267 13 3 '96 0 '503 1502
13 '361 0,273 21"4 2 0'707 2392
11 "78 0 '292 52 1 1'0 2050
10 "22 0"313 58 "2 0189 1"058 1930
9124 0"329 411 0"5 1414 1434
8'64 0'340 35.8 0 '25 2 "0 904

A certain portion of the range will be studied in detail later; the Table
gives a general view of the variation of the resistance with the velocity. At
low velocities the resistance is small and oscillates in value; then at a speed
of about 0"4V(/(L) it begins to rise rapidly and reaches a maxinmiui at about

,/(QgL), after which the resistance decreases continually and converges to
zero for infinitely large velocities. D1oubtless the conditions under which the
expressions were obtained would be violated at very high velocities, but it is
of interest to trace the variation in value over the whole range. Absolute
values could be obtained from Table I for a plank of given dimensions and of
the specified form ; these would he comparable with experimental results for

a plank of finite depth if the velocity were such that the effect of the surface
waves could be neglected at the depth of the lower edge of the plank.

8. For Model B we take 8 = 1. The forinalw are now
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I 800!pb/ hl 4 1281 .+5121 163,+ 841 r "- :-5 L1") 47• • 2 • 3 1 5 1 ,) 1 .; p~a ;

.+ 7 . y4o_1 I 7r/ 3O - _112 46 256 1 + I)2 1

17r + Y11 (34)
F. 5  5 I 2 \ 983 2895 fA 5;7 315 Jb

The corresponding asymptotic expansion is
np---,800 !#F " ±- + - -1•-'121 (7r )112 2 sin 7 r\ 171 I os(07 35

The general course of R is similar to that for Model A except that the
values are less for velocities below about 0'36v/(,qL) and higher for velocities
above that value ; for example, at p = 6 the resistance of 13 is 482 units, and

at p = 1 it is 2546 units, while the corresponding values for A are 406 and

2050 respectively.

9. The third case is Model C with 0 = 1'25. We have then

R 131072 gpb2l + L11 1+160 1 + 8000 tIt El 1302g- -[59+,4 _•.•1 •

1217r p3  6912 72-0 1p- 7 24 63

-r ( 23959 P. 2641 2 27 5 1' - /2.1,959 2 63373
-2 \2903040~ ±64512 512p/ 2(2903040 " 483840

220 1 +4000 1 +r/ 2 3 959 23 47443 1111
63 p0 6 p4  29 -0040 1•-• •"• 1410 6 Op

86 000 l), }, (36)

and for large values of p,

R 1 3 1 0 7 2 , b [| l 2. 4. 1 ( < Y I•l"s in5 9)

1217r 2p3  6912 720 P2  2 -- 4 6 0 8  -

28865 1 '--4-

36864p T)

The remaining example, Model D, is a more pr)onounced variation from the

standard form A. With 8 = 1"5, the forward point of inflection in the water-

plane curve is at one-sixth of the length of the ship from the bow.

We have in this case
.204800ypb 21F " 61 + +1152 l 9216 1 7r 37

1 r L 1 18 5 5 6 2 \672(0

19-1 y9-19K 1 3 7  2+ 9  46081

6 72 1611) -2)7 20 672 35 1)4

+ / 37 P 3 77 1 1 1152 1 9216 1\ (

2305 p3  3 5  /
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For suail velocities the appropriate expansion is

, 20 4800 qp., [1 I +P 7r)

1217r p3  48 i-5 \2p
177 1 (P _r) j ( 9
2 5 6 p

A stud(ly of the unie:ical coefficients in these various forinult. gives some
indication of the manner in which the resistance varies with the form, and
this is confirmed by actual calculations which have been made in each case
as in Table I for Model A. The general variation of the resistance is the
same, but the differences noted between Models A and 1B become more

pronounced for C and D; the resistances are less at low velocities and
greater at high velocities as ve progress from A to D. The results may
now be collected and exanino'i graphically.

10. Fig. 1 shows the lines of models A and D, the curves being one-
quarter of the water-plane section in each case. In the comparison we
have in view with ship models the ratio of beam to length is of the order
of 1 to 10. In - ",r to make the diagram show the difference on a small
scale, the ratio of beam to length in fig. 1 is 1 to 5. Further, only the
extreme models A and 1) are shown; the lines for B and C would fall
between those of A and D.

FIG.I

The variations in form are summarised in Table II.

Table II.-Models of Constant Length aad Displacement.

Model. Beam. Water-l)lane coefficient. I Bow and stern lines.

A 1 0 0.667 Straight.
B 1 042 0.64 Straight.
C 1 "076 0,62 Hollow.
D 1 136 0.587 Hollow.

For comparison with ship resistance, it is convenient to use the same
co.ordiuates as are used in experimental results. in graphing the resistance
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we use as a base the quantity VIVL, where V is the speed in knots and
L is the length in feet; thus we have, in the previous notation,

L- - - 594 L, approx. (40)
V2'

The range for VIVL, which is of special interest, is from about 0"75
to 1"25. Fig. 2 shows the curves of wave resistance for the four models,
obtained by calculating R from the expressions (31) to (39).

-100

• 90

_so FIG. 2 D

AA
-50/

_40

0'8 0"9 I'0 I1. 1"2

Comparison with Ship Besistance and General Conclusions.

11. In studying these curves in relation to experimental data from ship
models, one cannot make a direct numerical comparison of absolute values.
In the present calculations one has the advantage of isolating some single
feature and of seeing how its variation affects the results, for instance, th3
form of the level lines. On the other hand, in experimental curves from
models there is no simple separation. In practice, the form of the ship
is expressed roughly by certain coefficients of fineness: the water-plane
coefficient being the ratio of the area of the water-plane section to a
rectangle entlosing the section, the mid-ship area coefficient similarly
defined, the prismatic coefficient, the curve of sectional areas, and so forth.
"In experiments these coefficients may be varied in a systematic manner, but
in their effect on the ship's form they are not in any nmathematical sense
independent variables; this leads to some difficulty of interl)retation from a
theoretical point of view.
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584 T. IT. Havelock

The first point to be noticed is the prominent hump on the resistance
curves in the neighbourhood of VIVL = 1. This is a well-known feature

of ship resistance; it has been stated as an empirical rule that this hump
occurs at V = 1"05VL, or again that it occurs at V = 1"34V(PL) where P

is the prismatic coefficient. In fig. 2 the values of V/VL for the more
tnormal models A anti B are 1"04 and 1"03 respectively, while for the more
extreme forms C and D with hollow lines they are about 1"02 and 0"98; the
model D has obviously lines which are unusually fine at the bow.

In the figure the humps and hollows are, in general, more pronounced

than in experimental curves. The familiar pattern of ship waves is usually

described as made up of transverse waves and diverging waves, the former
being the chief factor in the wave resistance; there is also a tendency tc

associate the transverse waves with the stream-lines which travel along the
bottom of the ship and the diverging waves with the action of the vertical
sides of the ship at the bow, but this is misleading. In the present calcula-

tions we have models in which none of the stream-lines can go underneath

the ship; they are all forced sideways from the bow. It appears that the
effect of the flat bottom of the ship, and of its finite draught, may be rather
to smooth out the oscillations in the resistance curve. A general feature

of the curves which is in agreement with expc•riment is that the oscillations
become progressively less prominent as we take the models in the order
A, B, C, D; this is especially noticeable in models C andi D, which have
hollow lines.

The most interesting and important characteristic of the set of curves is

their intersection in pairs at values of V/XiL ranging from 1"12 to 1"18.
Co,,,pare, f,,r instance, models C and A. At low speeds C, with its finer

entrance, has a decided advantage ; at 1"18 the resistmnces are equal, while
above this speed the advantage remains with model A, with blunter ends
but with less beam. It. has been remarked that one cannot make exact
comparison with experimental results from ship models, but a general
survey of the data bears out these calculations. Without going into detail,
it may suffice to give a few references to standard treatises on ship resistance

where the results are summarised.
G. S. Baker remarks: " In the section dealing with the relative merits of

hollow versus straight lines, and elsewhere, it has been shown that for vessels

of fine form intended to work at speeds fit the neighbourhood of V = VL
there is a decided gain in working the level lines with some hollow in them.
It has also been known that for such fine forms at very high speeds the

hollow should be reduced to get the best efect."
* G. S. Baker, 'Ship Form Resistance and Screw Propulsion,' p. 87, 2nd edn.

1920.
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D. W. Taylor,* referring to a series of experiments with models of the
same displacement and of' varying, midship section coefficients, states that

the models with full midship-section coefficients drive a little easier up to
V -- VL = 1"1 to 1'2, and the models with fine coefficients have a shade the
best of it at higher speeds. Again, the s,-me author analyses the results of
another set of experiments thus "Fig. 67 shows curves of residuary
resistance for five pairs of 400-foot ships, each pair having the same dis-
placement and derived from the same parent lines, but differing in midship
section area or longitudinal coefficient. It is seen that at 21 knots No. 10
with 0'G4 longitudinal -)efficient has 2'3 tilies the residuary resistance of
its mate No. 9 with 0'56 longitudinal coefficient. Ihit at 24. knots they
have the same resistance. Again, No. 4 of 0"64 coeflicient at 21 knots has
nearly twice the residuary resistance of No. 3 of 0-56 coeflicient. At
25i knots they have the same residuary resistance, and at higher speeds
No. 4 has the best of it, having but 0"9 of the residuary resistance of No. 3

at 35 knots.
"These results, which are thoroughly typical, are susceptible of a very

simple qualitative explanation. A small longitudinal coefficient means large
area of midship-section and fine ends. A large longitudinal coefficient
means small area of midship-section and full ends."

It will be noticed that the experimental curves referred to in this extract
intersect in the neighbourhood of the point V/I/L = 1"2. The curves of
fig. 2 also intersect near this point. The lines of the models A, B and C
were chosen to be of suitable form, limited by the necessity for a simple
mathematical expression which led to integrals that could be evaluated. It
may be claimed that the curves so obtained agree with experimental data,
and, further, that they repay detailed study, in that the variations in
resistance are connected definitely with a precise variation in the form of

the model.

SD. W. Taylor, ' Speed and Power of Ships,' pp. 96 and 97.

HARMSON AND SioNet, Ltd., Printer' in Ordinary to Ili* Maj•]sty, St. Marti,'" Lane.
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Introduction and Summary.

1. If a ship is altered by inserting different lengths of parallel middle body

between the same bow and stern, the main features of the variation in the

wave resistance may be inferred from the principle of wave interference, and

may be expressed in terms of a certain length, sometimes called the wave-

making length of the ship. The problem proposed for examination is the

alteration in this length with varying length of parallel middle body at the
same speed, and, further, its variation for a given ship at different speeds.

Recent discussions have attracted renewed attention to this problem. It
may be said that there are two approximations based on experimental results
of various kinds obtained ffom ship models. On the one hand the wave-making
length is supposed to be approximately independent of speed for a given ship,
and to increase directly with the increase of parallel middle body ; on the other

hand, an empirical formula which agrees with experimental results over a
certain range makes the length increase with velocity, the increase being one-
quarter of the increase in the wave-length of regular transverse waves.

The following contribution to the solution of this problem is mathematical,
and necessarily deals with a simplified form of ship. It is true that one cannot
compare absolute values of the wave resistance with those of actual ship models ;
but it has been shown in former studies of the dependence of wave resistance
on ship form that one obtains a rather remarkable agreement, at least in the
character of the results and in the positions at which changes occur. Leaving
detailed discussion of the present extension till later, it may be stated that
as regards the two approximate formulae mentioned above the results are
intermediate ; after an initial decrease the wave-making length increases with
velocity, but not so rapidly as in the quarter wave-length formula.

In §2 an expression is developed for the wave motion due to any distribution

of doublets in a vertical plane in a uniform stream, and in §3 this is associated
with the form of the ship's surface. Applying the formula to a ship of infinite
draught, with parabolic curves for the entrance and run and with parallel middle
body, we obtain a general expression for the wave resistance (§4). After com-
putation of the functions involved (§5), a detailed numerical study ig made for
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78 T. H. Havelock.

a ship with entrance and run each of 80 feet and with parallel middle body
increased from zero up to 340 feet, as. in \\W. Froude's well-known experiments
(§6). Fig. 2 shows the curves of wave resistance for five different velocities,
the base being the length of parallel middle body. A short account of model

iesults and of recent discussions is given in §7, and the present calculations are

reviewed in the remaining sections. The information from the curves of fig. 2
is extended by an equation whose roots give the complete series of maxima
and minima (§8). The roots are found numerically for three series. With both

the length of the ship and the speed varying, we obtain the roots for the maxima

for which on a simple theory the wave-making length is equal to one and a half
wave-lengths ; Table III shows the actual variation of this length. Then two
series of roots are found for a ship of constant length at varying velocities,
one for a ship of 160 feet without parallel middle body, and the other when

240 feet of parallel middle body have been inserted; these are given with
other quantities in Tables IV and V, and the results are discussed in relation to
experimental data.

Expressions for Ware Resistance.

2. A uniform stream of deep water moves with velocity c in the negative
direction of Ox, the axes Ox, Oy being in the undisturbed surface, and the

axis Oz vertically upwards. Suppose there is a doublet of moment M in the
liquid at the point (h, 0, - f) with its axis parallel to Ox. With the usual
limitation of assuming the additional fluid velocity at the surface to be small
compared with c, one can write down complete expressions for the velocity

potential, and so deduce the wave disturbance and the corresponding wave
resistance. It is convenient to begin here by quoting from a previous paper*

the wave resistance, altered to the present notation, as

R = 167rg 4 M2 c- J sce5 Oe-( "Of c•J'' do. (1)

In the same paper it was also shown how to generalize this expression,
first, for any two doublets at given points in the plane y -0 and then for any

continuous distribution in the same plane. Equation (37) of that paper

gives the result for a continuous line distribution of doublets along the line
y= 0, z --f; an obvious extension gives now

R - 16,rg4p- 8 df(If' dA 1' (i, f) h', f,)

X secs•e• (f±PcY }•"& cos[g (h -h')/Id} sec #] ,/0, (2)
* 'Roy. Soc. Proc.,' A, vol. 95, p. 335 (1919).
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Wave Resistanice: Effect of Parallel Middle Body. 79

for a distribution of doublets in the plane y = 0, the momefnt per-unit area
being 4 (h, f) and the integrations extending over tht, whole distribution. The
function 4 must be such that the integrals are convergent, as well as the
corresponding expressions for the velocity potential and the surface disturbance.
We now integrate (2) by parts with respect to A and h', and as we shall deal
with distributions which are of finite extent in the x co-ordinate, we obtain

R = 167cg2 pc-& J df f df' f 0 dA fogdh' Iah,/a. a ''/ah' . sec3 •

x e- {(f+i')/c'}seCo' cos [{g (h--h')/c2} sec 0] @0. (3)

The fluid motion is symmetrical with respect to the plane y = 0 ; we may
therefore confine our attention to the fluid on one side of this plane and we may
interpret (3) in terms of the distribution of normal fluid velocity over the plane
y = 0. For, from the definition of ý, the normal fluid velocity at the point
(h, 0,f) is 2na 4/ah. Substituting in (3) we should then have the wave resistance
for a given distribution of normal fluid velocity over the plane y = 0. From the
latter point of view the solution can also be obtained by methods of harmonic
analysis; the expression for the wave resistance, used in a former paper,*
agrees with (3) found by the method of sources and sinks.

3. In the application to ship waves the same assumptions are made as in the
paper just quoted. The plane y = 0 is the fore and aft median plane of the
ship, and the inclination of the ship's surface to this plane is supposed small.
The ship is then replaced by an equivalent distribution of normal fluid velocity
over its section by the plane y = 0, namely the component of the stream velocity
c over the actual surface of the ship; thus if

y= F (x, z) (4)
is the equation of the ship's surface, we use in (3)

2n O --- "(5)

A difficulty which may arise in the general solution should be mentioned, but
need not be considered further in the present applications. A mathematical
infinity may occur in some of the expressions; this may be removed by intro-
ducing a suitable factor to ensure convergency, but in any case it only occurs
in those parts of the velocity potential and surface disturbance which represent
the local symmetrical disturbance. The integrals for the wave disturbance,
and consequently expression (3) for the wave resistance, remain finite.

'Roy. Soc. Proc.,' A, vol. 103, p. 574 (1923).
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4. Suppose the ship to be symmetrical fore and aft, and take the origin

at the midship section. To simplify the calculations we asslme, as in previous

studies, the ship to be of infinite draught and to be of constant horizontal

section, as shown in fig. 1.

B Fig.i.

0 1 A

,K - - - -2

The length of parallel middle body is 2k, and 1 is the length of entrance or

run; the curved surface is of parabolic form, the equation of AB being

y = b (1-(x-k)2/12 }. (6)

Substitute from (5) and (6) in (3). Since the normal velocity is zero over the
parallel middle body, and since the ship is symmetrical, the integrations in

h and h' simplify considerably; also, we may carry out the integrations in

f and f' and so obtain

R =- 4pc'--mriJ2 cos do,

where

J-b'h sin o(h+k) sec}dA. (7)

Evaluating J, we find after some reduction

if
~64gpb2 ~2 )J [3 c2 s C- cog4 ~Sin(se

_+. 2 cos. cos {(2k+-) sec 2k e (8)
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Using the notation

P2 (P) = W 1)i JCos2n 0 sin (p sec d#,

IT2

P2,l (p) (-- 1)"* [cos2n+1 #cos (p sec#)d, (9)P2+ (P) = 9) 1

we have

R - 64gpb2 (•2 c4 C 2 4

7r+ 6 2: - 4 C' ''

++P3 (pI) - 2 P4 (pO) + - P5 (pI) + ± P4 (p2)

g?-2 Pr(P 2)+JT 2 P54PO)J (10)

where
pi g (2k +2l)/02, P2 = g (2k± l)/C2, pa = 2gk/c2 .

Tabulation of Functions.

5. In order to obtain the curves we require, we have to evaluate (10) for a

large number of values of k, and in each case for several values of c ; it was

necessary to prepare tables and graphs of the P functions. Yo and Y1 being
Bessel functions of the second kind and Yo-1 being defined by

Yo- = JYoO (P) dp, (11)

we have, from sequence relations given previously,*

P3 = - -1- {(p3 -- 3p) Yo-I+p'Yo--(p3 -- 4p) Y1}
12

P4 = - 4-8 {(p4_6p2_+_9) Yo-I+(p3 -- 9p) Yo--(p4--71P) Y,}
48

P5 :- - - { (p'--lOpS+45p)Yo--+(p4-13p')Yo-(p5 -llp--64p)Y1}. (12)240

The values of Yo and Y1 and of Struve's Functions H0 and H1, given in 0. N.

Watson's "Treatise on Bessel Functions," were used to calculate values of
Y0-1 from the formula

Yo-1 = pYo- p (YoHi--YiHo), (13)

* 'Roy, Soc. PWoc.,' A, vol. 103, p. 578 (192:1).
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82 T. H. Havelock.

and then values of the P functions were found from (12). With increasing
values of p, the -aultipliers in (12) become large and this method loses accuracy

unless the Bessul functions are -known to a large number of places. It is then
preferable, and sufficiently accurate for the present purpose, to calculate from

a few terms of asymptotic expansions. These can be found independently,
or derived from those of the Bessel Functions ; they are

7r H--1 1065 1 269---7) sin /p

(17 1 42 "9f64 1980\ 7
8 Sp p 3 ) OS/ P 4)

P 4 - 7 1569 1 2+527-3 0
2p 128 p 4--P4cos 4)

2.1 73-608 4353 /P 7r)+8 ~ ~Sin f~~j

p5 ,\/ {(7 2 1 912 933 - 2) sin ( 7--4)

'25 1 115"97 8554" os (14)

Although systematic computation of these functions has not been attempted
to any high degree of accuracy, it was found necessary to calculate a large

number of values from p zero up to p equal to 40. Some of these are recorded
in Table I.

Table I.
P. Ps. P." P1. P".v P". P'

0 +0'6666 0 -0.5333 3.6 -0.3515 -- 0.364" -0-.34570.4 +0,5880 -,-.2563 -0.47115 4.0 --. 153 -014524 - 0'1784
0.8 +0"3876 40.4551 -0.3361 4,4 (0-0597 -.- 4892,% -0.0150

1.0 +0.2569 +0.5198 -0.23Sl 4.8 i -,25SO -0.4220 -0.1800
1.2 +0- 1171 +0.5573 1 --0" i3M .5., -1 0-3317 * :'.3570 --0.2721
1.6 -0- 1594) +0.5480 -+-,-(K0)3 *,; .1,44Os 0.0741 -0.4230
2.0 --0. 3867 -1 0.14366 +0.2940 .7 i. 13:1 0:1932 --0 16231
2.4 -0.5106 -+-0. 2509 -i o.4405 S ) -,2659 1 o.3195 0.2291
2'S -- 0 5651 -j.02Sl +0.49o2 ii I - ,3:184 h41-401 - 0-3799320 -- 0'5136 +.q -4028 0.4s4o !0 -,1 75 4tka- 4 0 .14 "3'2 --0-136 1;.24 I 04 941 o'41579 0

3__2_-__4998_o__ I _________ 57

"Many intermediate values of the functions were requirel: and the only
practic'abl plan % as to construct graphs froi \'which thiese vould 1)4 taken

with an accuraty of three figures. This wa, obtained by drauwing graphs
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of the three functions over the range from 0 to 40, the scale for p being 1 inch

for unity and the scale for the ordinates being 10 inches for unity ; these gave

the required accuracy, supplemented at critical points by numerical calcula-

tion. The graphs are not reproduced here, as they lose their practical value

unless on a very large scale ; they are, of course, similar in character to graphs
of the Bessel functions-oscillating curvbs diminishing in absolute value with

increasing argument.

Resistance Curves.

6. We can now make a numerical study of the wave resistance given by

(10). We might adopt dimensionless variables, such as gl/c 2 and k/l, but the
calculations were begun with the intention of comparing the results with

W. Froude's curves; we take therefore

1 = length of entrance = length of run ý 80 feet(1

2 k = length of parallel middle body,

with 2 k increased from zero up to 340 feet. For an assigned velocity c, the

values of R were found for every 20 feet of parallel middle body ; as a rule,

intermediate values were also calculated so as to define the maxima and minima

with sufficient accuracy.
Two examples of the work may suffice. With

g/c2 
- 0"045 ; c = 26"75 ft./sec. ; V == 15.83 knots; (16)

we have, from (10),

R = b~ x10 974 x[ 06+(P 4+ IP)O0L72
8 3,6 25o92 J[o

"+" (-1 P, - P'•{009k+3"61+ 25192 P5{0"09k}] (17)

The notation { } denotes the argument of the P functions in the preceding

bracket.
For increments of 10 in the value of k, the P functions were required at

intervals of 0.9 from zero up to 22.5. Again, with

g/c2 = 002; c = 4013 ft./sec.; V = 23.76 knots, (18)

we have

R X 125 X [0.23414+ (jP.- -1 P,"+ 'P5-)'O'2-2

i I _L p, lo w 1-6)+-io -L 1 , VsO04k)I (19)+ 1-_6 P4-2-56 5-12
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In this case the arguments of the P functions increase by intervals of 0 8
from zero up to 10.

It may be noticed from (17) and (19) how the relative importance of the
oscillating terms alters with the velocity.

This process was carried out for nine different velocities, namely

g/o2 = 0.1, 0.0625, 0.05, 0.045, 0.04125, 0.0375,
0.03125, 0,02,- 0.0075. (20)

Five of the curves are shown in fig. 2, which gives the quantity 8TcR/gpb 21
on a base 2 k representing the length of parallel middle body ; the curves for
higher speeds are not reproduced, as the scale would obscure the effects, but the

data are used in the discussion.

Approximate Formulce.

7. It is convenient to summari, ' now the experimental data and empirical

formulae derived from them.
The investigation of W. Froude* was the first direct study of interference

of bow and stern waves made by testing models with the same bow and stern,
but with increasing lengths of parallel middle body. We associate with this work
the subsequent paper by R. E. Froudet who applied the principle of interference
to the resistance of a given model at different speeds. Founded on this work,

the approximate theory has been developed : the bow produces a wave system
beginning, so far as -"-glar transverse waves are concerned, with a crest
slightly aft of the bow, whiLo the stern originates a system beginning with a

trough a little aft of the after-body shoulder. Assume that this wave-making
length, say Z, is approximately independent of speed, and further assume that
the wave resistance is chiefly due to the transverse waves. If, then, X is the

wave-length of regular transverse waves for velocity c, the so-cailled humps
and hollows on the resistance curve occur at speeds for which Z is an odd or
even multiple of ½-X. Or, if we assume an approximate formula

R = A--B cos (gZ/c 2), (21)

where A and B are undetermined functions of velocity, the humps and hollows
correspond to the maxima and minima of the cosine factor ; hence we have

the sequence

1, 1 1 1(22)

* W. Froude, 'Trans. Nov. Arch.,' vol. 18, p. 77 (1877).

t It. E. Froudc, 'Trans. Nay. Arch.,' vol. 22, p. 220 (M88t).
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for the ratios of the velocities at which these occur, beginning with the final
hump on the curve of R plotted on a velocity base.

This was the sequence verified experimentally by R: E. Froude. It should

be noted, however, that these points are not actual maxima or minima on the
resistance-velocity curve ; although their approximate position is fairly obvious
from inspection, they cannot be defined accurately without a knowledge of the
mean resistance curve.

Turning to W. Froude's work, it is obvious we should have similar phenomena
if the effect of introducing parallel middle body is simply an addition to the
wave-making length. This is the case if we consider any curve of R on a base
of parallel middle body for a given speed. Here we are dealing with actual
maxima and minima ; and Froude's curves show that, within experimental
error, the separation between consecutive ma xima is approximately equal
to the wave-length X. On this theory the quantity Z derived from each curve
should bi, the same for all velocities, but Froude did not examine that point.
The second approximate theory, which we shall consider now, asserts in fact
that Z is not constat in these curves.

From a study of various model results, a formula connecting Z with ship
form was given by G. S. Baker and J. L. Kent* ; the formula was later asso-
ciated with direct observation of wave profiles in certain cases. For a recent
critical account of this,formula, reference should also be made to two papers
by J. Tutint and to the discussions published in connection with then).

The formula is equivalent to defining the wave-making length Z by the
equation

Z = PL-i-, = PL+-c 2/2g, (23)

where L is the total length of the ship, and P is the prismatic coefficient of
form. Since P is the ratio of the volume of the ship to the volume of a prism
of the same length and with section equal to the midship section of the ship,
we have in the present notation

PL ý 2k+2PI, (24)

where P,. is the coefficient for the entrance or run ; tind at any given speed
there is a similar relation between R amd 2k as on the previous theory. The
chief interest of (23) lies in the second term, which makes Z increase with the

* (1. 8. Bak.r and J. L. Kent, 'ITrang. Nay. Ai..h..' vol. 55. 1t. 11, 1p. 37 (1913); also
J. L. Kent, ' Trans. Nay. Arvh.,' vol. 57, p. 154 (1015).

t J. Tutin, 'Trans. Nitv. Arch.,' vol. 66, p. 240 (1924) ; uso Trans. N, E. Coast Inst.
Eng. and Ship.,' vol. 41 (1925).
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velocity, in contrast to R. E. Froude's results. The expression for R corre-

sponding to (21) is now
R =- A-B sin (gPL/c2 ), (25)

and instead of the sequence (22) we have

1 1 1(26)1'7, -8' /-6 ". (6

for the ratios of the significant velocities.
The authors of this formula based it upon observations over a cert-ain inter-

mediate range of velocities. If we omit the first two or three terms in the
sequences (22) and (26), there is a range in which the ratios do not differ very
much ; further, if we are considering a resistance-velocity curve, the points
in question are not defined with precision. However, these remarks do not
apply to the final hump on such a curve, and in that case the available evidence

seems to favour the first sequence (22).
It is different when we turn to .resistance curves, such as those given by

W. Froude and by Baker and Kent, in which the base line is length of parallel
middle body. In these curves we may follow the position of a certain maximum
as the velocity is increased. If the wave-making length Z is constant, it follows
from (21) that if X is the wave-length and 2k the length of parallel middle body
at which the maximum occurs, we should have

2n+1 X-2k = constant; (27)
2

while, on the other hand, from (23) and (25) we should have

4n+1 X-2k = constant, (28)
4

where it is zero or an assigned positive integer.
It is certainly the case that over the range which has been examined the

second relation (28) fits the data very well. For comparison with present
calculations we may take one example from the results of Baker and Kent.

The figures are given by Kent, in a recent discussion already quoted, for the
case n 2. They relate to models ranging in length from 11 .2 feet to 20.5 feet
by the insertion of parallel middle body ; and the velocities vary from 290

to 370 feet per minute. We transform the results to apply to ships with entrance
and run equal to 160 feet by multiplying all lengths, including wave-lengths,
by the factor 160/11.2. In the present notation we obtain thus Table II.
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Table II.

2k. V.2.~-2k.

65 43 120 103
73 60 122 104
79 74 124 104
90 96 129 106
96 110 130 106

106 133 132 105

It should also be stated that Kent has observed the wave profile for a certain
model at two speeds, and his analysis of the waves agrees with the view that
in that case the distance between the first regular bow crest and the first stern
trough had increased by one-quarter of the increase of wave-length.

Discussion of Results.

8. We return now to the curves of fig. 2 obtained by the present calculations.
Absolute values are not under consideration, and we notice one or two other

respects in which the curves differ from experimental results. The interference

effects are very greatly increased, and this is no doubt largely due to the infinite

draught of the ship ; further, as might also have been anticipated, the oscilla-
tions in any curve do not fall off so rapidly with increasing length of the ship

as in practice.

Consider now the-positions of the maxima and minima. Take, for instance,
the curve for g/c2 = 0.0625, that is, for ), = 100-5 feet. Successive maxima
occur at 2k = 28, 128, 228 ; the differences are equal to the .:&-e-length, to
the order of approximation. This rule holds for any of the curves for moderate

velocities. Again, considering the actual positions, the maximum at 2k = 128
for the same curve evidently corresponds to n -- 2 in the formule (27) and (28),

the wave-length being 100.5. In Table II we had 2k = 133 for a wave-1k;gth
of 106. Thus, to a first approximation the actual positions are in very fair
agreement; more could not be expected, for the experimental results vary

slightly according to the lines of the model, and no attempt has been made

here to fit closely the form of any particular model.
We have now to group corresponding maxima at different speeds. It is

easily seen that the crests A3 on fig. 2 must correspond to n = 1, A. to n 2,
L t and so on; the troughs are given by the intermediate values n = -, -f, ....

We have to follow out any one of these series and find the relation between X
and 2k ; before doing so, we extend the calculations beyond the curves shown

in fig. 2.
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9. It is not necessary to graph a large range of resistance curves at each

speed to find the positions of the maxima or minima. Turning to th'e general

expression (10) for the wave resistance, we require the roots of the equation

dR/dk = 0. (29)

Since P',+I = Pn, we find that this reduces to

But we have pPC 2  (p) f4Pg (p) -pP 4 (p)21 5P 5 (), (31)
and if we write

x = gl/c2 = 2ttr/ X ; y -: 2gk/c2 = 47rk/?, = 2kx/l, (32)

the equation (30) becomes, in terms of functions which have been tabulated
here,

Y _ )P3 x2-1 P4 5 P.) {y÷2x}
xy-+ 2X- 2Te 2yX4x

+ (I P P)y+x) + {y = 0. (33)

The problem is the determination of pairs of positive values of x and y
satisfying this equation. The approximate formulae (27) and (28) are equivalent

to arranging these in series in linear relationships. For a numerical study of

the roots of (33), we have to use the tables and graphs of the P-functions to

which reference was made in §5. Starting with some value of x, we find the
corresponding value of y from (33), and it is not difficult when we take another

value of x to decide which is the corresponding root in y; the preliminary
survey of the curves in fig. 2 enables us to follow out any required sequence.

We choose here the series corresponding to n = 1-that is, the series of crests
which includes those marked A., in fig. 2. It was found that with the large-

scale graphs of the P-functions, the value of the left-hand side of (33) could

be calculated with sufficient accuracy for a graphical method to give the
required root ; except that for high velocities-that is, low values of x-the
graphs had to be supplemented by direct calculations.

Omitting the details of the work, the following pairs of roots were obtained

5.97 5 4 3-6 3 2.5 223 2 1.6

Y 0 1-7.5 3-3 3*93 4,7 5-36 AiI66 6.56
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On the scale used for fig. 2, we have 1 80 ft. ; frcin these values of x and y
we get from (32) the values of X, and 2k and so the results collected in Table III.

Table Il.

2k. X -! k. -2-2k. 2k. .2k. -- 2k.

0 84 126 105 171.5 201 131 81
28 100.5 123 9 8 196 218*6 132 77
66 126 12:3 92 244 251 .3 133 70
85 140 125 90 328 314 143 65

125 167. 5 126 84 .....

From the third column we see that the wave-making length Z of t6e approxi-
mate theory is not constant. There is first a small decrease, which we should

find emphasised if we examined a higher order of crest, say, for n = 2 ; then
for a short range it is practically constant, after which it increases steadily
with.the velocity. However, we see from the fourth column that the rate of
increase is not so large as in the alternative approximate formula.

If we had taken anv other series of corresponding crests or troughs, we
should have found similar results at moderate velocities, but with greater
increase at high speeds where the distance between successive maxima differs
somewhat from the wave-length.

9. Consider now the resistance-velocity curve for any given length of ship.
It has already been stated that the points of maximum excess or defect on
such a curve cannot be found precisely ; however, they will be in the neigh-

bourhood of the velocities for which dR/dk is zero for the given length of ship,

this being, in fact, the assumption involved in the usual comparison of experi-
mental data of the two kinds.

We shall work out two examples. First, for a ship with no parallel middle

body, equation (33) reduces to

52xP , + e5r)(2x+ P : - P){x}= 0. (34)

The first seven roots and the corresponding results are shown in Table IV.

Table IV.

1.93 4.14 5-97 7-41 8.79 10.55 i 12.14

A 260 121-4 83.9 67.8 57.2 47.t 5 W 41.4

Z 130 121A4 1214 135.6 142 143 145

V/VL 1.7 1.17 0.97 0.77 f 0.8 0.73 0.69
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The roots correspon(d to the series of humps and hollows on the resistance
curve. The third row shows the wave-making length Z, and in the last row

are the values of VIVL, where V is in knots and L is the length of the ship
in feet. The velocities which would be assigned from an inspection of the
actual resistance curve would naturally be a little higher than those found
from (34), especially where the mean resistance curve rises rapidly. We have
already considered the increase of Z from moderate to higher velocities ; we
notice here that it is not sufficient to affect appreciably the value of V/v/L for
the position of the final hump. Table IV. brings out a new point, namely,
the increase of Z with decreasing velocity. It is easy to see how this arises.
We may express it in this way : the particular model has straight lines at bow
and stern, including a finite angle, and as the velocity decreases there is an
increase in the relative importance of the wave-making properties of the ends
compared with the parts where the change of curvature is gradual; or, analy-
tically from (34), when x is large we can use the asymptotic values of the P
functions, and the roots approximate to those of P4 (2x) = 0 and succeed
each other at intervals of 7r/2. It has not been found possible to analyse
experimental curves to see if this effect occurs ; the interfe, ence at low velo-
cities is small and unimportant in practice, and the curves are not sufficiently

accurate for the purpose. One reference may, however, be given where this
effect seems to have been observed.

In a contribution to a recent discussion quoted in § 7, G. Kempf describes
some experiments made at the Hamburg Experimental Tank. The model
was of cylindrical form with a hemispherical entrance and a run formed by
the rotation of a sine curve ; it is stated that Z was not constant at all speeds,
but that the value of ,/Z increased 10 per cent. with decreasing speed from
V3 to V7 . It may be noted, as a coincidence, that in Table IV., Z increases
from 126 at V3 to 145 at V7, and this is an increase of 7 per cent. in VZ.

To show the effect of parallel middle body, we consider finally a ship of
400 ft., with the same entrance and run as before, but with 240 ft. of parallel
middle body.

Since y = 3x, equation (33) becomes in this case

(35)
Table V gives the roots and the similar quantities deduced from them.
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Table V.

x 0.625 1.27 2.02 2"73 3.45 4.14 4.83

804 396 249 184 146 121 104

Z 402 396 373 368 365 364 364

V/./L 1.9 1.33 1.06 0.91 0.81 0.74 0.68

In this Table the value of Z is given for the whole ship, without deducting
the length of parallel middle body; it is seen that in this case Z increases with

increasing velocity over the range examined. It is difficult to determine the
first root accurately by graphical methods, but it seems probable that Z is
then approximately equal to thý. length of the ship. The increase in the
higher values of V/VL as compared with Table IV. is of interest.

The particular dimensions of this case have been chosen because they are
the same as the model for which R. E. Froude obtained the resistance curve
and made the deductions described in § 7 ; from inspection of the curve,
Froude gave the f -lowing values of V/V/L for the series of humps and hollows,
namely, 1.8, 1.28, 1-045, 0.905, 0.81, 0.73, 0.68. These may be compared
with the last row in Table V.

10. The comparison which has been made between the present calculations
and experimental data has provided various points of interest. The general
agreement is rather striking when one remembers not only the general limita-
tions of the hydrodynamical theory, but the fact that the lines of the ship
have been given a simple form, and further that it has been assumed to be of
infinite draught. Except for the labour involved in the calculations, it would

not be difficult to improve the investigation in both the latter respects. For
instance, in former studies other forms for the ship's lines were used in cases
where there was no parallel middle body ; these could be used for the present
problem, and without writing down explicit equations now it may be stated

that the result is to vary the coefficients of the P functions in equation (33),
and also to introduce functions of higher orders. This will no doubt affect
to some extent the rate of change of the wave-making length; but one cannot
say in advance to what extent, and the point is one which muat be left f(,r
consideration in any future extension of the calculations.

HARRISON AND SONS, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Wave Resistance: the Effect of Varying Draught.

By T. H. HAVELOCK, F.R.S.

(Received June 5, 1925.)

1. In previous studies in the theory of wave resistance, while the water-

plane section of the model was of a reasonably ship-like form, the draught

was assumed to be infinite. In the following paper the model has the same

simple lines and has vertical sides, but the draught i, finite. The investi-

gation shows how the resistance at different speeds depends on the draught,
but it was undertaken specially for other reasons. In view of certain applica-

tions, it was important to find how the interference effects due to bow and
stern waves are affected by varying draught. It is shown now that these

become less prominent with diminishing draught, but the maxima and minima
occur at practically the same positions. Further, when the ratio of draught
to length is of the order of tho values in actual ship models, one is in a position

to attempt a comparison between the absolute vclues of theoretical and

e.perimental results.
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('n rves are shown in figr. 2 (p. b.59( )) for the variatio ofl 4 n ist an e it ,i I i vI' ()i.iy

in three cases wh-len fihe dlraiiglt is infiniite, andii when it is one-tenitli amtl ()iie-

twenitieth A the lengthl of the model. The latter val ties cover approximately

the iimal ratios in p)ractice. (hit the s-.inw (Niigrain are reprodtieed experi-

mental curves for three models of dlifferent types, the data being reduced to
the same non-ditnensional co-ordinates. Making allowance for the differences

of form between these models and for the simlplifiedl form for which the calcula-

tions have been made, the results show that the calculated values are of the
rhigt order of inagnitude over a considerable range of velocity. Differences
in the two sets of curves, such as the greater piromninence of interference effects

in the theoretical curves, are dliscussed.
The first sections of thle paper deal with the miathemnatical expressions for

the resistance, and their transformation into formis suitable for ealeulat ionl
graphis of certain integrals are given in fig. 1 (p. 586).

2. Take axes 0.' O/ in thle undisturbed surfa( , of a stream fl-owin~m with

uniform velocity c in the negative direction of Oxr, and take 0.) vertically
up)wardls. If there is a (distribution of (doublets in the liquid in thle p)lane yi u,

with axes parallel to Ox, and1 of moment (h, 0, f) per unit area, the corre-
sp)onding wave resistance is givenl hy*

It I7-y P,.j4dfjdf'jdh)_ dh' (n C'Th. Y1'4/jih' . sec3 b

x g~* ~i~s c2 cs [{g (h -- h')c)Sc] dtý (1)

Over the plane y = 0 the normal fluid velocity at the point (h, 0, f) is 27,F ý,Uh.

Talking y = a -s the fore-and-aft median planie of t he ship, wve assume t lie
action of the, Ship to be. equivalent to a distribution of normal v'elocityv over
its Section by this plane-, the di.~ribution being such that if Y F (r)i's

thle equation of thle ship's surface, we substitute in (1)

To simplify the calculations as far as possible, we shiall agsume thle :4lip

to be symmetrical fore and aft, andl to have vertical sides so as to bw of constant

horizontal Section. The water-plane section is taken to be of parabolic form,
the equation for y positive being

Tile length of the ship is 21, its beam 2b, and it is of constant draught d.

RIoy. Suc. Proc.,' A, vol. 1083, p. 79 (1925).
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We substitute from (2) and (3) in (1). Carrying out the integrations in
f, f', h and h', we obtain, after some reductions,
R = L250gpb1 9 ""6 1 -- 9e-2'e)' {Cos, + 4

(1- co 3 cos5 5

..Tp 3 J0 p"
S4 '4

I--cos3 • - -_, 4osC85 cos (p see - - cos' • sin (p see 0)) do, (4)

where p 2g1/c2, and o--= gd/cl.

3. In reducing this expression to a form su able for calculation, we take
first the terms which are non-osciliating regarded as functions of c.

A typical integral is
Jw2  -8C4d#. (5)

Changing the variable, this becomesfoe- J (1± t "-)-Ie- BXd t - • (,e- tX W ,J_ () , (6)

where W is a confluent, hypergeometric function. We can obtain an expansion
by using the contour integral for the general hypergeome 'ic function of this
type. In this case we obtain

W _.I - R -,-Alfi r(s)r(--s--) F( (7)
W- ,(P ý 27ti - i r (.75 r (j) P s 7

the contour separating the pKoles of r (s) from those of r (-s--) r (-,- - ).
We have, therefore, to evaluate the residue of the integrand at the simplepoles 8 = 1, :j " :. 1., , h

,., j, and at the series of double poles s , _, Tt...The

latter residues give logarithmic terms. Carrying out the calculation, we

obtain the expansion

W - -

r (n+ 1/2)w-• ogty(+2 V 1 - "___ ()
,%= 3 P(n-i)P(n-Z p 12p-1 I , I sY

with log y = 057722....
We obtain thus

15 =4 1--; 192 3072

20,o.-180 52 71P 0 ... I ((9., 3T )
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A similar integral which we require in (4) can be derived by differentiation,
and we have

F/2Cos 3 -ePe 0d 2eJ f1- 1 7 p _ 7_3_ 97 ý
3 2 16 96 3072

683 p 5 + (10)
"3-•7-••r ...- 8 16 256 512 ... )log .

For large values of P3, asymptotic expansions can be found in the usual
manner by transforming the integrals. They are

/ Cos Seel+ do _i, _ip- le- 11 + 1891 3465 1
2 4 P 32 p2 128 P'

+ 315315 1 (11)
2048 P4

'12 Cos 3 o see+do 17C rIieP(1 5 1 +_105 1 4725 1
2 4 P 32 P 384 iP

+ 363825ý1 I' .., (12)
6144 P4 '

On applying the expression (4) to numerical cases of interest, it was found
that the integrals we have just considered were required over a range inter-
mediate between those suitable for the series given in (9)-(12). It was:
therefore, necessary to calculate the values of integrals such as (5) directly

by numerical methods. It was sufficiently accurate to evaluate the integrand,
for each value of P, at intervals of five degrees throughout the range of
integration, and then to use Simpson's rule. The series given above were
used for checking and supplementing the values so obtained.

For the purposes of expression (4) the results were collected in tables and
graphs of the integrals

= (1 C- ea-aO'0) 2 cos 3 0d#, (13)

I.1 - e- e2"/)( cos' 0 do. (14)

The graphs are shown, on o 4s base, in fig. 1.
It can be seen from (4) how the mean resistance, apart from superposed

interference effects, depends upon the integrals 13 and I; and since M is
gd/c2, the curves in fig. 1 show how the effect of finite draught becomes
appreciable when the wave-length is comparable with the draught, the ordinates
falling off rapidly in value after that as a becomes smaller.
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4. We have now to consider the remaining terms in (4), namely, the last

three terms under the integral sign.

-0.6

-0.5

-0-4

FIG.l1.

cx d/C 2
2.* 5 3 3-5 4

A complete valuation of these over the whole range of velocity would be

troublesome ; but fortunately the range of most interest, and one in which

there is mere chance of agreement between theory and observation, corresponds
to fairly large values of p, roughly between 10 and 40. We can obtain an

asymptotic expansion which is suitable for this range. We shall write
M = gd/c2 -=p (15)

where ý is the ratio of draught to length.
Then, with the understanding that real parts of complex expressions have

to be taken, we have

.1 e-epSC2'ý4)2 cos3 _ "Cos 5 )Cos (see

-44 c -sin (p see )} do

(1 - e-OPBOO"4 )- cos• •(see + ± e

-)3,p 0 + DI i + 2"

P-P
--(7/2p)c"' ({Q (0) - 2c-"Q (2p) + e-12 PQ (4p)), (16)
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where

2i+t 2 e Y0ty 2Pd

0

The integrand in (17) is expanded in ascending powers of I/p and then
integrated term by term, using the formula

J t'dt = r (r + Da

S= (I + y2 )-j; cot 0 = y. ( )

The expression was carried out completely to inciude aHl terms of order
p- 3, and the leading terms in p-4 were also determined so as to check the order

of numerical approximation. Leaving out the intermediate expansions, it

may suffice to record the final result; we find

Q (y) -'- 8;et"1 + (4i81 e~8 -"81e!• __ e p

8j 8 / p
- ±1.c" -.,1 (1065 3 . , 255 -8,1 105 o2.,i] 1- 4•.•eli# + ° (- \ -'c)o• -•'€' -j7-i•c,•

+ f L5 81,.ýjŽ + 151
~.2 152i\+ 32/

15 21 2933]8'e ]0r -1 •.e355

16065 ye 3465 3- ,

10224 ) --- .... (19)

Collecting these results, we have now reduced (4) to the form

R _ 2569pb2l1'3 (pp) +4_ P + real part of

(7c/2p)i e"' {Q (0) - 2c-6"Q (2p) -+- e-2 1Q (4p)], (20)

where the integrals I are defined in (13), (14) and graphed in fig. 1, and the

asymptotic expansion of Q as a fuinction of p is given in (19).

5. Numerical calculations from (18) and (19) are tedious, and we have

chosen the parameters so that we require the numerical values of the coefficients
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in (19) for four values of y, namely, 0, 0.1, 0'2, 0.4. Omitting the details

of the work, we have in these cases

Q( , -77 1+) 1 "326 (1 --. ) 1 ' 237 (1-+-i) 4.755 (1--i) +_..

p p 2  p3

Q (01) 0-74+0-j- 69i-- 1.456-1.3i 1.605+--916i
p 112

_3.87--4"13i p3

Q(0.2)-0.7603-P0-628i- 1.473-1-263i 1.634+0•47iQ~~~ ~ P0 22-"0 63t0 2i

+ 0.571-6"46i+

Q( 0 .4 ) - 0' 79 8 - 0 "5 4 1i- 1.635-1-315i 1.329-0 338i + (21)
P p

6. We proceed now to calculate and graph the wave resistance as a function

of the velocity for three different draughts. The curves are shown in fig. 2

(p. 590) in non-dimensional co-ordinates, the ordinates being R/gpb2l and the

abscisse V/I/L. In the notation used, we have 2b = beam, 21 = length,

d = draught, V = velocity in knots and L = length in feet; thus

V/I/L = V(11 .59 4/p), approximately.

The first case is that of infinite draught, for which • = d/21 = o. Here (20)

reduces to

R 256gpb 21ý + 3251. + Real (cPQ (0)j. (22)
7 1P 3 t 3 1 22

This case has been calculated previously* from more complete formulme;

the use of (22) now serves to check the range of the asymptotic formulao for Q.

The second case is for the draught one-tenth of the length, or 0 - 0.1, so

that
R 256ppb2-l 13- 4/11

+ Real(-f ,'P{Q (0) - 2e-,"I Q (0-2) + -•Q (0.4)1 . (23)

Finally, for the draught one-twentieth of the length, or = 005, we have

256gpbl21 [I I +)
[ ( 2 p - ( 2 - ,

+Realq-)c" (Q (0) - 2e- 1PQ(01) + e- Q (0 (24)

R 'Roy. Soc. Proc..' A, vol. 103, p. 579 (1923).
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With the use of the g~raphs in firg. I and the ( ý:pri-ssions in (21), calculations
were miade froin (22), (23~) andI (24) for about fifteen values W ) pini each case.
The results are shown in the continuous cuirves of fig. 2, fl.i, curves being miarked
with the corresponding value of ~

7. The curves show the increasing influience of smialler draught at the higher
velocities. Although, from the differenics in the exp~ressions for the resistance,
tile miaximia an([ minimia (due to interference of bow and sterni systemis probably
do0 not occur at exactly the same positions,, it is important to notice that

the dhifferences in tlhis respect are inap)preciab~le. This agrees with a similar

phenomenon which :ias been ooserved experimentally in the resistance of a
submnergted model at different depJths ; althiough the mnagnitudle of the interference
effects var-es with th le d1epthi, the positions of thle. maximia andl minlima are
practically unAltered. Another point to note in the theoretical curves of fig. 2
ii that. at the smaller -I'raughts the effect of interference is less pronounced.

But the chief purpose of the calculations was to find whether, with a draught
similar to that of actual ship models, the calculated resistance was in reasonable
agreement with experimental results.

The values which have been choser for the ratio of draught to length, namely,
one-twentieth and one-tenth, cover :. proximately the usuial range in practice.
It must, of course, be renmbenlbcr( 1 hiat the calculated results correspond1 to a
model with vertical sides and cwr ýant horizontal cross-section, ; therefore one
cannot expect. more thanm agrevin att in order of magnitude. Three examples of
experimental curves have bet-i selectedI and are shiownv in the discontinuout;
curves of fig. 2.

The cu-rves; marked 04)475 and 0-0385 have been drawn from reguilts gTiven by
R. E. Froudc* for the residuary resistance of twvo models of thle same length

andt beami anl having the givenm ratios, of mean draugh~t to length. The results
were given as the resistance in tons for a ship of 4100 ft. length, and have been
recalculated hevre in the non-diniensional co-ordinates of lig. 2 ; the two cases are
Froude's ship A with displacement 5,390 and 4,090 tonis respectively. In
both cases there was a certain aioinit of parallel middle body.

The third curve, marked 0-083 in fig. 2, has been obtained by similar ;C~duc-
lions from expterimenetal results given by J1. L. Kentt ; it refers to his modlel

112K, whtichi lia I no p~arallelI middle body, bit hiad hollow~ lines at thle bow.
Thle curve has been filled in apiproxinmately front a smialler numnber of points
fwn in tlie hire Vi' 1cases:t ecn oeeosretee~c ftleIo o ie

* It. E. Proutit', 'TrI'ans. 1Intt. Nav. Arrh.,' 'N tl. 22, 1p. ±220 (I X$I .

t J. L. Kent, I 'Tranis. hisut. Nav'. Arch-' vol. .57, 1). 154 (¶ 91 5).
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iii thle general to)rin (if flie ciziv. The ilfcct 44i iiffcreiicies (if ftirii. other than

the rat io (if d raulght Io ellnurt I ,i. i, of c~moi.e, inilijiorta tit, and Ili tie hree cutrves

rep~roducedl in fig. 2 have been clioswn -,)that ibhis shouiild noit be overlooked
in the(, comparison between the various. curves.

W\e note first tite differences l4Netwecn the two sets of curves in fig. 2. The,

theoretical curves have niuch more prominent hunnips, and hollows, due to inter-
ferenee between bow aind ster (Iiwaves, esp~eciallyv at the lower v'eloieit ies. This
may be inherent in the appro xinmat ions made in repmlacing lthe ship b~y a cerTtain
doutblet dlistributiojn over the ine hian plane. But the effect is probabily duie
in part to) the siniplified formn with constant. horizonital sectionm ; however, this

point must be left for future exanminaItion. It is hardly niecessary, to remnark
that, when one reaches the stage of comparingz absolute values, the influence of

viscosity and turbulence must eventually be taken into account. Further,
this conisidIeration applies not only to the theoretical curves but also to thiose.
we hiave called experimental ; for the latter are derived from actual measure-
mnents of. total resistance by deducting, the frictional resistance calculated
according to an empirical formula, the resid Iua ry resistance so obtainied being
chiefly deto waeInkn. It ay be that the effect of fluid friction on
the wvave- ntking could be expressed by a slight alteration of the equivalent
wave-makingr form of the ship. The curves (of figr. 2 show also small
(differences in the positions of the interference mnaximia, but this is, of course,
dute to the different lines of the various models.

When every allowance has beeni made for differences of form aAi other
conisiderations, the curves of fig. 2 show over a, large range ol velocity a gene~ral

ai'reemnent b~etweemn theory and observation, which is very interesting andl

suggestive. Further approach to shuip-like f irm may enable us to remove

sonic of the remaining dif-rerenees, andl should in any case be of service
in the interpretation of experimental results.

)JURauSON AND SONS, Ltd.. Printer@ in Ordinary to H~is Majeuaty, St. Martin's Lane.
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IWave Resistance: Sovoe Cases of Unsywmetrical Forms.

By T. H. HAVELOCK, F.R.S.

(Received Novemnber 14, 1925.)

1. One of the chief features of interest in curves showing the variat. ,n of wave

resistance with velocity is the occurrence of oscillations about a mean curve,

which may be regarded as due to interference between the waves produced by

the front and rear portions of the model. In various comparisons niade between

theoretical curves and such suitable experimental results as are available, the
greatest divergence is perhaps in the magnitude of these oscillations, the theore-

tical curves showing effects many times greata, than similar experimental results.

There are, no doubt, many approximations in the hydro-dynamnical theory

which preclude too close a comparison between theoretical and experinental

results in any particular case, but it seems fairly certain that the divergence

in question must be largely due to neglecting the effects of fluid friction. For

several reasons it is useless to attempt at lpresent a direct intro(duction of vis-

cosity into the mathematical problem, but a consideration of its general effect

suggests one or two calculations which may be of interest The direct effect

of viscosity upon waves already formed may be assumed to be relatively small ;

the important influence is one which makes the rear portion of the model

less effective in generating waves than the front portion. We may imagine

this as due to the skin friction decreasing the general relative velocity of model

and surrounding water as we pass from the fore end to the aft end ; or we may

picture the so-called friction belt surrounding the model, andi may consider

the general effect as equivalent to a smoothing out of the curve of the rear portion

of the model. Without pursuing these slpeculations further, they suggest

calculations which can be made for models in frictionless liquid when the form

of the model is unsymmetrical in this manner ; and the pirticiular point to be
examined is the effect of such modification upon the magnitude )f the inter-

ference phenomena.

The first sections compare, in this respect, two bodies entirely submerged in the
liquid. The form in each case is a surface of revolution ; one is symmetrical

fore and aft anl has sharp lxinted ,nds, while in the iother the rear lportion is

cut away so as to come to a fine lirit. lvY instction of the expressitons for the
wave resistance it is seen that the oscillating terrms are of a lower order of

mnagnitude in the latter thaim in the former case.
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The remaining sections deal with the similar l)rob)lemn for a model of infinite
draught and constant horizontal cross-section ; the forms of the Section for

the two cases are shown in fig. 1. Here, with the helpl of tables awl graphs
available from previous studies, the expressions for the wave resistance have been

graphed and the curves are shown in fig. 2. The result of smoothing the lines
of the rear portion is very marked. It makes the curve like experimental
ones in this respect at least, that the curve is a continually ascending on( in
the range shown; the siuperp)sed oscillations are not large enough to make actual

in itiia and minima. A more complete study of the progressive effect of
small changes in the rear half of the model would involve very lengthy calcu-

lations ; the examples given have been chosen for the comparatively simple

form of the mathematical expressions. It is to be understood that they are

not intended as a direct representation of the actual effects of fluid friction ;
but they show the great (lifference in interference effects whiich are prodluced

by an asymmetry of the general nature suggested by them.

2. The fluid motion produced by a body entirely si vub)nerged in a uniform

stream may be investigated by the method of successive images. The first
approximation consists of the distribution of sources and sinks which is the
image of the uniform stream in the surface of the body the second is the

image of these sources and sinks in the upper free surface of the stream, anl the
process could be carried on by successive images in the surface of the lo)(y and

the free surface of the stream. After the second stage tile expressions Ibecome
very complicated, as the image of a single source in the upper free surface is a
distribution of infinite extent, along a horizontal line at a height alove the free
surface equal to the depth of the source. It would be of interest to carry the
process further in some simple cases, but at present the second stage must

suffice ; it can be seem; that. in general, this implies that the ratio of the maxi-
mum vertical diameter of the body to its depth below the surface mu.t be

small.
For the first stage of the approximation, instead of finding the image system

for a given form in a uniform stream, it is more convenient to begin with a
given distribution of sources alnd sinks and deduce the form of the body. As
we shall deal only with surfaces of revolution, we assume a line distribution of

finite extent along a line parallel to the stream. Writing down Stokes'

current function, the form (if the bodyV may be- foumnl b graphical mw,thods
(devised by Rankine and a pl,liell to .hilplike foirms by 1). W. T.Lylor and other

writers.
Let the streaw, of wvhocity c, be parallel to Ox and let there be a source
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(litrllti~n f t rng I f (x) alonag piortion of the axis of x ; thien. with Co as

distance from O x. thle velocaity po tential and stream function are given by

= ~* f (h) dh(1

Q - ).f (2)

Thie forma of the oh Li obs dta&iined fromu the eqaatih n -- 0. The graphical

Inethod Is first to graph the inltvgrral in (2) uipon Co as a base for given values

of x, obtaining a famiily of cuirves each corresponding to a constant value of

£ ; thenl onl the 5.auiie diagrami the para bola, = L-C'- is drawn. The inter-

sectUill,, of the piarabola with the faiyof cur'ves give pairs of corresponding

vailues of x and Co onl the zero stream linle.

It is obvious that if f1(h) is finite, not zero. at an~ end( of the range of sources

then the l)o(IV has a b~lunt end ,and further, the lengi hi of the body is greater

thanl the lengTth 01' th lie rlige. If f (h ) i, zero at b othI elnd s. thle b)ody has a

sharp point at ibothi elids anal its leuigthi is e(tajlI to thle lenlgthI of the range

if, inl .1dut ion, f ' (h) is zero at an iind. t het shiarp I a int at t hat end is one of zero

angle.

3. Iln conisiderinig thle seconla a pproximnat ioni in uely. the imiage of the

,list rilautiozif(h) in thle uppe-r free surface of the st realil. it is miore coniveniient

to IUSe as thle eaIV1iieiitar 'V Vssteti a dIoublett withi its a xis parallel to thle stmrami.

As we are dalI~imug wit hi so lial Ilo lies of finite size, we can in general repalace the

line oif sources andl siniks bY an equivalentitnhe (of d oublets ; thuns instead of (1)

wp have

Cj .
(x3)I) h)d

provide laI'4 (hi) f(h). andl ý (ha) is zero at bait i 1intits. (Consider now a solidi

of revoilultion withI its a xis ho rizontal andala at a. depth f below thle surface, thle

friarn be'inig such that lie imaruag of t li unii fo rmi st rea la in it is a line of doublets

oif inonuen-lt 'ý (h). Thea imi age ofa t his sYsteni in the free surface can hae shown

to ha, a certaini aist ril~i'it n (of ala lilalet s (if infinlite ext eit alum ag a1 line at a height

f aba e thie surface. Fa ir t he piresent purl m ase we' shiall quo te the expressio n foir

lie wave' raesistanlce*

It z_ h6.Tg'&c~ (h) 1/, J h)(/'t .1 (f w/ser

COiS I q (hi -- It'),a see 9aJ 1.-`Yf 14' ý,4d I)
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We shall consi(ler two cases, one a sharp-en(hed form which is svmmietrical fore
and aft, while in the second case the aft end is curved to a fine point.

4. For the first case we take a spin(dle-shaped body which has been iused for

experimental work at the National Physical Laboratory ; for this form the

"source distribution is

f(h)= a{(hi) -- (h1l)3}; - l<h < 1. (5)

The shape of the surface for this case has been given by Perring.* It is suflicient

to state here that it is a, surface of revolution symmetrical about the middle

cross-section anmd having pointed ends with finite angle of entrance ; it can be

made to have any required ratio of breadth to length.

We can, in this case, carry out the integration in (2) and obtain the equation

of the longitudinal section. It is found that with 2b as the breadth of the

model, 21 its length, and 8 the ratio of b to 1, then the constant a of (5) is equal

to Ia :bc, where
a o8/[ 152+b8)4(3t 2)- 82(1+_182) log (8(+(1+82)2)6)

The equivalent distribution of doublets, given by the conditions stated in

(3), is
(= - I~a (I - h2/t) 2. (7)

Substituting in (4) we obtain the wave resistance
R -4•g~pa~c8 J , 5 se 5  e(241t-)SeC2* do, (8)

where

,= 11(1 - U2)2 CoS(giU/co 0) du. (9)

After evaluating (9), the expression (8) can be reduced to standard form as

-256.-pbJ , + -1os 144

60 14 :

(coS • - cosO F 14- cosW ) coS (psec s )Ii- 7'

± 12 (, 0  
- 12cos' i 4 do, (10)

3 ),il( e

where f f/l, p 2gil/c, and a is given in (6).

An asymptotic expinsion suitable for large values of p could be obtained,

but calhulatimi from it is very te.lious ; ht, parti ,hlr point iulder consideration
call be made by rollparisoll with the simiilar expr'essioii for the second case.

W. G. A. Perring, 1''rans, Inst. Nay. Arch.,' vol. 67, p. 95 (1925).
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Wave Resistance: Some Cases of Unsymmetrical Forms. 237

5. For comparison we require a solid of revolution of which the front end
is a sharp point of finite angle while the rear end is cut away to a point of zero
angle ; there will, of course, be a point of inflection in the curve of the rear

portion.
This is obtained by taking the source distributior. to be

f(h) == ah (21 -- h) (31 + h)2; -31 "x <.21. (11)

The equivalent doublet distribution over the same range is

ý(h) = - j a (21 -- h)2 (31 + h)3. (12)

The outline of the model was found by the graphical miethods described in

§ 2; the work is not reproduced here as it was only carried out with sufficient
accuracy to verify that the curve was of the required type. A similar curve is
shown later in fig. 1. Thu model has now a length 51, and it is not symmetical
fore and aft of the maximum cross-section.

From (4) we find the wave resistance

R =~grgpa2e-SJ(L ± J2 sec e(fc)c 2 do, (13)

where

I +iJ a =- (21 - h)2 (31 + h)3 ehh.c2cod (14)

Evaluating (14) and substituting in (13), the terms can be collected in the
same form as in (10); if we write, with 2b as the maximum breadth of the

model,

a mbc/1251', p = 5gl/c;, P = 2f/51, (5)

we obtain ultimately

- 320•r• 21b C"os + 18 coS + 432 cos,5 ± + 7200 co°7,

-6 cos Cos + L2 o6 ( o sin (p sec#)

S6F- +os 4cos7 #) cos (p sec #)1e4-SCV" d.

(16)

We may now compare (10) and (16) as regards the matter under discussion.
Wo imaginw tlhe resistance graphed as a function of the velocity, and we corn-
pare the relative, magnitude of the oscillations sulperposed upon thl inean
curve. The terms in (10) and (16) which give rise to these oscillations are the
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terms factored by sin (p see 4) or cos (p sec ý). For large values of p, we
have an asymptotic expansion of any of these terms in the form

/2 Cos" eeip of-t seC2 d p0e'd (ao + alp- I + a 2p- 2 +...). (17)

Moreover, in practice, the interference effects concerned are prominent for
larger values of p, say, for the range 10 to 40. Now from (10) wa see that
the expansion of the oscillatory terms would begin with a term of order pA,
while from (16) the lowest term is of order p-3. It follows, therefore, that the
interference effects have been largely eliminated by the alteration made in the
form of the model. It may be noted that the alteration is rather extreme if

considered as an illustration of practical conditions, in that the after end of
the model is cut away completely to zero angle ; this accounts for the complete
absence of the term in p-i in the expression for the second case.

6. To examine the matter graphically, it is easier to consider a model of
infinite draught, and of small ratio of beam to length, in the manner used in
previous papers. The model is assumed to be .yrnmetrical about a longi-
tudinal vertical plane. Take Ox horizontally in this plane, and let Oy be also
horizontal. The form of the horizontal cross-section of the model is constant;
if its equation is

y = F (x), (18)

for positive values of y, the approximation consists in taking the doublet
distribution of (4) so that

2nc 0+/8x = cFax. (19)

Integrating (4) by parts with respect to h aid h', substituting from (19), and
also integrating with respect tof and f', we have

423F F ?F '12 9g (h -
Roos -P d h') , secCos 0,d#. (20)

We wish to contrast two miodels wh;ch have the front half the same, but with
the rear end smoothed off to a finer point in one case than in the other. We
shall take the section of unsymmetricai form to be given by

y =-(b/4/1) (l- x) (21.+x)2; 21< x < 1. (21)

For the symmetrical model we shall take the front portion to be given by (21)
for x positive and by the corresponding expression for x negative. The model
in one case is of length 21 and in the other of length 31. The cross-sections by
a horizontal plane are shown in fig. 1.
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Fia. 1.

7. Taking the symmetrical case first, we obtain from (20),

1 - 9pb-d- 1  Jcos 0 do, (22)

where

+ = f (2u + it) sin (Qlu/&- cos ,) du. (23)

From these we have, after reduction, ant writing p for 2g/l/c 2 ,

R- 324qpb2- f2 128 1 . 1024 1 ± - 61 P41()
p3  ( 3 135 p- 105 p4  3 p

+ 1121,P128 1 3 PC W + 64 p W) 32 1,
9 p:- -- 3 -9

256 1 256 1
9 9 9 P ) (24)

with the notation

p.. (p) =(_ y~ ,o,,S 2 sin (p see b) do,

P•+'•, (+) =o( -21F) + co••1 +l •cos (p sec o) do.

Using sequence relations for the P functions, we redluce (24) to a form
involving only P3, P4 and Ps; tabulattd values of these have been given

previously,* and in ad(lition largp-sa(le graphs of the three functions were
available over the range ot J) froui zero to 40. These graphs have been used
also in the present calhulatinns , the ret(luced form of (24) from which these

have been made is

H ~324gpb21 (2' 0 + 9-1822 +9752 '+1,(-- =5 + + " f- ( I + W•' p
p- 1) p" I

-4)i v (P) + --( -! - ) Pý (p)

+ 21 P3 (!p) - . '4  ( 8,) - ,,pýP) (25)
p p 'p' 2

* ' Roy. Soc. Proe.,' A, vol. 108, p. 82 (1925)
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Tile grap11 is shown in curve A of lig. 2, tlie base being c/V/ (2 y!).

8. For the unsYmmetrieal model (if fig, 1, we have

I (t9p b"--7) (12 + J") co- 0 db, (26)

where
I +- i3 = (2jq + • ,'""4'di. (27)

. -2

In this case the reductD.ios lead to,

2187qpb"2 1"2 , 61 1 1152 1 2 8T (p) - 28);1))
- - 4.-- - .t 1 , -! 1:5 p' p p

- ._- p, (p)- 17 -p) (2P)

where, p is now .qj/,2.

For purposes of calculation this is put inl the form

) 2187"qpb 21 (2 64 1 1152 1 9(
4'3-, 1: (p)

47 :1) p" :35 27) Lp-

P1,4 (1) - (3 P (-)}- (29)

The graph of (29) is slhowi inl curve1 B of fig. 2.

-0-25

"2

S""

0"2 0 -24 0-26 028 03 0'32 0"34

Fig. 2.

9. The curves for the two models are given with thie ,gatne co-ordinates,
Pamely, R/!qpb-l and c/l/(2:qI) ; siln(e the lehigths of the models are different,

the maxima and minima of the superposed oscillations occur at different

speeds in the two cases,
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The difference in the magnitude of the interference effects is sufficiently

obvious from these curves. The variation in the form of the modeils shown in
fig. 1 is considerable, and it would have been of interest to compare forms
intermediate between those shown for the rear part, of the model ; but equa-
tions for such curves led to e::pressions for the wave resistance which were too
complicated for numerical calculation. However, it may be inferred that for
any ease in which the lines of the model are smoothed out in this manner

there will be a very considerable reduction in the magnitude of the inrterference
effects.

HARRISON AND SONS, Ltd., Printers in Ordinary to His Majesty, St. Mart-in's Lane.
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SOME ASPECTS OF THE THEORY OF SHIP
WAVES AND WAVE RESISTANCE

By PROF. T. H. HAVELOCK, F.R.S.

The Paper gie'es a general survey without detailed cideUI(tiwts, of
attempts made during recent years to develop the mathematical theory
of wave resistance. The first section is a short statement of the general
problem from the theoretical point of view, while the two remaining
sections describe some results which hare been btabined by indirect

o f tacks. It is shown first how calcudation., with travelling pressure
dsturances. -llu.strate such problems as the rariatint of &,ive res:'stance

with speed, the interference of bow and stern waves, and the effect of
shallow water. In the last section the ship i.s regarded cs eqwivalent
to a certain distribution of sources and sinks in the fluid, problems
discussed briefly in this section are the effect of the form of the uqzter-
plane section, of the length of parallel middle body, and of varying
draught. Cu'rves are reproduced which show the results of these
calculations, and same mathemnatical notes and fwrther references are
given in an appendix.

N EARLY forty years ago Lord Kelvin delivered to the Institution
of Mechanical Engineers a lecture on ship waves which is

familiar Ito all students of this subject. I may venture to appropriate a
paragraph from that lecture and to quote it now in addressing this
society: "I must premise that, when I was asked by the Council to
give this lecture, I made it a condition that no practical results were
to be expected from it. I explained that I could not say one word
to enlighten you on practical subjects, and that I could not add one
jot or tittle to what had been done by Scott Russell, by Rankine, and
by ,the Froudes, father and son, and by practical men like the Dennys,
W. H. White, and others: who have taken up the science and worked
it out in practice."

My object is to discuss the wave resistance of ships as a problem
in hydrodynamics. It is, of course, impossible to do so adequately
without the use of mathematical analysis which would be unsuitable
for a general lecture. I must therefore be content to give a mere
outline sketch, aiming at giving some idea of the theoretical point of
view and of the sort of contribution which mathematical theory can
make to the scientific discussion of our problem. Such an outline suffers
ihevitably from two drawbacks: on the one hand we can only glance
at the various practical problem,3 which are suggested, and on the
other we are not able to do justice to the mathematical interest or
the theoretical treatment. It may, however, serve in some measure
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4 THEORY OF SHIP WAVES AND WAVE RESISTANCE.

its main purpose of being a general account which may be of value
to the student of this aspect of the science and at the same time be of
interest to those who have not the opportunity of studying the

mathematical theory for themselves.
Some formuhe and references will be found in notes appended to

this lecture, and I am indebted to the Royal Society for permission
to reproduce the diagrams.

Tim. GENER.\L PROBLEM.

We wish to know completely the fluid motion produced in the water
when a ship is towed along at constant speed, and the first step is
to see what information is necessary before we can attempt to find a
solution. We can group this under three heads: (1) the laws of motion
of the fluid, (2) the forces acting throughout, and (3) the conditions
at the boundaries of the fluid. We are faced at the outset with ihe
difficulty of saying what are the laws of motion of an actual liquid
such as water. We know that water is viscous and we can write down
equations taking the viscosity into account; and we can also solve the
equations in simple mases if the velocities are not too large. But we
also know, unfortunately, that those solutions break down completely
when the motion becomes eddying or turbulent. It is not my intention
to discuss here whether the difficulties arise because the solutions of
the equations of viscous motion are inadequate or because the equations
themselves are incomplete; in either case the inclusion of fluid friction
in our problem would complicate it so much as to make progress
almost impossible at present.

We are therefore compelled to assume the liquid to be frictionless.
This is no doubt a serious limitation, but perhaps not so important
if we confine ourselves meantime to qualitative !nd comparative con-
clusions from our results. Moreover the direct influence of viscosity
upon the wave motion is comparatively small, and indirect effects might
possibly be allowed for later by some adjustment of the effective form
of the ship. However that may be, we can only make any advance
by separating frictional resistance from wave resistance, and we there-
fore assume the information required under the first head to be the
laws of motion of a frictionle•s liquid; these are equations connecting
pressure, velocity, and acting forces, and their rates of change
throughout the liquid. We may dispose of the second head by simply
taking the acting forces to be those due to gravity. Under the third
head, the conditions at the boundaries are of two kinds; at the free
tipper surface of the water the pressure must be the atmospheric
pressure, while at the wetted surface of the ship the condition is simply
that the water must remain in contact with the ship or that the,com-

p'onent velocity of the water at right angles to the wetted surface must
equal at each point the component of the ship's velocity in that
direction.

250



TII1(OR•Y OF 81111' WAVES AND WAVE REISISTANCE.

Our problein is now stated in a ftrni in which we know, from

gencral theory, that we have all tihe inforifuation necessary for a complete

solution ; this solution would! give us thle velocity and pressure at every

point of the water, the forin of the free surface or the wave pattern,

and moreover the resultant of the fluid preitiures on the surface of the

ship would give the wave resistance.

It is instructive to bear in intinl the general problem so stated,

b'ut it niust be confessed at once that the direct attack leads to,

calculations which have hitberto l lrtedI far too C•tnJicalted for tht,
mathematical nietlitols available. Even if we replace the ship's surface
by simple gcoietrical for:is, tie problem is extremely difficult; in fact

the only direct sollutions obtained so far, and they are approximate, alre
for spheres and other bodies of siinple form enutirely submerged at
some distance below the surface.

It niight appear that we have not gained much from our rigorous
forwulation of the ltroblet,, and no d(tubt it is not often the case
that a practical problem admits of a tlirect and complete theoretical
solution. But theory is usually built up by devising and solving

simple cases; these often give in themselves valuable s'uggestions, and
we may then entleavour to approximate roire and more closely to the
actual problem. The preliminary survey is necessary to guide this
process aiong lines which are likely to prove useful.

My main task is to describe now some indirect attacks which have
been made, and I shall consider these in two groups. In one case
the leading idea is the pressure between the water and each element
of the wetted surface of the tship, while in the other we fix our
attention more upon the horizontal velocity produced in the water by
the motion of the ship through it.

TRAVELLING PRESSURE DISTURBANCE.

When the ship is in steady motion there is a definite normal pressure

at each element of the wetted surface. From a dynamical point of
view, that is the function of the ship. We could imagine those pressures
to be supplied by any means we please, for instance by jets of air
properly adjusted, and the motion of the water would be exactly the
same. We have now removed the ship and have applied to the surface
of the water a definite distribution of pressure, definite for each
velocity be it noted. The solution of this problem would give us the
form taken by the surface of the water; one part of this would
necessarily be a depression of the same form as the ship, while the
rest would be the accompanying wave pattern. Now this is merely
the general problem over again, with the complication that the pressure
distrilbutium depends upon the speed. Rut it suggests that we shoul I
study the wave patterns produced by simple distributions oif pressure

applied normally to the water surface.
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Localized Pressure.-To begin with the simnplest type we may picture
a fine jet of air impinging on the water surface; we could call this
in the extreme caR.e a point pressure system, or more generally a
distribution of surface pressure synimetrieal round a vertical axis.
We may imagine the jet to move horizontally with constant speed, or
we may study the equivalent problem of a stationary jet of air directed
sown on to the surface of a uniform stream. Everyone is familiar
with the simple and beautiful wave pattern produced in this way, and
we are encouraged to proceed with this line of attack by the fact that
the pattern is so similar in its main features to the waxes produced
by a ship.

The mathematical solutioni of this problem can !,e obtained co~m-
pletely, provided the surface waves are not too large the wavw pattern
shows the well-known transverse and diverging waves contained within
lines making angles of about 190 28' on either side of the line of
motion of the system. Leaving on one side the discussion of the wave

R

FIG. 1.

system let us consider what is perhaps less familiar, the corresponding
wave resistance. We are coar:idering a pressure system applied to
the water surface and moving horizontally with constant veloci,,,;
accompanying the system there is a steady wave pattern. Suppose
now that we place over the whole surface of the water a smooth rigid
cover exactly fitting the surface at every Voint, anl let this cover move
horizontally with the same velocity. We could now remove the jet, or
other means by which we applied the pressure systein, for this function
will now be performed by the rigid cover; and the fluid motion will
be exactly the same as before. Moreover, at all those outlying parts
where the surface pressure is the same as atmospheric pressure, the
cover could obviously be cut away; and we are left with what corres-
ponds to the ship in this problem. Let me repeat that in the actual
ship problem we are given an assigned depression in the water surface,
namely, the surface of the shipl; we have ieldlaced this by a problem
in which the pressure distr-ibution is assigned and the ship is, so to
speak, made to fit the surface disturbance. The reason for doing this
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is simply that the latter problem can be solved mathernatically in
certain cases.

It is clear that the wave resistance is the resultant of the surface
pressures when resolved in a direc'tion opposite to that of the motion.
These calculations have been carried out (Note 1), but we shall only
consitlc.r here the graphical form of the results

Fig. 1 shows the variation cf wave resistance R with the velocity.
The pressure system is of a certain localized type, symmetrical round
a centre which moves over the surface with constant velielty c; the

quantity / is a length which inav be called the effective r.ad1ius of the
applied pressure system. There are various points of interest in this
curve, hut I shall onlv mentinn onie ,," two which have their analogues
in ship resistance. Notice that the wave resistance is very small at
low speeds. Then it Ihegins to increase rapidtly and reaches a na.mmium

0,$

.02

0 " 'a 1-0 I, . .

Fio. 2.

when the speed c is about equal to (gi); this means that the wave
resistance is a maximum when the length of the transverse waves
produced is of the same order as the length of the pressure system.
After this stage the resistance deereases gradually to zero. A little
consideration will show that this last result might have been anticipated;
it may be described as a sort of planing or smoothing action of the
pressure system when the velocity becomes very large.

Shallow Water.-Before we leave this elementary pressure system

we may use it in another interesting problem. We have assumed
s1, far that the water is very deep, but we can examine the effect of

shallow water by adding the condition that at the bottom (f th6 water
the vertical velcityv must vaniih. The worli becomes more diffticuh
hut fermial soluti,,ns can be obtained and calculations made fr,,m thenm

(Note 2). We knuiw that on water of depth h the speed of transvers.
waves cannot exceed the 'alue 4(yh). which is the sel'ed of the so-called
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8 TMIOIRY )F SIPIj WAVES AND WAVE RESISTANCE.

wave of translation. The waves produve~l by oulr travelling pressure
system agree in character with this fact. Below the speed %I(gh) the
w~ave pattern is similar to that in deep water, the heights of the waves
being increased; but at hiher speeds the transverse waves have
disappeared and the pattern is made up of diverging waves only.

Here are some curves, in Fig. 2, which show the corresponding
changes in the wave resistance. The numblers marking the different
curves are the ratios of the depth of water h to the length / which
measures the linear dimiensions of the applied pressure system; each
curve gives the variation of wave resistance with velocity for a given
depth of water. The curve marked o is the curve for deep water
w~hich we have alhead,- discussed. The progressive changes in the curves
as the depth is diminished should be noted; but consider in particular
the curve marked tU75. Notice the greatly increased resistance com-
pared with deep water so lomng as the speed is less than a certain value,
andl the rapid fall after that point with the resistance ultimately
becoming less than in deep water. The velocity at which the change

FIG. 3.

takes place in this case is, frcm the graph, about 0.86 V(gf); and,
as the depth h is 0'75 J(gf), this velocity is practically equal to •/(gh),
the speed of the wave of translation. This result is in general agree-
ment with various recorded experiments on the effect of shallow water
on the wave resistance of ships.

Interertnce A'fiects.---Returning to the easier case of deep water,
we can illustrate the interference of how anti sie,'n wave systems. We
shall call a system in which the applied pressures exceed atmospheric
preasure a positive pressure system, and one in which they are less than
atmospheric prersuroe a negative system. Let the travelling system
consist of a positive system of the kind we have been conidering
together with an eqial negative system at a fixed distance to the rear
of the positive one. The combdined wave pattern is obtained sim'plN
b'v sumperlposiing the waves luo i•o the two svstel us sielparately. and al:
expre.ssioin for the wave resistance can also be obtained (Not, :3). The

resistance is riot the stnu of the reNistances ,41we to the two ,';sti.is
separately, olwi\i is Ile. e %%mildi l1w nine otf ihe si-valled interference
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effects; the combined effect oscillates about the mean sum according
to the positions of the crests and troughs of one wave system relative
to those of the other system. Fig. 3 shows a graph uf the wave
resistance calculated for a certain case of this combination; it shows
the typical bumps and hollows, and the mean curve.

It may be asked why we illustrate the wave-making actioua of bow
and stern by positive and negative pressure systeins respectively, instead
of by two positive systems or two negative ones. The best answer to
this question seems to be that we find that this combination gives the
humps and hollows on the resistaace curve in the same sort of sequence
as for a ship. Another way of expressing it, is this: we know fioti
observation that the bow and stern produce wave patterns which are
similar in character except that where there are crests in one pattern
there art troughs in the same relative positions in the other pattern,
andi vice versa; the simplest combination of pressure systems which
gives the same effect is obviously the ono- we have used, one system
being positive and the other negative.

General Pressure System.-We might now attempt similar calcula-
tions for a continuous distribution of pressure such as would be
i.ssociated with the motion of a ship. So far these have only been
carried out in certain cases of two-dimensional fluid motion, that is
when the wave motion consists only of straight-crested transverse waves
we need not consider these in detail here (Note 4). One point should
be mentioned to avoid possible confusion. We have already remarked
that the action of bow and stern is similar to that of positive an,1
negative pressure systems. But the actual continuous distribution of
pressure round a ship is different; it ifi symmetrical fore and aft of
the midship section as far as its general character is concerned. The
excess pressure begins by being positive near the bow, it then decreases
rapidly to a negative value, relnains more or less constant over the
middle length of the ship, and then increases rapidly to a positive
value again near the stern. Now a little consideration shows that the
places which give the main part of the wave effect of the whole system
are not the regions where the pressure is uniforna, whether it is positive
or- negative, tiut those places %here the pressure is changing rapidly.
here we have ikear the how a rapid change from positive to negative,
while at the stern the change is romn negative to positive; the nett
result is that in the wave patterns arising froum bow and stern respec-
tively the relative positions of crest and trough are interchanged.

One recogniL:es that the results which have been reviewed in this
section are necessarily only illuistrative of the actuial ship problemo
They are hieverthael.- intrt il andl Isae~ti~e. and stollent,4 off ih,
stliject will 6! familiar with ithe ,lst- thai h11 Ielt 1utale bhv 'ariqiul.
writers (if lhe uotion of pressiare di triihutiotn it interpretingr talrves of

wave resistance obtained front experiments with ship imiilels.
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10 THEORY OF SHIP WAVES AND WAVE RESISTANCE.

D)ISTRIBUTIONS CF SOURCES AND SINKS.

Let us consider now another method of treating the wave-making

action of a- ship. It is obvious that the bow and entrance of the ship

produce in the water an outwards horizontal velocity on either side,
while the run and stern give rise to component velocities inwards. We
can also see that the same sort of effect will be produced if we remove
the ship and replace it by some apparatus which supplies water where
the velocities are outwards and removes it where they are inwards.
This picture suggests one of the most fruitful devices in hydrodynamics.
the study of the motion produced in a fluid by the presence of sources
and sinks, that is points at which fluid is introduced or withdrawn at
a uniform rate symmetrically round each p-3int. Just as in the
previous section we might begin with simple cases, for example a source
travelling at uniform speed at a constant depth below the surface and

followed at a fixed distance by an equal sink. The wave motion
produced by this combination can be calculated; and we can generalize
the results, with certain limitations, for any distribution of sources
and sinks. We need not delay over the simpler cases, but let us see
now how we may use this idea in the ship problem.

D

7AAD

FIG. 4.

Consider the vertical section .-f Lhe ship by the median plane
running from bow to stern. We replace the ship by a distribution
of sourc: -.nd sinks over this vertical section, so arranged that the
horizontal velocity o~itwards or inwards at each point is equal to the
same component of the velocity of the corresponding element of the
ship's surface at right angles to itself. This is, of course, an approxi-
mation; the chief limitf-ion is that we must assume the lines of the
ship to be fine, so that the angle betweun the ship's sarface and the
vertical median plane is small.

Without going into the details of any one problem, I shall describe

now some results obtained from three sets of calculations made on
these general assumptions.

Form of W,:v.r-plane Section.--Suppose that we wish to examine
the relative effect of making the lines at the bow finer and increasing
the beam of the ship, the displacement being constant. We shall
simplify the work by assuming the draught to be inlinite, which means

simply that it is large compared with the wave length at the highest
speed; we are not concerned with absolute values of resistance, and
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THEORY OF S8I1P WAVES AND WAVE RESISTAYCE. 11

this asuLIlition is not likely to afect much the comparative values,
We imagine the ship to have vertical sides anti con•sant horizontal

secti•ot; andI we clhlsi ier a series of mijodels in whiht tihe length is

constant, the beami ant the lines altering in such a way that the area

of the water-plane section is unaltered. Calculations have bee't made

for four models in which the lines can be expressed by simple mathe-

matical formulhe so that these conditions are satisfied (Note 5). Fig. 4

shows a quarter of the water-plane section for the two extreme models

of the set and the Table gives some further details.

MODoICs OF CONSTANT LVNGTU AND Dit;PiAczmENT.

Model. Beam. Water-plane coeff. Bow and stern lines.

A 1.0 0"667 straight

B 1l042 0"64 straight

"" 1072 0-62 Hollow

D 1136 0.587 Hollow

The calculated curves of wave resistance for these'four models are

shown in Fig. 5.

B

AA

-40

2
.30

-20

gto

IIG. 5.

The ordinates are the wave resistance R on a certain scale, while

the base is V / VL where V is the speed in knots and L the length in

feet. Look at the curve A, which belongs to the model of more normal

lines. There are the typical humps and hollows due to interference,

enormously exaggerated in value, but they occur at values of V/ /L

4 which agi-ee sufficiently well with experiment; for instance, there is a

prominent hump at V=i'04 ./L. We can trace also from the set of

curves the general effect of putting the displacement more amidships.

The chief point of interest is the intersection of these -urves in pairs

of values of V/i/L ranging from 1"12 to 1*18. Now this set of
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12 THEORY Ob SHIP WAVES AND WAVE RESISTANCE.

calculations corresporis to a simplified form of certain well-known [
sets of experiment with ship models, into the details of which we
need not enter. It may be sutflicient to quote one example, which is
typical of the results. D. W. Taylor, referring to a series of experi-
inents with models 4f the saine displacement and of varying midship-
section coefilcients, states that the models with full midship-section
coefficients dfive a little easier up to V/,JL equal to 1"1 to 1'2, and

Y
B

0 o_ _ _ _ _ _ _ A_

- -2k--- --

FiG. 6

the models with fine coefficienis have a shade the best of it at higher
speeds. The agreement with the intersections of the curves in Fig. 5
is rather striking.

Parallel Middle Body.-Take now the simple form of maodel A and
insert varying lengths of parallel middle body between bow and stern.
so that the water-plane section is like Fig. 6.

IIAA

-ia AA

A8 9

14

A 6

126 90bL

/

A A.

SI I .... I I I I 4.. ... L.....i ".

340 300 ZeD Z ?0 1SO 2 k 140 too 60 20 0

Fio. 7.

The calculations lead to curves showing how the wave resistance
at a given speed varies with the lengih of parallel middle bedy (Note 6).
Some curves are shown in Fig. 7. The base is the length (2k) of
parallel middle body, and the entrance and run were each taken to
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be 80 feet; these lengths were chosen simply because they were ihose

adopted by W. Froude in recording the resuPl- of his original experi-

ments on this effect. The nuiniher imarking each curve is the wave-length

of transverse waves at the speed for that curve.

We shall only compare these curves with experimental results in one

respect, namely the positions of the maxima and minima, a matter

about which there has been considerable discussion recently. There

have been two interpretatfins of the experimental results put forward.

On both of them the bow wave system is supposed to begin with a

crest and the Jtern system with a trough, positive and negative systems

as we have called them; therefore there will be a maximum on a

resistance curve when there is an odd number of half wave-lengths

between this crest and this trough. The difference between the two

views is that in one case this distance between first bow crest and first

stern trough is supposed to be constant for all speeds, while in the

other it is said to increase with the speed in such a way that the

increase in this distance is equal to one-quarter of the increase in the

corresponding wave-length. Let us follow some particular maximum

on the curves of Fig. 7, say A,; on both views this corresponds to three

half wave-lengths between the first bow crest and the first stern trough.

On one theory the quantity X-2k should be independent of the speed,

while on the other it should increase at the same rate as I. X and

therefore the quantity 5AX-2k should be constant; A- is the wave-

length for a given speed and 2k is the length of parallel middle body

at which the maximum A3 occurs at that speed. Taking the values

from Fig. 7, and adding other results obtained by further calculations,

we get the following table-.-

2- 2x -X - 2k

0 84 126 105

28 100.5 123 98

66 126 123 92

85 140 125 90

125 167'5 126 84

171'5 201 131 81

196 218"6 132 77

244 251"3 133 70

328 314 143 65

According to this Table, neither of these quantities is constant.

Calling X -2k the wave separation, it is interesting to notice that

the wave separation decreases slightly at first with increasing speed;
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14 THEORY OF SHIP WAVPS AND WAVE RESISTANCE.

this is an effect which we find more pronounced if we follow a higher
order uf maximum such as A. or AV. A., .- a range over which the
wave separation is approximately constant, it ultimately increases with
the speed but at a slower rate than that required by the quarter
wave-length theory. Such are the results for the simplified form of
model we have used; it is quite possible, of course, that different rates
of vwriation might be obtained if the calculations could be made for
forms more like actual ship models. A similar remark may be made
at the same time about empirical formula- derived from experimental
results; it is not as a rule justifiable to extend these formulhe beyond
the range from which they were obtained.

0-03

0023

I"

0,'15 Q:7

•'00!

r05 0. 0.6 5 ' 0. 07 " /C05 .09 as d W

FIG. 8.

Varying Draught.-As a last example of this set of calculations
let us find how the resistance of model A, without parallel body, varies
when we alter the draught (Note 7). Hitherto we have taken the
draught to be so large that it might be assumed infinite. We now
cut the model off by a horizontal plane, so that it still has vertical
sides and constant horizontal section; but we take the draught to be
first one-tenth and then one-twentieth of the length.

Fig. 8 shows the three curves, marked with the ratio of draught
to length. There is little difference at low speeds until the wave-length
becomes comparable with the draught. An interesting point is that
the humps and hollows occur at practically th• same speeds in the three
curves, one may compare this with the observed effect that for a
submerged model the resistance curve gives humps and hollows at the
same speeds independently of the depth at which the model is run.

The ratios one-twentieth and one-tenth cover roughly the ratios of
draught to length which occur in practice. We may then compare these
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curves with exl irinienlal resuIts to Ree whether absolute values arw

reasonably of the right; order of inail itudc; we cannot expect more

when we remember the simplified forni of the model fLnd the other

limitations of the theory.

The threo dotted curves in Fig. 8 are experimental curves of

residuary resistance, the number marking each curve being the ratio

of draught to length. The curves 0"0475 and 0"0385 have been drawn,

on the scales used in Fig. 8, from those given by R. E. Froude for

ships of 400 feet length of 5,390 and 4,090 tons displacement respec-

tively; while the curve 0'083 has been deduced from some results given

by J. L. Kent. We notice at once how much more prominent the

interference effects are on the theoretical curves; this is probably due

chiefly to the neglect of fluid friction, whose indirect effect may be

equivalent to an altered distribution of velocity in the present calcula-

tions. The effect of differences of form, other than that expressed by

the ratio of draught to length, is also obvious from the dotted curves.

When. we remember that the calculated curve, say that marked 0'05,

is for a simple form not specially fitted to any actual model, the

general agreement of order of magnitude over a cons'derable range of

velocity is sufficient at least to justify the fundamental assumptions of

the theory.

It is perhaps needless to add that we are very far indeed from

being able to predict or to calculate in advance the wave resistance of

an actual ship. Nevertheless our chief aim will have been achieved

if we have gained more insight into the nature of the problem; for

in this respect at least, the pursuit of theoretical investigations, even

if apparently remote from practical requireeients, is essential to a

complete and scientific solution of the various problems of ship .motion.

NOTES AND REFERENCES.

l.-The effect of a travelling surface pressure can be obtained by regarding it as a
succession of applied impulses and by integrating suitably the expressions for the effect
of a single impulse. Take axes Ox and Oy in the undisturbed water surface and Oz

verticadly upwards; let C be the surface elevation and let 0 move with uniform velocity

c in the direction Ox. If the pressure distribution is symmetrical round 0 and is
given by

p = F (r), r2 - x2 + y2,()

the surface elevation can be obtained in the form

gg= ~f.e - 0411~du ff(K)J, [,,,/ {(X + cu2 + y~ ] sin (KVu)K'dK, .(2)

where /Z ir to be made zero after 'he integrals have been evaluated; further V'-9g/K, and

fc) = F (a) J 0 (oKa) azds, (3)

J 0 being the Bessel Function of zero order.
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16 TIHEORY OF SIIP WAVES AND N AVE RESISTANCE.

From the deiinition of wave resisthnce given in the text, assuming the slope of tlh

surface to be small, we have

t (r) r dS, (4)

the integral beng taken over the whole surface. The particular case for which the

calculations have been made is

p=F(r) = Af/(fI + r') (5)

A andf being constants. It is found that the integral (4) reduces to
7t

R = (4 7r g9 AS/pc,) see - 2((f/c') secs • dip . . . (6)

This integral can be expressed in terms of Bessel functions, of which tables are avail.
able, in the form

7rýW S-P(1)
R Ape- 1 + 2 p p

2 ypf' 2p (7)

wherepj= gf/c'. This is the expression whose graph is given in Fig. 1. (Proc. Roy.
Soc. A, 95, p. 354. (1919).

2.-With the same notation, and with h as the depth of water, instead of (6) we

now have

R 47rA'c f K 3e - 2 Kf see 4 d
p J g see2 (P(c2--gh see's )) + X~c4 h . (8)

where K satisfies the equation
KC2 = g sec9 0 tanh Kh.

The lower limit 6. is to be taken zero if c- < gh, and to be the value of are

cos Vgh/L7 if c2 >gh. Th1e integral (8) was evaluated by graphical methods, the

integrand being graphed on a certain base and areas taken by an Amsler planimeter.
The process was carried out for the different values of the ratio hf shown in Fig. 2.

(Proc. Roy. Soc. A., 100, p. 499. 1922.)
3.-With h as the distance between the centres of the two pressure systems, the

integral for the wave resistance is
7r

(6~rg2A'/pc) f0 see' m e -2(qf/c') sec' 0 ,cos2 (ghmc') sec ' • c . . (9)

The particular case shown in Fig. 2 is for h = 2f, the integral being evaluated by
numerical methods. (Reference as in Note 1.)

4.-For a study of some cases, with further references, see Proc. Roy. Soc. A., 89,

p. 489. 1914.
5.-The general expression for any distribution of sources and sinks is found by

beginning with a doublet of given moment at a given depth in the liquid, with its axis

parallel to Ox. The results are generalized by integration for any continuous dis.
tribution of such doublets in the plane y = 0, the moment per unit area in this plane

being 40(x, z); this gives for the wave resistance the expression 4
R = 16wy t

iw-- f (It dZ' dx f dx' 54B/16a.r . y"';Sx',

cos L eAx - Zx)uC 3 sec 4, (J9d .. . lO)
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This dis ribnt inn 0of douhlets gives over the pline n y -z 0 a normal distribution of

vehovity of amount 2,.f¢,/F.. Taking the plane y = 0 as the median for atid aft
plane of the ship, ;nd taking the ship's surface to he given by y = FIx, -.), we hiave,
with the assumptions in the text, to substitute 2'•78,8v - clF,••x in (10) to ohtain the
wave resistance, The curves of Fig. 4 for the form of the water.plane section are

particular cases of the equation

2d 21 // S)

Here 21 is the constant length of the ship and INJ the constant area of the
water-plane section ; the beam is 21(1 - ,d2 )/(1 - 2Itd') The four models are the cases

d = 0, 1, 1'25 and 1"5 respectively. Evaluating as far as possible the integrals in (10)
for the form given in (11) we obtain

R 512gpb2 ll ýl - Id')l + V(1 + 2d- Id-)

+ %'ri5  + q•. - + jt(1 - -(1- d'-IjP)P
4 32 64

S--i(l -- 6dt dj) + j(1 - 3d2)(l , -d _)P - 4d +c(14-2d)P.

P5  p-+ d p4 (156dt 7(4P, 32 d211dP)6

jt28d' P 256d4 p.P - + P . (12)

where p = 2gl/c2 and the functions P are defined by

P2 ,, (p)= (- 2)" Cos 2nP sin (p see )do

7r

P ( -4 1 )l+ cos cos (p see f)djS.

After preliminary computation of these new functions, it was possible to calculate

R from (12) for the four given values of d and for sufficient values of p in each case to
give the curves of Fig. 5. (Proc. Roy. Soc. A., 103, p. 571. 1923.)

6.-The equation of AB in Fig. 6 is

S= b {1 -(x- k)'- ( - k 1 (13)

In this case the integrals of (10) give, with the same notation,

512 gpb2  2 4
R rp3' 1 + 3 -p P4 ! P (i p)

+ , P, (P,) - -P 4 (PI) 4- p5(P,) + 2- P4 (P,)
PP P

4 2I (14)

where p = 2gl/62, p 1 =g(2k +21)/C2, p2=-g(2k+l)/c 2 , p9=2gk/c 2 .

The curves of Fig. 7 were obtained from this formula, with 1-80, for the oases

g/c'=0"l, 0"0625, 0-05, 0"045, 0"04125 respectively. (Proc. Roy. Soc. A., 108, p. 77.
1925).
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18 TtIEOIRY O(F SHIP' WAVES AND VAVE RE:SISTAN(CE.

7. The general expression (10) now gives, with p=2gj/C2 , a=- gd/c 2,

/3 = d A 2 1 . 2 6 2

R C + 4Oo 0 4,

+(cosp0- 4coal Cpos p seecb 4 cos4(bain (Psec0)}dq/, . (15)

After certain transformations, this expression was evaluated by

approximate methods to give the curves of Fig. 8 for the cases , 01 and 0'05

(Proc. Roy. Soc. A., 108, p. 582. 1925.)
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The Method of Images in Some Problems qof Suiface lVaves.

By T. 11. HAVELOCA, F.R.S.

(Received May 26, 1926.)

Introduction.

1. When a circular cylinder is submerged in a uniform stream, the surface
elevation may be calculated, to a first approximation, by a method due originally

to Lamb for this case, and later extended to bodies of more general form: the
method consists in replacing the cylinder by the equivalent doublet at its

centre and then finding the fluid motion due to this doublet. In discussing
the problem some years ago,* I remarked that if the solution so obtained were
interpreted in terms of an image system of sources, we should then be able to
proceed to further approximations by the method of successive images, taking
images alternately in the surface of the submerged body and in the free surface
of the stream. This is effected in the following paper for two-dimensional fluid
motion, and the method is applied to the circular cylinder. It provides, theoreti-

cally at least, a process for obtaining any required degree of approximation,

but, of course, the expressiouz soon become very complicated. It is, however,
of interest to examine some cases numerically so as to obtain some idea of the
degree of approximatiou of the first stage.

An expression is first obtained for the velocity potential of the fluid motion

due to a doublet at a given depth below the surface of a stream, the doublet

being of given magnitade witb its axis in any direction. A transformation of this
expression then gives a simple interpretation in tdrms of an image system.
This system consists of a certhin isolated doublet at the image point above the
free surface, together with a line distribution of doublets on a horizontal line

to the rear of this point; the moment per unit length of the line distribution
is constant, but the direction of the axis rotates as we pass along the line, the
period of a revolution being equal to the wave-length of surface waves for the

velocity of the stream. The contribution of each part of the image system to
the surface disturbance is indicated.

Before proceeding to the circular cylinder, two cases are worked out in some

detail, namely, a horizontal doublet and a vertical doublet. To a first approxi.
matiJn these give the surface disturbance of a stream of finite depth with an
obstruction in the bed of the stream ; in the first case the bed of the stream is

plane with a semi-circular ridge, and in the second case it has a more com-

'Roy. Som. Proc.,' A, vol. 93, p. 524 (1917).
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plicated form. Numnerical cialJ aiimos are made for oti fl th se (eases. Pil]
graphs of the surface elevation are shown in fig.,. I ý,nd 2.

The seCe<nd arpjrox i m ation for the circiIlar ,ylinldir is then invest-igatel.
The first stage is the surface effect( die to a doublet, at the ((lntre, and the second
is that due to a distribution of doublets on a certain semicircle. Expressions
can be obtained for the complete surface elevation, but the calculations are
limited to that part which consists of regular waves to the rear of the cylinder.
The integrals are investigated and reduced to a form which permits of numerical
evaluation. Calculations are carried out for various velocities for two different
cases, namely, when the depth of the centre is twice, and three times, the radius.
The results are tabulated for comparison, and one may estimate from these
rather extreme cases the degree of approximation of the first stage. The effect
of the second stage is to alter ooth the amplitude and the phase of the regular
waves. The amplitude of the first-stage waves has a maximum for the velocity
"V(gf), where f is the. depth of the centre. It appears that, the second stage
increases the amplitude of the waves for velocities less than -V/(gf) and decreases
it for velocities above this value ; further, the crests of the waves are moved
slightly to the rear by an amount which varies with the speed. Some other
possible applications of the method of images may be mentioned. For a
doublet in a stream of finite depth, we can take successive images in the bed
of the stream and in the free surface, and so build up the image system of a
doubly infinite series of isolated doublets and of line distributions of doublets ;
this solution may be compared with the direct solution in finite terms which
may be obtained in this case. Further, similar methods may be used for the
three-dimensional fluid motion due to a doublet in a stream, and application
made to the corresponding problem of a submerged sphere.

Image of Doublet in Stream.

2. We may either consider the doublet to be at rest in a uniform stream or to
be moving with uniform velocity in a fluid otherwise at rest; we choose the
latter alternative. Take Ox horizontal and in the undisturbed surface of the
liquid, and O, vertically upwards. Let the axes be moving with uniform
velocity c in the direction of Ox, and let there be a two-dimensional doublet
of moment M at the point (0, -- f) with its axis making an angle o with the
positive direction of Ox. The vclocity potential of the doublet is given by the
real part of

Mea

S+ i (y + f)(1)
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fn or(ler to keep the various integrals colivwrget,.t aidl so 14) (ol't;iii a hleiluit,,,
result, we adopt tlie usual (levici of a snuoll fri.liovial fo(.re propoirtei;il to

velocity aln(I ill th1i liitit illake t 'e frictilotal o(Of)ii'ieiit (L tV. dI) 1( to ) 'r t f Lh,'1.

we neglect the square of the fluid velocity at the free S.urfac'e.
F. "r is the surface elevation, the pressure equation gives the conlition at the

free surface,
_ ,_ + -I- const., (2)

we have also, at the free surface.

And as we are dealing with the fluid motion which has attainedl a stead v st •tIe
relative to the moving axes, hliese (conditio<•s give, in terins (,1' 11e4, vel',, ki
potential,

ax" a K 0  ax

to be satis'ied at y -- 0. Here we have put KO g/c2 and .

We now assume the solut on to be given by

= - iMe,• e- (V+f) d,: + F (K) e"X " dK. (5)
0 0

The first term represents the (loublet (1) in an equivalent form. valid for
y -k f > 0. The function F (K) can now be determined by means of (4), and

this gives

F(K) = Me" (1 + 2Ko e- (6
K . - Ko -+- iýL,

Hence the velocity potential of the image system is

iMeia 0 e 11X- K (t-V) dK -4- 2i•0Me'ý f 'Ki O+'*ý dK. (7 )
JoJo K- -o K0 i '

By comparison with I1) and the first term in (5). it is easily s 'n that the
first term in (7) is the velocity potential in the liquid due to an isolateiI (o)il let
at the image point (0, f), of moment .1 with its axis makiig an an5le (
with Ox.

To interpret the second term in (7) we put

i- - -- e-,-P+i (K-01 d17, It > o. (8)
K -- Ko -F 4L o
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We then interchange the order of integration with regard to K and p, and
integrate first with respect to K. The second term of (7) thus becomes

2iKoMe•a J0  e-i-. dP, (9)X + r +i(f -- y)

withf - y > 0.
By a comparison with (1), we see that the real part of (9) is the velocity

potential of a line distribution of doublets along the line y =-f, extending over
the negative half of that line. The magnitude of the moment per unit leagth
at the point (-p, f) is 2KoMe-,, and the axis at that point makes with Ox
an angle Kop -0 o -- 37.

It is necessary to retain the quantity ji while manipulating the integrals,
but we may put it zero ultimately and we have the following result :-The
image system of the doublet M at an angle cc to Ox and at depthf below the sur-
face consists of a doublet M at the image point at heightf above the surface with
the axis making an angle 7z - a with Ocr, together with a line distribution of
doublets to the rear of the image point of constant line density 2P0M and with
the axis at a distance p in the rear making a positive angle Kop - oc with the
downward-drawn vertical.

It is of interest to note how the parts of the image system contribute to the
surface elevation. From the preceding equations we obtain

2M (f cos a - x. sin at) -dK, (10)c• = z2-{- f" + 2K°Me•J K, (0
X,2+f2 8C- KO + i[

where the real part of the second term is to be taken.
The integral in (10) is transformed by contour integration, treating x positive

and x negative separately; when IA is made zero ultimately, the complete
expressions are

- 2M (f cos c -x sin . +2,oM incos (mnf-cc)--Ko sin (mf--c) etadm,x
z2+fs 2o Ot2+K2e

forx> 0; and

2M (fcoso - xsin a) + 4,xaoMe_ t sin (Kom + ,)S= xe +f2

+ 2KoM" mcos (mf+ -) -Ko sin (mf+ a)tmdin (11)
o0m t -2-+ Ko

for x <0.
The first term in each case represents that part of the local surface disturb-

ance due to the doublet and the isolated image doul"' . The remaining terms
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images in Some Problems of Surface Waves. 272

are due to the semi-infinite train of doublets behind the image point. Part of
the effect is the train of regular waves to the rear of the origin, evidently- associ-
ated with the periodicity in the direction of the doublets along the line
distribution ; and there is also a further contribution to the local surface dis-

turbance, which we may regard as arising from the fact that the line distribution

is semi-infinite and has a definite front.

Horizontal and Vertical Doublets.

3. With the axis of the doublet horizontal, we have the well-known first
approximation to the submerged circular cylinder of radius a, if we take
M - ca2. From (11), the surface elevation can be expressed in 'he form

2a2 L+2a2 KoP, X > 0,
X- 2 f2 +

S 2a2 L + 2a 2KoP + 47rKoa 2e-C, sin Kox, x < 0, (12)

where P is the real part, for x > 0, of the integral

0 e-.(X+ifm di. (13)
JMi•'- iKo "

Taking the axis of the doublet t, be vertically upwards, we have M 7C/2
in the general formulae ; and, putting M = ca2 in this case also, we obtain

2a2 z _ 2a2KoQ, x>0,

= z2 +f2 + 2a*KOQ + 47oKrA-mofcosKox, x <0, (14)

where Q is the imaginary part of the integral (13). This integral may be
expressed formally in terms of ii (e'-), where li denotes the logarithmic
integral, and may be expanded in various forms. For the numerical calcula-
tions which follow, it was found simplest to use the series

f u- du A -(A + iB) e-"-l,

A = y +logr + I cosnO,

B = -0 -0 r: sin nO, (15)in!

where
r = (X + pl)i, tan 0 = ft/p, and y = 057721.
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273 T. H. Havelock.

The series is sufficiently simple for calculation, though in some of the cases it
was necessary to take a large number of terms.

For both the horizontal and vertical doublets we take

M =- ca2, f -= 2a, Kof = 4. (16)

This means that we take the velocity to be such that the wave-length of the
regular waves is ½-mf. We are assumiug, in each case, a given doublet at depth

f below the surface of deep water. The only restrictions so far are the general
ones due to neglecting the square of the fluid velocity at the free surface, and
the consequent limitation to waves of small height. From this point of view
the data of (1.6) are rather extreme ; but, this being understood, it may be
permissible to use them for a comparison of the two cases. With the values
in (16), the calculations are comparatively simple, and lead to graphs which can
be drawn suitably on the same scale throughout; these are shown in figs. 1
and 2, where the unit of length is the quantity a.

In fig. 1, there is a horizontal doublet at C; the arrow shows the direction

I C

FIG. 1.

of the stream assuming the doublet to be stationary, and Ox is in the undis-
turbed surface. The surface elevation was calculated from (12) for th;o case
(16). The broken curve shows the regular sine waves to which the disturbance
appro\imates as we pass to the rear. This solution is also the lirst approxi-
wation for a submerged cylinder of radius a ; or, again, to the same order, it
gives the effect caused Iby a semicircular ridge on the bed of a stream of depth
twice the radius. From this point of view the diagram may lbe compared with
that given I\" Kvlviu* for a small ob)struction on the bed of a stream of finite

depth.

* Kvvlin, ' Muth. and Phys. Papers,' vol. 4, p. 29-5.
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Images in Some Problems of S'?rface W~aves, 274

Fig. 2 shows the corresponding curves for a vertical doublet, calculated from
(14) for the case (16) ; the doublet is at the point C. Here, again, the broken
curve shows the cosine term of the solution to which the disturbance
approximates.

We may also regard this as an approximate solution for the flow of a stream

S~Y

K -

FIG. 2.

over a bed of a certain form. This is obtained by taking the zero stream-line
for the combination of the uniform stream and a vertical doublet at C under the
conditions given in (16) ; the equation of this curve is

(y + 2a) {x 2 + (y + 2a)2} + a2x = 0, (17)

and its form is shown in the figure. Fig. 2 may be compared with a graph given
by Wien* for the case of a sudden sinall rise in the bed of a stream.

It is interesting to note the general similarity of the surface elevation in the
two cases shown in figs. 1 and 2 ; although the regular waves a- c given by a sine
curve in one case and a cosine curve in the other, that is only because of the

differer.t position of the origin relative to the general form of the obstacle.

Second Approximation for Circular Cylinder.

4. We may now carry out furth,,r approximations for a circular cylinder in
a uniform stream by the method of successive images. Reference may be
made to fig. 3, which is not drawn exactly to scale.

The image of the, stream in th. circle is a horizontal doublet M at the centre

C. The imnage of A in the frt. surface is a doublet - AI it the image point C,

* W. Wicn. Hydrodynaniik,' p. 206.
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275 T. H. Havelock.

together with a trail of doublets to the r'ear of C1. The image of this system in
the circle give., a doublet - Mad2/4f 2 at •2, together with a certain line distribu-

tion of doublets on the semicircle on CC2.
C, So the process could be carried on, but we

shall stop at this stage.

From the results already given, we could
0 x build up complete expressions for the velocity

potential and surface elevation for each

02 stage. It would be of interest to work

C these out graphically to compare with fig. I;
but the expressions soon become complicated
and their evaluation difficult, especially for

Fm. 3. the immediate vicinity of the origin. We

shall therefore limit the study to the regular

waves established in the rear of the cylinder. We have seen that the regular
waves of tLe first approximation, due to the doublet caw at C, are given by

S= 47O0a2e-,f sin Icox ; X<0. (18)

We take the next stage in two parts. First we have an isolated horizontal
doublet of moment - ca4/4f 2 at C2, whose co-ordinates are (0, - f ± a2/2f).

From (11) it follows that the contribution of this doublet to the regular waves
is

• =_ -- Koa4f-2e-"°(fG-a-/2f) sin oox; x<O. (19)

Next we consider the line distribution of doublets to the rear of C, and its

image in the circle. Referring to the results in § 2, there is at the point (-p,f)
an elementary doublet of moment 2/coca 2 dp, with its axis making an angle
ic0p - In with the positive direction of Ox. The image of this in the circle is a

doublet at the point whose co-ordinates are

a2p 22a0)f
p2 + 4f' / 2 + 4f2 (2)

the moment of the doublet is 2K0ca4 . dp/(p2 -- 4f 2), and its axis makes with

Ox the angle
2 tan-' (p/2f) - KoP + Fr. (21)

From (11) we can now write down the waves due to this doublet. It should
be noted that the expression will hold for

X + p 4f2  0
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Images in Some Problems of Surface W1aves 276

If, therefore, we wish to obtain the complete expression for this part of the
surface elevation at a point in the range - a2/4f < x < 0, we should have to
integrate with respect to p between appropriate variable limits. We shall
consider only points to the rear of this range, so that the limits for p are 0 and 0.
This being understood, the distribution of doublets on the semicircle CC2

contributes to the regular waves a part given by

) ý 87CKO°2 aae-- JO e J•os (X f 2++4f2)
)dp (22)q-2tan-'_5 - KOP 2 • (22W

Putting p 2f tan 10, this becomes

- 2rKo2a4f-I e-•oI+K l 41 (A cos Kox - B sin icox), (23)
where

A =fr eh" 0 os (0 + h sin 0 - k tan 10) dO,

B = Jeaco•e sin (0 + h sin 0 - k tan 10) dO,

with h = icoa 2/4f and k 2KOf.
5. In the applications to be made, h and k are positive, h is less than unity

and is usually a small fraction. In these circumstances, the integrals may be
evaluated by expansion in power series of h. It can be shown, after a little
reduction, that we have

A 2 .r E L,+I; B = 2 iA!M,+, (24)

where
w'/2

L, = cos (2ro - k tan 0)do

M, = sin (2r/ - k tan 0) do. (25)

The quantities L and M may be evaluated in terms of known functions by a
reduction formula. It can readily be shown that

(r + ) ,4+1 = kL" - kL,' + rL, (26)

the accents denoting differentiation with respect to k ; or denoting this opera-
tion by D, we have

r! 4 = (kD' - kD +r - 1) (kD 2 - kD + r - 2) ... (kD2 - kD) Lo. (27)

The quantity M satiofies similar relations.
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Further, we have

Lo = cos (k tan q))do -Te-k

Mo = - Jsin (k tan f) do - ½ {e-li (ek) - ekl'i (ek)}. (28)
J0

We shall find it necessary to go as far as the sixth term in numerical calcula-
tion of A and B ; we therefore record to this order explicit expressions for L and
M obtained from (27) and (28).

Li =-k
L2 --- - Tck (I -- k) 6-k,

L3 = J-nk (3 - Ok -U - 2k 2) e-',
L4 = - j7ck (3 - 9k -- 6k2 - k3) ek,
L5 = -,n---7rk (15 - 60k -+- 60k2 - 20P3 + 2k4) e-',
L6 = 4- 6rk (45 - 225k ± 300k+ -M 150k 3 -+- 30k4 - 2k5) e-k,
MI = _ ke-kli (e") ± 1,

M 2 = k (1 - k) e-kli (ek) + k,
M= - Ik(3 -- 6Q ± 2k2) e kli (ek) + j (1. - 4k + 2k 2),

M4 = jk (3 - 9k + 6k 2 - Pc.) ekli (e') + jk (5 5k+k 2),
M5 = - ATxk (15 - 60k + 60k2 - 20/Pe + 2k') e-1i (,')

+ T-0 (3 - 28k +- 44k2 - 18k3 + 2k'),
M6 =-- /k (45 - 225k + 300k2 - 150kP +. 30k0 - 2k0) e-li (ek)

± A-k (93 - 198k + 124k2 - 28k7 + 2k4).

6. The first case we shall examine is that already discussed in § 3, a cylinder
whose centre is at a depth of twice the radius. It has been remarked that this
is an extreme case, but it has the advantage, as far as the calculations are con-
cerned, of magnifying the difference between the first and second approxima-
tions and so of lightening the numerical work involved. In the notation of the
previous sections, we have

f = 2a; k = 2Kof = 47rcf/l; h = Koa 2/4f = k/32. (29)

Collecting the terms in (18), (19) and (23), the regular waves established to

the rear of the oylinder arc given by

S/a == rrke-k sin xox -- 'ke-k sin K0X

+ &7,,_2k(c " (A cos ,o.r - B sin KoX). (30)

The first terni is the first approximation, and the amplitude in this case has
a maximum at k - 2, or when the velocity is such that the wave-length is 2nf.

274



Images 'n Some Problems of Sujface Wa ves. 278

We shall calculate the value of (30) for k equal to 10, 8, 6, 4, 2,_1 and 0.5,
given in order of increasing velocity. Omitting the intermediary steps for tie

numerical values of the L and M functions, the following table gives the values
of A and B, calculated from (24), for these values of k and with h k/32 in

each case.

k 10 8 6 4 2 1 0.5

A 0-021 0-064 0.204 0.646 1.805 2-311 1-891

B -0-418 -0.522 -0.716 -0.950 -0.596 0668 1.742

The simplest form in which to show the difference made by the second approxi-
mation is to express (30) in each case in the form

7/a = D sin Ko (••), (31)

and compare it with the first approximation

=/a =- C sin Kox. (32)

A comparison of D and C gives the alteration in the amplitude of the waves;

further, there is an alteration in phase expressed as a displacement of the crests
to the rear by an amount ý.

In this form the final numerical values, forf = 2a, are given in the following

table

c/%/(ga). C D I/a.

0.63 0.212 0.263 0.006

0'71 0.460 0"568 0.017

0.82 0.939 1"159 0'050

1.0 1.701 2-046 0148

1.41 2,312 2.396 0"468

2-0 1.906 1"721 0"669

2-83 1.223 1"081 0.595

We see that the second approxiir ,tion makes a considerable difference in
the amplitude in this case ; but it should be noted that, in addition to the depth
being only twice the radius, the velocities are relatively large, the wave-length
at the lowest velocity being about 11 times the depth.
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279 T. H. Havelock.

The amplitude C has a maximum at the speed N/(2ga) ; and it appears from
the table that the second approximation. increases the amplitude below this

velocity and diminishes it at higher velocities. It seems that thd rearward

displacement, given by E, also has a maximum, amounting to about two-thirds
of the radius of the cylinder.

7. It is clear, from the form of the expressions for the surface elevation, that
the accuracy of the first approximation increases rapidly as the depth of the
cylinder is increased or as we take relatively smallsr velocities. Without
pursuing the calculations in this direction, we shall take one other case which is
not quite so extreme as in the previous section. We take the depth of the
centre to be three times the ra lius; the data are now

f = 3a; k - 2Kof; h = Kua 2,I4f-- k/72. (33)

In this case, instead of (30), we have

7/a = Inke-P sin KoX - •-STnke-Uk sin KoZ

+ -rrk2e-H' (A cos c0x -- B sin icox). (34)

The following table shows the values of A and B, with h = k/72, calculated

for convenience at the same values of k as before

k 10 8 6 4 2 1 0o5

A 0-008 0.033 0.16367 0.540 1-747 2-311 1-898

B -0-324 -0-428 _-0626 -0.911 -0.644 0'663 1.732

With the same notation as in (31) and (32), the results are given in the

following table:--

cl/4(ga). 1 C )D Ila.

0'77 0"141 0*149 0.001

0"87 0'307 0"329 0.006

1.0 0"626 0'677 0'024

122 1 1 34 1.222 0.088
'73 .1541 558 0.295

2.45 1.270 1.214 0.409 *

3,46 0816 0'802 0.324
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TbL. calculations were made for the same values of " ; and as we have taken
-/(ga) as the unit of velocity, we get a different set of velocities, but they cover
much the same range. We notice that the decrease of the ratio alf from 1 to J
has diminished considerably the difference between C and D, and also the dis-
placement E. The results have the same general character as we noted in

the previous case.
In any given case there are two significsnt quantities involved: one is the

ratio of the radius to the depth and the other is the ratio of the wave-length
to the depth. It would require a more elaborate numerical study than has been
attempted here to enable us to state precisely the degree of accuracy of the
first approximation for given values of these ratios.

HARRISO• AND &)NS, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane.
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Wave Resistance.

By T. H. HAVELOCK, F.R.S.

(Received December 15, 1927.)

Introduction.

1. The object of this paper is to give more direct proofs of certain expressions
for wave resistance which have been used in previous calculations; further,
i'i view of other possible applications, the expressions are generalised so that one
can obtain the wave resistance for any set of doublets in any positions or

directions in a uniform stream, or for any continuotts distribution of doublets

or equivalent sources and sinks. The only limitation is the usial one that the
additional velocities at the surface are snmall compared with the velocity of the
stream. One might take a simple source as the etiit, hut to avoid certain

minor difficulties it would be necessary to assunme an equal sink at some other
point. The possible applications are to ib.dies either wholly, or with certain
limitations partially, submerged. The image system in such a case consists of
a distribution of sources and sinks of zero aggregate strength, and so may be
replaced by an equivalent distribution of doublets,. Ience it is simpler to
use the doublet as the unit from the beginning.

The wave resistance of a submerged sphere was obtained previously both by
direct calculation of pressures on the sphere and by an analogy with the effect
of a certain surface distribution of pressure. The latter mnethod was then
generalised to give the wave resistance of any distribution of horizontal doublets
in a vertical plane parallel to the direction of the stream. In a recent paper
Lamb* has supplied a method for calculating wave resistaunee which avoids the

H. Lamb, ' Roy. Soc. Pro..,' A. vol. 11, p. 14 (1926).
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comparison wvith ain equivalh,,t SIirfac(. lprssurf, : it consioi is ii (.ilhillat ng thde

rate of d1issipation oif energy i)y ii ceri un il grdl taken, o\vr Ilhe fve' suirfa.e
when, as is usual iii these rhoblews,n a small frict ional force has bI,,, iiiIr-, iliu( l
into the equations of motion of the lhi, il. I a nu, Ineh, ,,r, d,;dIs ,, 'v w\ithi a

single doublet, to which a. slhil r,,ged tbou lv is (,uiivalhilt to a fist aluluruxima-

tion, and so (toes iot obtain the interferienee (,ffirss whi(.h arise fr,,m an extende(I

distribution of doublets; further, he carries, out the 110e.c1ssar0V calcihuatiH( 1)v

analysing first the surface distribution of venloely potential or in Ofect1t analysing

the wave pattern. In the following paper it is shown that this intermediate
analysis may be avoided by a direct application of the Fourier doulole integral

theorem in two dimensions. This step simplifies the extension of the calchfla-
tion to any distribution of doublets in any positions anl directions; various

cases, which it is hoped to ise later, are given in somn detail for deep water,

and one case of a single doublet in a stream of finite depth.

Two-dimensional Motion.

2. The results for a two-dimensional doublet are well-known, but there are

one or two points of interest in the calculation. We shall suppose the liquid

to be at rest, and the doublet to be moving with uniform velocity c. Let the

doublet be of moment M, with its axis horizontal, at a depthf. Take the origin
in the free surface, with O.r in the direction of motion and Oz vertically upwards.
If ý is the surface elevation, and if there is a frictional force proportional to
velocity, the pressure condition at the free surface gives

a t - gý + [i'O -- constant, (1)

Sbeing the velocity potential. Since, at the free surface ay/"it - /az,
we have for the steady motion relative to the moving axes,

ý !- K04 -' 114 0(2)

to be satisfied at z = 0, with K, g=c"2 and t t'/1c. The conditions of the

problem are satisfied by

0 - M _+ ±2i JOKM dtc, (3)X x+ i(z +f) x +i (z -f) o K--0-4-iL

where the real part is to be taken.
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Wave Resistance. 26 1

If R is the C.1i.Iivalent wave resistance, Rc is equal to the rate of dissipation
of energy; this gives, following Lamb,

R - f o-J d)~s, (4)

taken over the free surface. Thus in the two-dimensional case we have

R = Lim iLp OT dx, (5)
M'*O -- z

with z = 0.
The surface values of 0 and i(a/.z can be obtained from (3) ; after applying

well-known transformations we obtain, at z --0,

2KoM J( (l + Ks S + c f e_•M'dw,
10 (m + [t)! + Ko 2

4d ___ Mxf 2ic M rl (11 tA- Co lq 1S Sil ~'Tfý dint,az (x2 4+- f 2 )2 - " o (1n + [1) 2 + K 0
2

for x > 0; and

( 2KoI [ (i- 4) Sin M -- K( cOS fn ,

.0 " (- 02 + Ko 2

S •-7,,M0"-'".f{Ko cos (Kox +- 1f) + li sin (Kox + ý/f)}

4Mxf 2K [L (m -- h) cos sill- ,41 sin dbn, (6)
(X2 + f2)2 o (in ___) 2 _2 ,C2

for x < 0.
These expressiuns are continuous at x ý 0. It is easily seen that the only

terms which give any contribution to (5) in the limit are the first terms in the
expressions for 0 and @0/az when x is negative. These are the terms which
arise from the train of regular waves established in the rear of the moving doublet
and so this method is connected with the alternative calculation of wave
resistance by means of group velocity. Th, dissipation of energy when there
is a frictional tenm is represented in the limit, when [i is made zero, by the propa-
gation of ene-rgy away frow the system in thc. train of regular waves. To com-
plete the calculation from (5) and ((;) we have

It luin p,,o I• If 2K4,SM~tc2"-:nfcos K0 X JIx
3

I = ,z.(7)
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SWe may obtain this resuilt without analysing the expressions for € and @¢/az.
We otain from (3) the following complete expressions in real terms, at z = 0,

2%KM (K cos ix - ( - K) in KX 2K, (8)

Jx9 0 COSKX -{K(K - K)• + jl2
}Sin K

az (K - K-)2
+-K dK. (9)

To carry out the integration of the product over the surface, we use the follow-
ing theorem: if

f (x) = (A, cos Kx - B1 sin ,x) dK,

S(x) = (A2 COS KX + B2 sin KX) dK,
0

where A,, A2, B1. B2 are functions of K, then

f (x) ' (x) dx - 7o (A, A2 + B1 B 2) dK. (10)

This theorem is derived from the Fourier double integral

(X) =( (11)

ani is subject to the same conditions.
In the present case, comparing (8) and (1l) we have

27rKM [Le- 4J (M) COS KO• (0 (K - K0)2 + j12

(i) sill K% da - 27ZKO M (K - K0 )e-" (12)

(K - Ko)- + 2

Hence we have

x L -(IXZ=17K0 N
2  

22-' KJz fo (K - K 0 )2 + 2

R =L~im 4TCK 0MIP[A' f -2 d_
P, =' (K KO) 2 + l2

"4"t2 P 3M2e-'. (13)
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Horizontal Doublet.

3. To consider three-dimensional fluid motion, take first a horizontal doublet
of moment M at the point (0, 0, -f). Assume that the velocity potential can

be expressed in the form

ý_M Ke--C(z+f)+ " (XCos O+y sin 0) COS 0 dO dK

+ KF (0, K) e-&'(f-)+i'(xZ C° + in )cos 0 dO dK, (14)

where real parts are to be taken, and where the first term is the velocity potential
of the given doublet in a form valid for z + f > 0.

The surface condition is equation (2) as before; applying this, we obtain

I K -i4- :C0 sec2 0 + ii see 0

2 K-ic-Kosec2 0+iVsec 0(

Hence from (14) and (15) the surface values of q0 and ao/az are

__ iKoM (1T-f f+i- (X Cos 8+Y sin 8)

0sKsec 0 dO dK, (16)r -= 0C K- K0 sec2 0 +• i[.t see

ao i e- Kf+ilC (2 COB #+Y Sin 0)-z"-- 7 jJ- -- o sec2 0+ i~ see-•K2 (ic + iji sec 0) cos 0 dO dK. (17)

Taking real parts of these expressions we obtain

b= f {F1 (0, K) cos (KX cos 0) cos (Ky sin 0)

+ F2 (0, K) sin (Kx cos 0) cos (Ky sin 0)} K dK dO, (18)

and a similar form for OI/Oz with G instead of F, with

F1 = MKo0 e-f1 seCe O./D

F2 = - MKo (K - Ko sec2 0) e- 1 see 0./D

G1 = M 0Ke-j sec 2 0./D

G2 = - M {[ (K - • •seul2 0) + IL2 see 0) Ke-Cf cos 0./D

D = n {(ic -- oseeo 0)2 + F' se0 0). (19)

We now apply a theorem in two dimensions corresponding to that given in (10).

The Fourier integral theorem is

F (zx, -)= - du d, (s, t) cos u (z - s) cos v (y - t) ds dd .
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29 T. H. Havelock.

Putting u - K cos 0, v == K sin 6, this may be written

F (x, y) A dO {F1 cos (KX cos 0) 3os (Ky sin 0)

"- F2 sin (Kx cos 0) cos (Ky sin 0) + F3 cos (KX cos 0) sin (Ky sin 0)

"- F4 sin (Kx cos 0) sin (icy sin 0)} Kd (20)
where

F, L - F (s, t) cos (izs cos 0) cos (Kt sin 0) ds dt, (21)

with similar expressions for F., F3 , F4.

If G (x, y) is another function given as a double integral in the form (20), it
follows as in the one-dimensional case that,

J0 F (x, y) G (x, y) dx dy = 47c2 A .0 (F1 GI+F 2G2 .+F3 G3 +rF 4G4 ) KdK.

(22)
It is assumed that the various integrals are convergent.

For the particular case given in (18) and (19), we find that F1G1 + F2G2

reduces to a simple expression, and we obtain

R- Lim pzp jf i dx dy

I'•/•f"Ke- 2 Kf dK dO= Lira 16pKoM2 ý /; K3e2xdd
Lim o0  o (K--KO sec 2 0) 2 +jP2 SOc 2 0

4 ,N12  /2  -2#of sec'==167CpKO M• scc5 C eo Od

4r7ZPKo'M e-0 o {Ko ( 1of) + (1- + ) K1 (Kof) (23)IKO~ (23))+ 2J

where K. is the Bessel Function defined by

K,4 (x) = ý0 e- cosU cosh nudu.

Horizontal Doaublies in Vertical Plane.

4. This method allows easily an extension to any distribution of doublets.
Consider first two horizontal doublets M and N' at the points (h, 0, - f) and
(h', 0, -f') respectively. The surface value of 0 is now given by (16) with
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x -- h instead of x, together with a similar expression in M' and x - h'. Taking
the real part we have

-" j see 0 dOf cos (Ky sin 0) - PK dK,
7r- j- (K-Ko secC2 0)2 + tL• sec 2 0

P = -. t sec 0 [Me-Kf cos {K (x - h) cos 0) +- M'e-' cos {K (x - h') cos 01]

- (K-Ko sec2 0) [Me-f sin {K (x-h) cos 0j+M'e-'f' sil {K (x-h') cos 0)]
(24)

There is a similar expression for the surface value of ao/@z. We now write both
these in the form (18), omitting terms which from symmetry give zero when
integrated with respect to 0. We find again that we have only to form the

quantity F1G1 + F2 G2 and that this simplifies considerably; the wave resist-

ance, after this reduction, is given by

R = Lim l6PKO 0 M2e, dM"e- f '+2MM'e-tf •f')cos {K (h-h') coS 0) K3 dK
i 6 Jo Jo (K-Ko sec-2 O)2 1.-' ecV s}K2 0

4fir/2 eI9M2c2x'e8

-- 167rpK0
4  [M 2 e-2"! see' B M -,01 sec' "

+ 2MM'e-'(f +f') see' cos {Ko (h - h') sec 0}] see' 0 dO. (25)

The first two terms give the resistance due to the two doublets separately,
while the third term renresents the interference effects. This expression was

obtained formerly from the analogy between the waves produced by a sub-
merged sphere and those due to a certain surface distribution of pressure ; it
was then generalised for any distribution of horizontal doublets in the vertical

plane y = 0.* The method given here can also obviously be extended by

integration for any such continuous distribution, and confirms the general
expression used in previous calculations; if M (h, f) is the moment per unit

area at the point (h, 0, -f), then (25) generalises to give

R = 167rpK4Jo dffdf' dh dh' M (h, f) M (h', f') x

e-o (f+P) Soo, 0 cos Ko (h - A') sec 0} sec5 0 dO. (26)

General Distribidion.

5. We can use the same method for doublets with their axes in any directions,

for we can always obtain the surface values of 0 and 8 0/az in the form (20)

and so can integrate over the surface by means of (24). Beginning with a single

* 'Roy. Soo. Proc.,' A, vol. 95, p. 363 (1919) ; also A, vol. 108, p. 78 (1925).
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31 T. H. Havelock.

doublet at the point (0, 0, -f), let the direction cosines of its axis be (1, m, i).
By the same process as for the horizontal doublet in (16) and (17), the surface

values of 0 and @0/az are found to be

0 =K, ydo j (ii Cos O-j+ im sinl 0 - i) sec" 0 dK
7C J_ 0 K-- sec2 0+isec +id,0

- _ dO r (il cos 0 + iim sill 0 -- ) (K +i seC 0) QK dic, (27)
az 1 tr, 0o K-- K SC2 +i ASee 0

with Q -- c-Kf' iK (V COS o-Y Si Di 0)

With the same notation as before,

F1  K{o ({d - It (I -- o sec 2 0)} D sec2 0,

F12 - C. L{,t sec 0 + 1 (K -- K sec2 0) cos 0} D see" 0,

Fa3 - Koh (K -- c sec2 0) D sin 0 see" 0,

F4 =- KtziflD sin 0 sec3 0,

SGi K [ .Co 1 sec 2 0 - nf(K (K - Ko see'! 0) + R2 see2 0}1 D,

G2, = -- K [l {IC (K - Ko seC2 0) + ýL2 seC2 0} cos 0 + [LIKo seC 0] D,

Ga3= -- K (K (K - Ko seC2 0) +-t IF sec2•0} D sin 0,
G4 = - •nKiD sin 0 sec3 0,

D) = (MN/) e--f/{(, - '<o sec2 0)2 + p2 eC2 0}. (28)

We find that E FG simplifies very much even if we take the expressions as they

stand ; since we are onh', concerned ultimately with I. zero, we could further
simplify the work by omitting superfluous terms. The expression for R
reduces to the limit of an integral of the same type as in (23), and the result is

R = 167CPKct4MIJ l (12 Cos' m2 sinl 0 + j12) (, -"sfu'$ sec' OdO

-47rpK 0 M2 e* 12 {K0 ( + -L\ K, (,x)

+ Llo(ý .I (i')K (

+( ) 12) I ('29)

"where ot of-, .
6. The only further stagte to which we aved carry the calculation is for two

doublets in any positions: M at the point (h, A', - f) with its axis in the direction
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(1, m, n), and M' at (h', K', -- f') in the direction (1', in', n'). We have simply

to put the surface values of 0 and aa,'@z in the standard form, and cmaluate

the quantity I FU. Th( reduction nee(I not l)e re)rodiuced here ; omitting

terms in !iL which make no contribution in the limit, we obtain
2Y IF. {(K - K,, seC2 (0)2 +t ý2 seC2 01}/KohY see 2 0

-[(1 cos 0 sin P cos Q -+- I sin 0 (os P sin Q - n cos P cos Q) MeKf

+ (1' cos 0 sin 1P' cos Q'+ ÷it' sin 0 cos PI' sin Q' - n cos P' cos Q') M'e-fr]2

+ [(Icos 0 cos P cos Q - 'n sin 0 sin P sin Q -+- n sin P cos Q) M e- "

+ (' cos 0 cos P' cos Q'- in' sin 0 sin P'sin Q'+ n'sin 'cos Q') MI&Kfi2

+ [(1 cos 0 sin P sin Q - in sin 0 sin 0 cos P cos Q - n cos P sin Q) Me-•I

+ (P' cos 0 sin P' sin Q'- in' sin 0 cos P' cos Q'- n' cos P' sin Q') M'e- f']2

+ [(1 cos 0 cos P sin Q + m sin 0 sin P cos Q + nv sin P sin Q) M.-§f

+ (1' cos 0 cos P' sin Q'+ n' sin 0 sin P' cos Q'+ n' sin P' sin Q') M'e- f']2,

(30)

where P =KA cos 0, Q = Kk sin 0, and similarly P' and Q'. Carrying out the
rest of the calculation for R. the wave resistance is given by

R= 167lpK0
4  c /2 (12eos 2 0 + ij

2 sin 2 0 + n2 ) M2e-2Kofsec'

+ (112 cos2 0 + If'2 sin 2 0 + n'12 ) M'2e-7Z ''f'sec'O

+ 2 {Q(1' cos2 0 + nnn' sin 2 0 + n') cos A cos B
- (lm' + i'm) sin 0 cos 0 sin A sin B + (n•m' - n'm) sin 0 cos A sin B

+ (id' - n0) cos 0 sin A cos B} MM'-&K (f+f') -ee' 0 sec7 0 dO, (31)

where A K- Ko (h - h') sec 0, B - Ko (k - k') sin 0 sec 2 0. The various terms
represent the contrii)utions of the three components of each doublet and their

mutual interference in pairs.

Water of Finite Depth.

7. For water of finite depth h, we shall consider only the simplest case of a

horizontal (loublet of moment M at depth f. It is clear that the same surface

integral can lie used for evaluating the wave resistance..
We now assume the velocity potential in the form

iM, ,ICOS 0 (I00f) {1 -Itf + (!N2h-ff I C-9:+ im (Y Cos e+YI Sil0 K dK

+ LM ,COS 0d10 F (0, K) cosh K (z + h) ig(ZCOSa+ V+in)KdK. (32)
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33 Wrave Resistance.

This satisfies the condition ao'az - (o at z . -- h ; we note that the first term

represents the original (Ioubl(et aId its image in the L.od in an analytical form
valid for z -- f > 0, and therefore suitable for applying the boundary con-
dition (2) at the free surface. This yields

F(O. K) -= 2e-KI cosh K (h - f) K + K" SeC 0 + iIt sec 0 (33)
F cosh Kh K - Ko Sec

2 0 tanhKh + ijt. sec 0'

consequently the required surface values are given by the real parts of
MiU f sec 0 dO f= C-11" cosh {K(h-f) (1+tanh • kh) C iKWK dK,

V •0j- o K -KO sec2 0 tanh ih.+ i L sec 0

iM Cos dO c-9h coshI{I (h -- f)} (I + tanh Kh) (K-+ it see 0) ei{w K2 dK, (34)
-U co _fO0 - sec" 0 tanh Kh + i z[ sec 0

where z- x cos 0 -- y sin 0.

Comparing these wiuhl the correspo•nding valt-cs for deep water given in (16)
and (17), we can write down the expression for the wave resistance as

(10/2 A" V3e-2K h cosh2fK(h-f)1 (1+tanh Kh)2 dK.
M-.

0  fow 0 (K-K 0 sec 2 0 tanhKh) 2 ++-j2 sec 2 0

(3"25)
There are two points to notice in evaluating this limit. The result is only
different from zero when

K -- Ko sec2 0 tanh Kh = 0 (36)

has a real positive root ; and this occurs only for K0h sec 2 0 > 1. Further we
must introduce in the denominator d. (K --- K,, sec2 0 tanh Kh)/dK. We may sum
up the result in this form
R = 16-,PK0MNI /2 3 e- 2• h cosh2 IK (--f)I (1+tanh Kih) 2 cosh 0 dO, (37)

jWo 1--K 0 h sec 2 0 sech2 
Kh

where K is the positive root of (36) ; further, the lower limit 0o, is given by

00 0, for K 0h > 1, or c2 <gh,
00 arc co, K (Koh), for c2 > gh.

We may note that the change in the lower limit occurs at the so-called critical
velocity \/ (gh) for the given depth. From (37), R may be graphed as a function
of the velocity for various ratios of f to h ; the calculations may be carried
out by numerical and graphical methods. A similar expression in the cac of
a certain distribution of surface pressure was examined in detail in a previous
paper,* and it may be anticipated that (37) would give somewhat similar
curves.

• 'Roy. Soc. Proc..' A, vol. 100, p. 503 (1922).

HAARIRON AND Sos, Ltd., Printers in Orlinary to His Majesty, St. Martin's Lane.
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Thet Wave Patterit of a Doublet in a Stream.

By T. 11. HAVELOCK, F.P.S.

(lb1',eivd Sept(,tnber 18, 1928.)

1. The following pape'r is a st udy of th' surface waves cau-ed l)y a doublet

in a uniform stream, an(d in 1)artic'ilar 1he wvariation in the pattern with the
velocity of the stream or the depth of the doublht. In most recent work on

this subject attention has been directed more to the wave resistance, which
can be evaluated with less difficulty than is involved in a detailed study of the
waves ; in fact, it would seem that it is not necessary for that purpose to know
the surface elevation completely, but only certain significant terms at large
distances from the disturbance. Recent experimental work has shown con-

siderable agreement between theoretical expressions for wave resistance and
results for ship models of simple form, and attempts have been made at a
similar comparison for the surface elevation in the neighbourhood of the ship.

In the latter respect it may be necessary to examine expressions for the surface
elevation with more care, as they are not quite determinate; any suitable
free disturbance may be superposed upon the forced waves. For instance, it
is well known that in a frictionless liquid a possible solution is one which gives
waves in advance as well as in the rear of the ship, and the practical solution

i. obtained by superposing free waves which annul those in advance, or by some
equivalent artifice. This process is simple and definite for an ideal point

disturbance, but for a body of finite size or a distributed disturbance the
complete surface elevation in the neighbourhood of the body requires more
careful specification as regards the local part due to each element. It

had been intended to consider some expressions specially from this point of
view, but as the matter stands at present it would entail a very great amount
of numerical calculation, and the present paper is limited to a much simpler

problem although also involving considerable computation.
A horizontal doublet of given moment is at a depth f below the surface of

a stream of velocity c; the surface effect may be described as a local dis-
turbance symmetrical fore and aft of the doublet together with waves to the

rear. Two points are made in the following work. One is the variation of the
,ocal disturbance with the depth of the doublet, or rather with its relation to
the velocity. Roughly, it may be said that the local surface effect changes

from a depression to an elevation at a certain speed. which we might have
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516 T. H. Havelock.

anticipated, to be somewhere about the speed -V/(gf). A line doublet is first
exaniir,.d, and the surface elevation immediately over the doublet is calcu-
lated; it is found to be zero at approximately a speed 0.86 -/(gf). To illus-
trate the difference for speeds greater or less than this value, curves are shown
in fig. 1 for the complete surface elevation when gf/c2 has the values 4 and 0.5.
A three-dimensional doublet is then considered and a similar calculation for
the surface elevation immediately over the doublet gives a critical speed of
about 084 V(gf).

The second point is the variation of the wave pattern. We may compare
it with the pattern due to an ideal point disturbance of the surface of the
stream. In that case the approximate evaluation of the integrals by the
method of stationary phase gives the system of transverse and diverging waves
established in the rear. But in our case there is a variable amplitude factor for
the constituent harmonic terms of the integrals, and we notice that the velocity

.'(gf) has here also a special significance ; for the amplitude factor itself
possesses an additional stationary value, a maximum, when the velocity
exceeds \/(g.f). The difference this makes in the wave pattern is examined;
roughly, at lower speeds the pattern consists chiefly of transverse waves, while
at higher speeds the diverging waves become of increasing relative importance.
A, direct numerical study has been made of the integral for this part of the
surface elevation for two values of gf/c02, namely, 4 and 0.5 ; graphs are given

in figs. 3 and 4 for the surface elevation along various radial lines from the
origin, including some outside the limits of the ideal wave pattern.

2. Take Ox in the undisturbed surface of the stream, and Oy vertically
upwards, and let the velocity of the stream be c in the negative direction of Ox.
Let there be a two-dimensional horizontal doublet of moment M at the point
(0, -f). The solution of the problem is familiar as the first approximation for
the effect of a submerged cylinder of. radius a, if we take M = Ca. We quote
here the complete expression for the surface elevation - in the form used in
previous calculations*

2Mf + 2M __ M COSl_

I ' mo srnMI K0 sin mf e'-m'dm, (1)S=C (X2 + f2) c o , + KOS

for x > 0, and

2Mf +2,,M ' m cos mf - o sin ,mf ed
+ + K___ISc('+ f') + A o Ott Ko0

+*. (4tioM,'c) e--! sin KoX, (2)
for x < 0, with K0 -g/c'.

* 4 Roy. Soc. Proc.,' A, vol. 115,1 p. 271 (1927).
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The last term in (2) gives the regular waves to the rear, and the remaining

terms the local disturbance which is symmetrical before and behind the origin.
The integral in (1) is the real part of

0( it du, (3)

where M = K 0X, [3 iof. Asymptotic expansions may be obtained for large
velues of the parameters, or the integral may easily be evaluated directly by
numerical methods when o is not small. For small or moderate values of cx
and P3, (3) may be calculated from

- (A + iB) (ai,

A =- y + log r ± E cos nO,

B =z - 0 1- . sinnO,

r = (g.2 
+32)1, tan 0 1,/(3, = 0.5772. (4)

Consider the surface elevation at the origin (x ý= 0). Since we have

x a _os _____ - - i (ci), (5)
.0 1 + 11 t - l C) 5

for (, > 0, where Ii is the logarithmic integral, we have at the origin

-2M {- [i (e)}. (6)

Using t ables of these functions, we find that -rt is zero when fi is approximately
135, or when c (--=.8-6V(qf) ; when c is less, the value of (6) is negative,

while at grrater speed s it is positivye. To illA;trate this point, the surface

elevation has I eon calculated from the complete expressions (1) and (2) for
two different cases, Kif = 4 am1d Kf= 0.5. The graphs are shown in
fig. L, A Ilel" i 1g f o" thI sm1maler value of K.f amid B for tile larger.
The ordinates an, to the, same scale, ausuiAmiimi M am.I1 constant andI C to he
the variable ; thO. abs~eissia are in wavel-hnng.ths, or more strictly the values of

KOX.

3. C'onsider now the three.-•li.,itsiomal i irhil,,,m. Take (Or and Oy iii the
siI-fat, of 4tin si re.ia, fihe 4irr1m11 loving, ill the egative', dirctvlion of IOx: &anmd
take 0., vei-livally upwards. I",,ir a h.wrizolmtal 4Ioulh'et of Itmuimm'llt M at til:
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.1

A

Fio. 1.

point (0, 0, -f), we take the velocity potential from a previous paper inl the
form*

cx - . Ke-K(z +f)+ i. Cos 0 dO dK

+ _ _M' K F (0, K) e 2) + i cos 0 dO dic,

with

F (0, K) K-- K , sec 2  0 .+ t iv see 0

K - K0 sec 2 0 -- see 0'

x =xcos 0+ysin0. (7)

The real part of the expression is to be taken, and further the limiting value

as L -÷ 0. The surface elevation is obtained frorn

ca-•= .o
ax az*

After sonic reduction, ý is obtained in the form
t= 2Mf KoM j"r W r OK W

+ x M 0-F see ~ 2 OdO
"(X2 + 2 + f 2)/-' j o K - Ko seC2 0 -F i i. sec 0

+ e K-f KdK. (8)

K - K 0 seC2 0 - it. sec 0J

Transforming the integral with respect to K in (8), and taking the limiting

value, we obtain

[0 '+
2

o sec 2 0 cos mf + in s-ii me-,, mdm, for r, > 0(.0 211 +{ ¢o 2 secC 0

* 'Roy. Soc. Proc,,' A, vol. 118, p. 28 (1928).
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4 -1Ko sec2 0 e-" Revs 8, sin (Ko sec2 0)

+2 00 K°sec2 0 cos mf + m sin mf emw mdm, form, < 0. (10)

m2j + < o2 Sip4J0 09 ÷ o sC4 0

We have now to integrate with respect to 0, subject to the conditions in (9)

and (10). The form of the surface is symmetrical with respect to Ox, so we
may write down only the expressions for y positive; and we shall put

x = r cos 0', y = r sin 0'. (11)

We find that the value of ý can be given by one expression, valid for 0 <_ 0' <re,
namely,

2Mf
c (r2 + f2)3/2

+-2K 0M 2•" see 0 dO K0 sec2 0 cOsmf+ m Si nfe- I c(-')Imdm
frc _ M2 + Ko2 sec4 0

+ 4K0
2M sec 4 0e 6-f" 's sin {KOr cos (0 -- 0') sec2 0} dO. (12)

This expression is exact, apart from the usual limitation that, at the surface
uf the stream, we neglect the squares of the additional fluid velocities.

4. The first two terms in (12) represent the local effect which is only of
importance in the neighbourhood of the origin. A few preliminary calculations
show that, as in the two-dimensional case, it changes from a depression to an
elevation about the value Kof =-1. Considering the elevation at the origin,
we have from (12) with r = 0,

2M 4KoM see OdO pCos UusinUUdu (13)
of 2  M _cf Jo f ÷ p2 U2

where p = K0f seC2 0 = p sec2 0.

The integration with respect to u can be expressed in terms of the logarithmic
integral, and we obtain finally

= 4M li(e)}d7o] 0 d0. (14)2 0 1
The integral in (14) was evaluated approximately for certain values of Kof

ranging between 1 and 2. The integrand was calculated in each case for a
suifi'cient number of values of p and was then graphed on a base of 0 ; the
value was found by taking values from the graph and using Simpson's rule.
In this way it was estimated that ýO is zero at about Kof = 1.4,
or •o 0 84V/(g.f). It was also verified that at, lower speeds ýo is negative,
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and at higher speeds positive. For comparison of the maximum local effect
with the rest of the surface elevation in two cases discussed later, it may be
noted that

trg9f,' 2 o/4M i - 1 346, for Kof-= 4
= + 0.860, for Ko = 0.5. (15)

The local effect at points other than the origin was not calculated, although
rough estimates were made for the central line, 0' = 0, from (12) to verify
that it falls off in much the same way as in the two-dimensional case for this
purpose the second term in (12) was put into the form

(4,,oM/7fcf) J sec2 0 dO, (16)

where
j==1'*cosu+ +uin e-,,•) u

U p2 Usin

R- pc- [P cos {c.V(pI(3)) - Q sin {aV/(p/P))],

P y + logp I Cos no,
" .n-

Q n.n!--E sin no (17)

with p2  p02 + pm2/p, tan o = cx-/•//(Pp), OC = Kor, p = Kofsec2 0, ( - Kof.

5. Consider now the third term in (12). For computation, we alter the form
slightly. We take 0' --- --- , so that o is the angle the radius vector makes
with the negative axis of x, and further we put

t' = cot o; t = tan 0. (18)

Then this part of the surface elevation, which we may denote by • - • is

given by
IK0-42M e- I (1 + t2) e-A' sin [c (t' - t)t(1+ + t2 )/(1 + t'2 )}i] dt.

(19)

In this form a, or K0r, is a positive quantity, r being the distance from the
origin. The axis of x in front of the disturbance is given by t' = - o, and

(19) is then zero ; for the axis of x in the rear of the origin t' = + sO. The
usual first approximation to the integral in (19) consists in assuming c large
enough so that the only appreciable contributions come from the groups of
terms near the positions of stationary phase of the harmonic constituents;
this leads to the familiar pattern of transverse and diverging waves contained
within radial lines making angles of about 190 26' on either side of the negative
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axis of x, or lines for which t' = ± 2V/2. Within the range w > t' > 2 %/2,
there are two values of t for which the phase is stationary, namely, the roots of

2t-t't 1 O, (20)

the smaller root corresponding to the transverse wave and the larger to the
diverging wave at each point. In the elementary ideal case the constituent
harmonic waves have equal amplitudes, but in (19) we have the amplitude
factor (1 + t2) e-Pt'. If P > 1, this function has a maximum at t = 0, and
diminishes steadily to zero as t increases. But if P < 1, there is a minimum
at t = 0 and a maximum at t = {(1 -- ()/p}I. We may expect then a difference
in the wave pattern according as c2 is greater or less than gf. When P > 1
and o has moderate values, the main part of (19) comes from small values of t ;
further, when cc is large and the typical wave pattern should be developed,
we see that the diverging waves will be relatively small. On the other hand,
when P < 1, there is increasing importance of the diverging waves; and in
particular, there will be a value of t', that is a certain radial line, for which
the maximum of the amplitude factor coincides with the greater root of (20)
for which the phase is stationary. As we are not calculating the wave pattern
at large distances we need not put down the general first approximations to
(19) by the stationary phase method ; we may, however, note the particular
cases for t' = o and t' = 2V2, that is for radial lines along the rearward axis
and along the line of cusps of the so-called isophasal lines. For these cases
(19) gives, by the usual methods,

21'rr1  4K 2M -0 /
(-K=--. * --- e 0Cos (I -r )
(i r~c "

for t' = oo , and
2•V3r 4K0

2M e-1Ko sin (lie 0rA3), (21)
(k~r), r(T c

for t' = 2V2. We note here the additional factor e01'd in the second case,
so far as variation of the amplitude with the depth is concerned; we see that
the relative prominence of the so-called cusp waves is only a feature of the
limiting cwse of a point surface disturbance.

6. Returning to the exact integral (19) for this part of the surface elevation,
it seemed of interest to make some numerical calculations directly from the
integral for points near to the origin, or for moderate values of ot. Instead of
following the isophasal lines, which are not significant in this region. we have
calculated the Kurface elevation from (19) along certain radial lines. We take
in turn the values t' = no, 3, 2%/2, 2, 1 and zero; these are shown in fig. 2
as A, B, C, D, E and F rrcspectively.
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For a given value of t', the value of (19) was found for about a dozen values
of m, so that the graph could be obtained with sufficient accuracy for our

Fro. 2.

purpose over a range of 7, that is of K0r, extending from 0 to 18. in each case
the value of (19) was obtained by evaluating the integrand at intervals of 0 1
for t for a sufficient range of t until, by reason of the exponential factor, the
remaining terms became negligible. Sets of calculations were made for two
values of p, that is of Kof, namely, 4.0 and 0- 5; in the latter case it was
necessary to take 40 or more values of the integrand in each case, but a smaller
number sufficed in the former case. The value of the integral was obtained
finally by using Simpson's rule. The collected results are shown in the graphs
of figs. 3 and 4, the curves being lettered in agreenimnt with the radial lines
of fig. 2.

A

16 12 8 4-j

Fro. 3.

Fig. 3 is for 0of 4, or c = l/(qf). Consider first the radial lines within
the limits of the ideal wave pattern, namely, A, B, C. In this case, though
B and C were calculated separately, there was not sufficient difference to show
on the graph without confusion and so B has been omitted ; A is the central
line and C. at an angle of 19' 26'. would be the cusp line of the sii41p1le theory.
We may picture the wavee in the present case as chiefly transverse waves,
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slightly curved, and diminishing in height from the central line outwards.
The remaining curves are for radial lines outside the usual pattern and show
how the wave disturbance is continued in this region. D is for an angle of
about 260 26' with the rearward central line ; it shows an appreciable wave
effect, but theie are indications that it decreases more rapidly with distance
from the origin than for the previous curves. A similar effect, more pronour.ced,
is shown in E and F, for radial lines at 450 and 90' respectively.

B

CA A

16 12 8I I I I I I

Fio. 4.

Fig. 4 is for K0 J = 0.5, or c V/(2gf). Here, on account of the labour
involved in the calculations, only three curves have been drawn; but they
bring out the points made in the general discussion. The amplitbide along
the cusp line C is now greater than along the central line A. Moreover, the
greatest amplitude is along the line B, inside the cusp line C, and shows efvidence
of superimposed diverging waves. The radial line B is given by t' = 3. Now
for Ko0f= p = J, the maximum of the amplitude factor in (19) occurs at t = 1.
But from (20), when t' = 3 the positions of stationary phase occur at t -
and t = 1 ; the latter coincides with the maximum of the amplitude factor
and so in this case we shoald expect a prominent wave along the radial line

= 3, or the line B in the diagram.
A comparison of the curves in figs. 3 and 4 enables us to form some picture

of the wave disturbance due to the doublet and the changes that occur as the
doublet is brought nearer the surface ; in the limit, as far as the wave pattern
is concerned, the effect would approximate to the ideal case of a concentrated
point disturbance at the surface.
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The Vertical Force on a Cylinder Submterged in a Uniform Stream.

By T. H. HAVELOCK, F.R.S.

(Received November 28, 1928.)

1. The horizontal force on a circular cylinder immersed in a stream is

familiar as an example of wave resistance. The following note supplies a

similar calculation for the resultant vertical force. The problem was sug-

gested in a consideration of the forces on a floating body in motion, the hori-
zontal and vertical forces and the turning moment ; but the case of a partially

immersed body presents great difficulties. It seemed, however, of sufficient

interest to compare the resultant horizontal and vertical forces for a simple
case of complete immersion for which the calculations can be carried out.

The horizontal force, or wave resistance, has usually been obtained indirectly
from considerations of energy, but a different method is adopted here for both

components of force and the turning moment. In a former paper the method
of successive images was applied to the problem of the circular cylinder, taking

images alternately in the surface of the cylinder and in the free surface of the
stream. Using these results to the required stage of approximation, the com-

plete force on the cylinder is now obtained as the resultant of forces between
the sources and sinks within the cylinder and those external to it. The same
method can be applied to any submerged body for which the image sytems are

known, and the resultant force and couple calculated in the same manner.

The proposition used in this method is that for a body in a fluid, the motion
of which is due to given sources and sinks, the resultant force and couple on

the body are the same as if the sources and their images attract in pairs accord-
ing to a simple law of force, inverse distance for the two-dimensional case and
inverse square of the distance for point sources. This fairly obvious proposition

follows directly from a contour integration in the two-dimenisional case ; and,
in view of the application, the extension is given in § 2 when the flow iig due to
a distribution of doublets. In § 3 the horizontal and vertical force on a

circular cylinder are obtained by this method, the former agreeing with the

usual expression for the wave resistance. The different variation of the two

components with velocity is of interest, and the expressions are graphed on the
same scale. The additional vertical force due to velocity changes direction at

a certain speed, and is clearly associated more with the surface elevation

immediately over the centre of the cylinder. In 5 4 reference is made to the
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388 T. H. Havelock.

couple on the cylinder. This should, of course, be zero for a complete solution
it is verified that the method used here gives zero moment up to the stage of
approximation in terms of the ratio of the radius of the cylinder to the depth
of its centre.

2. Consider steady two-dimensional flow of a liquid of density p past a
solid body, the motion being irrotational and there being no field of force. The
motion being specified in the usual manner by a function w of the complex
variable x + iy, the resultant force (X, Y) on the solid and the moment M
about the origin are given by

X - iY (-)pi fd 2z,(

M=-AP fjz~d 2 dz, (2)

where in (2) the real part is to be taken. In each case the integration is taken
round the contour of the rigid body, or indeed round any contour enclosing
the body but excluding any external sources and sinks.

Now suppose the motion to be given by

W = -m, log (z - z,) - •;moI(z -- z, (3)

where the suffix s refers to the given distribution in the liquid, and r to the
image system within the surface of the body, m, and m. being real.

Forming (dw/dz)2, we see that this quantity has simple poles at the points
z, within the contour of integration and we obtain at once from the theory

of residues

X -- iY -- 2p Y. m' (4)
z. - Z.

the summation extending over the external and internal sources taken in
pairs. Hence we obtain

X = 27cp Z m^ (x. - x,)/R,4 ,
Y = 27cp Entm (y. - y,)/R,?. (5)

It follows that the resultant force is the same as if each pair of external and
internal sources attracted each other with a force 2npmrm./Rn, where R,,
is the distance between them.

It may easily be verified in the same way from (2) that the moment M is
accounted for by the same forces acting at the internal sources. It is con.
venient to have a similar analysis for doublets, If M is the moment of a

298



Vertical Force on Cylinder Submerged in Uniform Stream. 389

doublet making an angle c with the axis of x, we have with the same notation
as before,

2 -- Z' Z -- Z'

Forming (dw/dz)2 we see that again the only terms which give any contribution
to the integral (1) are the product terms in r and a, and for a typical term we
have f dz 4iri (7)

- a), (z (z7. - Z7)
Thus we obtain

X - iY - 4 P 2 - " (8)

and the contribution to the total force due to M, and M, is

Xra = - 47tpMMM cos (a, + a. - 36,,) /R,, 3,
Y', = 47•pMM, sin (aC, + m, - 30,,) I'R,,3 , (9)

0,., being the angle between Ox and the vector Rn, drawn from the doublet
(r) to the doublet (s). Further, calculating the total moment M from (2),
the product terms MM, are the only terms which give any value, and the
corresponding contour integral is

Z d s -2-- Zr + z s (10)

f , (Z - )l (Z.
Hence we obtain

M - 2npiEMMea••+') (z, + z;) (z, - z,)- 2 , (1)

the real part to be taken.
On reduction it is seen that this consists of the sum of the moments of the

forces given by (9) acting at the internal doublets, together with a couple for
each pair of internal and external doublets of amount

27cpM,M, sin (o-, + oc, - 20,J) ./JR,., (12)

The contribution to the forces and moment on the body when the external
field includes also a uniform flow can easily be obtained in the same manner.

3. We now apply these expressions to a circular cylinder of radius a sub-
merged in a uniform stream. Take Oz in the undisturhed surface of the stream
Oy vertically upwards ; and let the stream velocity be c in the negative direction
of Oz. Let the centre C of the circle be at the point (0, - f). Then the image
of the stream in the circle is a horizontal doublet at C of moment cat. The
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image system of this doublet in the free surface of the stream consists of a
horizontal doublet of moment -ca2 at C, the image point (0,f), together with
a continuous line distribution of doublets along a horizontal line through C1
in the negative direction of Oz. At a point (-p, f) on this line the moment
of an elementary doublet is 2Kxca'dp, where K-= g/c2, and the axis of the
doublet makes an angle op -- in with the positive direction of Oz.* We may
stop at this stage meantime.

In the notation of the previous section the external system (s) consists of
the uniform stream and the image system just specified ; the internal system
(r) is the doublet cw2 at the point (0, -f).

For the wave resistance R, we have from (9)

R -X = 8KCz' a4J COS (KOP -- •n -- 3) d,, (13)
(p + 4f2)3 /2

where
sin 0 = 2f/(p2 + 4f)i); cos 0 = - p/(p- + 4fs)i.

This gives

--87rpKoc~a4 p(p2 - 12f2) sin pop+2f(3p 2 - 4f2) COS KoP dp. (14)

7r~oj(p 2 + 4f2)3  (4

p sin KoP + 2fCos Kop -2(15

p2 4f2

by differentiating twice with respect to f; and we obtain

R = 470gP 0 'e•--"4, (16)

in agreement with other methods.
Turning to the vertical force, if we calculate it from the expressions in (9)

we shall obtain the hydrodynamic part depending upon the velocity. There
in also the hydrostatic part gp?=2, arising from the term gpy in the expression
for the pressure; and in addition there is the weight of the cylinder itself.
We may assume the cylinder to be of the same density as the liquid, and then
the calculation will give the total vertical force.

Measuring Y vertically upwards, the contribution of the two finte doublets

at C and C, is, from (9),
-ffpc2 a4/2f 3, (17)

*'R, . S P. I4 .. ' A. u 1. 115. p. 271 (1927).
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The part arising from the interaction of the line distribution of doublets and
the doublet at C is

8 is in (op- dp, (18)

which reduces to

87rpKC a4  p (p2 - 122) cos K p - 2Z(3p•2-4f2) Sin KOPd. (19)
in (p2 + 4f 2 )3

This integral may be evaluated by differentiating twice with respect to f the
integral

.%, p cos Kp. - 2f sin K0O dp 2- e ,of 1i (e2 of), (20)

.0 p 2 +4f 2

where Ii is the logarithmic integral.
Collecting the terms from (17) and (19) we obtain finally

Y = 7rpc2a4 (1 + 2Kf + 4K 2f2 - 8K•of3e-2of Ii (e2'-o)}. (21)

This vertical force changes from upwards to downwards at a certain velocity.
For when c is small, that is Kjf large, using the asymptotic expansion of the
logarithmic integral we find that Y approximates to 7rpc2a'/2f 3 ; on the other
hand, when c is large, Y is approximately - 7cpc'a 4/2f 3. The value of (21)
can be calculated readily from tables and it is of interest to compare the
relative values of R and Y and their variation with velocity.

R

C/,/(qf
0-4 0.6 04 1.0

The figure sholws R and Y graphed ,in the s~mel t ieoll a hast' cI\//gf).
R is \'1r small al low 'cl•witiesa ill thenW intcreascs rdl)idly to) its flaximllitfl al
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about c - (•). On the other hand Y is relatively iarge at lower velocities,
and changes sign at about c = 0.84 -V/(gJ). The wave resistance arises from
the flow of energy in the regular waves to the rear of the cylinder, while the
vertical force i ý a~sociated more with the surface elevation near the cylinder.
The surface elevation immediately above the centre of the cylinder is given by*

71 = (2a 2/f) { 1 - Kx,fe-K".f 1i (e",,J-) }, (22)

and for comparison this is shown on the figure with an arbitrary scale for the
ordinates. Doubtless the variation in the vertical force with the velocity
is connected with the mean curvature of the lines of flow in the neighbourhood
of the cylinder. It may be noted that the usual approximation for the pressure
condition at the free surface in,, olves neglecting the square of the slope of the
surface; this would n9t affect the present approximation but would come into
the next stage involving higher powers of the ratio a/f.

4. Obviously in a complete solution the fluid prc.ssures on the cylinder
cannot give rise to any couple. As the method of successive images amounts
to an expansion of the solution in ascending powers of a/f, it is worth while
verifying that the couple is zero at each stage of the approximation. With the
images specified up to the present the couple com.s from the interaction of the
doublet at C with the line distribution to the rear of CV. Using the result (12),
this gives a moment Sil K* o - 7T :20

4rtKpc2a4f2 - 2) dp, (23)
f " P2 + 4f 2

which, on substituting for 0, gives

47TTmpc2a4f 4pf SiII Kop - (p 2 - 4f 2) COS Kp (24)
(p 2 + 4/12)

This can be evaluated, and iti value is not zero. But it can be seen that we
shall get a contribution of the same order, in the radius a, from the next stage
of succeasive images. The next set of images is internal to the cylinder and
consists of a horizontal doublet of moment -ca'/4f' at the inverse point C(
whose co-ordinates are (0, -f ± a0/2f), together with a continuous distribu.
tion of doublets on a smni-circle described on CC, as diameter. At a point
on this semi-circle whose co-ordinates are

a'Jp . 2a1t

p2 +4f" + 4f2

"R ,. #%. I K ' i N , % i i1 121. p. v 17 (19,I
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the moment of an elementary doublet is 2#coca 4 dp/(p' + 4f 2 ), and its axis
inake,; wvith Ox. an angle

2 tan'- (p/2f) - 'op + W.
Now at this stage the only additional terms of order a4 for the turning moment
arise from the interaction of the external uniform stream and the semi-circular
distribution of doublets just described.

It can easily be seen that the amount due to the uniform stream and an
internal doublet of moment Mr at an angle m, to Ox is

- 27trpM,. sin ,.

Therefore the additional couple of the specified order is

- 4-,CopC2a 04 sin {2 tan-' (p/2f) - Kop-+ 7/2} dp (25)

P2 + 4f
2

On reduction (25) comes to precisely the expression (24) with a minus sign
and therefore the couple on the cylinder is zero to the order specified.

HRRItSoN AND 8,)NS, Ltd., Printers in Ordinary to His Majesty, St. Martin's Lane,
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Iorced Surface- Waves on Water.
By T. H. HAVELOCK, F.R.S.

1. TJHE following notes deal with some problems of forced
_IT waves on the surface of water, the waves being

forced in that the normal fluid velocity has an assigned
value at every point of a given vertical surface ; the problems
treated here are the elementary cases when the given
surface is an infinite plane or a circular cylinder. The
motion of the water surface consists in general of travelling
waves together with a local disturbance, and the type of
solution is one which may have possible application to the
waves produced in water by the small oscillations of a solid
body.

2. Consider first deep water, and take the origin in the
free surface with Ox horizontally and Oz vertically down-
wards. The velocity potential satisfies

'62- + •2  
_o. (1)

Neglecting the square of the fluid velocity at the free
surface, and omitting the effect of capillarity, the condition
at the free surface is

t-'....-0 ... ......... (2)

and the surface elevation " is given by

6-= _- ...... (3)

For simple harmonic motion we assume a time-factor
Pi', and (2) gives

Kof + -b =0, at=, .... (4)

w ith l 0o=a2/,g.

Suppose now that we are also given

- =f(z) e', at x=0, ..... (5)

wherp f(z) is given for all positive values of z; and we
require a solution of (1), (4) and (8) suitable for positive
values of x.
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The solution can be obta ined lo" various methods for
example, by coinbining suitable elomeiitary solutions of (I)
and (4). The usual solution for fi'vo progressive waves is
found from

There is also another elementary solution,

0=-e-z(K cos Kz--Kc sin Kz), .... .. (7)

where i may have any real positive value.
We can generalize these solutions by nitans of the

following integral theorem, which may easily be verified
f () =

2 .f~t*) (K cos K'--K0 sin Pz)(K cos -K sin 11Kt)
7r o 0 K 2 + K(20•cl

+ 2Koe-"0 f (-)e -K,1 (lt.. ..... )

Here f(z) is given for all positive values of z, and it, should
be remarked that the proof involves the Fourier integral
theorem, and thatf (Z) is subject to suitable limitations.

We may now write down a solution which satisfies the
condition (5). It is clear that, on the forced vibrations so
obtained, we may superpose any free oscillations for which
'60/1x is zero over the plane x=0 ; we shall choose the
latter so that the complete solution represents waves
travelling out~wards for large positive values of x. This
solution is given by

4)=2e- -KZsin (o-t _- KCUl f(x)e_•ada + "osat x

(K 0s KO-S- KQ Sin KZ) X
x(,oICCOSU- ICSill KOO)

0 xjj(t(2 -,2 __-- e AJ(IK (toe. . (9)

This gives a normal velocity f(z) cos at over the plane
a'=0, and reduces to a positive wave for large Positive values
of x. The corresponding surface elevation is

2a= cos (at -Kua) f (,z)e-d(t

... si at i f IC 0 0 Kcos + sin KC, ,e_,-(,tK d,. (10)* g .o 0 K2*+K 2,

The first term of (10) is a ipane progressive wave of the
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same wave-length as the free wave of the same frequency,
while the second term may be called the local oscillation.

If we take f(z)=e-'e:, the second term in (9) and (10)
vanishes, and we regain the expressions for a simple
progressive wave.

If we take, more generally,

f(z) =Ae-Pz . ....... (1)

over the whole range for z, the second integral in (10) can
be evaluated explicitly in terms of Cosine and Sine integrals,
and we obtain

2aA o 2aA sin at
.----Pcos (at- K43V)- - X

Ko +prg(Ko + p)

x [Ci(px) cospx-Ci(cox) cos qox+Si(px) sinp.

i(KX') si n Ix - j (sinpx-- sin lox)] (12)

As we make p smaller we approach the limiting case of
constant normal velocity over the whole of the plane x-=0.
It is of interest to note that the amplitude of the travelling
wave remains finite in the limit, but that the amplitude of
the local oscillation becomes logarithmically infinite at x-0.

3. A problem of some interest is the decay of the vertical
oscillations of a floating body due to the propagation of
waves outwards from it, bdt a direct attack upon the
problem is difficult. We may perhaps obtain a rough
estimate by applying the preceding analysis to a simplified
form of the prob,•m. Imagine a log of rectangular section
floating in water with the sides verticai ; let b be the breadth
and d the depth immersed. Now suppose thi log made to
execute small vertical oscillations of amplitude a and
frequency a. Let one of the sides of the log lie in the
plane x=0 ; then the disturbance in the water on that side
may be regarded as due to a certain oscillating distribution
of normal fluid velocity over the plane x=0 from z=d to
z=3o . If we make the assumption that this is of the form

f(z) cos at. ........ . (13)

then, from continuity of flow, we have

2f f(z)dz=aab....... (14)

WVithout attenipting to solve the actual problem, let us
assunme

f(z)=Ae-T;. ..... (15)
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then from (14) we have
A = iaabpeld..........i;

From (10) we find that the amplitude of the waves
travelling out on either side of the log would be

2 - epd d e-(r,+P)a da

0 'a-p e~od ........ (17)
-.(ko + p)

A large value of p would correspond to a concentration
of the outward flow round the lower edges of the log;
hence this estimate gives, as an upper limit for the amplitude,

(W ab/g)e-d/49.. ...... .. (18)

4. If, in the general problem of §2, the normal velocity
at x=0 is a function of y as well as of z, the solution of the
three-dimensional motion can be obtained by an additional
Fourier synthesis.

Assume first that S is proportional to cos Ac'(y-,3), then
the potential equation is

The time entering as a simple harmonic factor, the
boundary condition at z--0 is given by (4).

We have now the following elementary solutions, omitting
the factors in y and t :

0 =e"k€-Z-i'o2-K"2), I for K'< Ko

-='e-krz('S-lo?)I for K' > Ko ;

4, = e-'2+'")(xcosKZ - x0sin x.z). . (20)
The theorem (8) may be generalized, with suitable

limitations on the function.f (y, :), to

f(AV, Z)=
do ,d j f(c.. )e' -" c' (y- 1)dK'

7 r V, 0 0! ® J

+r do o d-I o r
(K cos KZ--K0 sin xz) x

x (K coS Ka -- K0 sin t) CO.( 1
X,+ cos '(?-$),. (21)
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Suppose that at x=O we are given

S=f (y, z) cos at. .(22)

Then from (20) and (21) we obtain an expression for 0,
valid for positive values of x, and adjusted so that it
represents progressive waves at large values of IT ; we find

2 oe woz' da d, (a, /) sin (art--x V K-,0 ) x

e-, +cos -'(y-8 , + -- •C osati daj d,3 x
(KO, - K)I7r 0 -

"x f(a, x)z2~u O '(Y-s 6 ) , 2

' J -(k"- Ko2)J dK + COSOt X

"x dt dIc d f(,, (a,,8)e-+w2)1 Cos 1oc (Y)

"(i cos xz--Ko sin /CZ) (IC COS --i o sin "a). A.. (23)

A particular case which would illustrate the spreading of
plane waves emerging from a canal into an infinite sea is
obtained by taking

f (y, z) = (gaKo/G)e-'oz cos at, (24)

over the whole range for z and between the limits + b for y,
the function being zero outside these limits for y. Substi-
tuting in (23), the third term disappears, and also the
integrations with respect to /R can be effected in the
remaining terms. We find that the surface elevation for
this case is given by

2K20a -'Xo sin K'b cosK".y cos { fat -- X(co--'-)i} die
= J- o IC'(/C 0

2 - /'C2 )

2o Cos a sin IC'b cos K'!Ie(EC l'. X024
7 f",0 K' (1C'2 - /t0 2) i -dK. (24)

The form of the surface could be studied by approximate
evaluation of these integrals as in similar diffraction
problems.

5. We return to plane waves, and suppose now that the
w.ater is of finite depth h. We have the additional condition

.--- =0, for z=hi. ....... (25)
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The corresponding elementary solutions are

0=e'(,'-XoZ) cosh Ko(z-h), ..... (26)

where K0 is the real posihive root of

gxotanh Koh-a 2 ; . . . .. (27)
and

n =ei6t--wr cos K (z--h), ..... (28)
where K is any real positive root of

gKtanh+2=-0 ... (29)

This equation has an infinite sequence of real roots,
together with an imaginary root iK0 . We assume then the
possibility of expanding a function J(:) in the range
O<z~h, in the form

f (z)=A cosh KO(z-h) +XB cos (z,--), (30)

where the summation extends over the real positive roots
of the equation (29), We find that the coefficients are
given by

A = 4 K h f (a) cosh Ko(Oc--h) da,
2Kxh .+ sich 2acOh o0

12= /4Ktin , (a) cos K(a--h)da. (31)

If at x=0 we are given

=f (z) cos at, ..... (32)

then the velocity potential for positive values of x, such
that the motion at a distance is a plane progressive wave,
is given by

k=AoK0 ' cosh Ko(Z--h) sin (at-,ix)
+ BK--e-"x cosK(z--h) cosat. . (33)

Suppose, for instance, that one end of a long tank is
made to execute simple harmonic vibrations of small
amplitude a, then we havewf(z)=oa. The values of A and B
follow from (31), and from (33) we deduce the surface
elevation in this case

2o~a sinh 2Kuhq= !o(2,ch + sinh 2Kh) cos (at - Acxr)
(IK,,~'a -2~ +r si 11 h 2,,

- s at!•2( 2ae+sin 2Ki (34)
Yo9(2K/t+sin2K/)(
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575 Forced Surface- Waves on Water.

6. The same analysis may be applied to circular waves,
and we limit consideration here to symmetry round the
origin. The normal fluid velocity is supiposed to he assigned
over a vertical cylindrical surface ; for example, we take

- -._ (z) cos at, for r-a. (3 5)b r

The velocity potential satisfies

r r + +2-- ... o. .... (36)
~r2  rbr 'a

The condition at the free surface is the same as before, and
we assume the water to be deep. Elementary solutions of
the required form are found in terms of suitable Bessel
functions. The solution

O=eit-Xt lo•(2 )(Ko,-) ...... (37)

represents diverging waves for large values of r ; while in
the solution

-- er'•(/c cos Kz-- 0 sin Kz) KO(icr), . (38)

K0 (Kr) tends exponentially to zero for large distances from
the origin.

Genoralizing as before, we obtain the solution

0=e''KoYO()/cr f f(a)e -"-doe -- it x
1ii(2) ( (L1) 0 7T

(/cos 1C -- /o sin 1 :) x
x" i'i" f(.) 2K(rKo(a 2(c --Asi•"dda,• u (39)
XKKo(,cr) K (/cs~K()%n c

0 0O

where the real part is to be taken.
The surface elevation at a great distance from the origin

is given by
2icr (2\) el__ r_-__ or_-j-__4_V)

-W _2- /7Kr J0 (o)iY 1  a f(at)e - ,,de, (40)g' - -g r Jo'(Koa) -i Yo"(Koa, )

or, in real terms, this gives

10 '(Koa) sin (at -Kor+--1 ')+
+yo'( oa) cos (at-,or+ -r) (41)

SJ or2(K oa) +Yo'2(K oa)
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This expression might he ismed, as in §3, to give an

estimate for the energy propagated outwards from a cirvular
cvlinder immersed to a given depth, and making small
,'ertieal oscillations of given frequency.
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The Wave Rcsistance of a Spheroid.

By T. H. HAVELOCK, F.R.S.

(Received February 20, 1931.)

1. A method which has been used to calculate the wave resistance of a
submerged solid is to replace the solid by a distribution of sources and sinks,
or of doublets, the distribution being the image system for the solid in a uniform
stream. The cases which have been solved hitherto have been limited to

those in which the image system is either a single doublet or a distribution of
doublets lying in a vertical plane parallel to the direction of motion. It is

shown here how to obtain the solution for an ellipsoid moving horizontally
at given depth below the surface of the water, and with its axes in any assigned
directions. The present paper deals specially with prolate and oblate spheroids

moving end-on and broadside-on, the general case of an ellipsoid with unequal
axes being left for a subsequent paper.

In § 2 it is shown that the image syste'z- for an ellipsoid in a uniform stream
is a certain surface distribution of parallel doublets over the elliptic focal
conic, the direction of the doublets being in general inclined to the direction
of mrtion ; if the motion is parallel to a principal axis, the doublets are in the

same direction. For a spheroid the image system reduces to either a line
distribution or to a surface distribution over a certain circle ; explicit expres-

sions are given in § 3 for prolate and oblate spheroids when moving either in
the direction of the axis of symmetry or at right angles to that axis.

The calculation of the wave resistance is considered in § 4. An expression
has been given previously for the wave resistance associated with two doublets
at any points in the liquid with their axes in any assigned directions ; this can

be generalised to cover continuous line, surface or volume distributions of
doublets. Incidentally, it is shown how by integration we may pass from
a three-dimensional doublet, corresponding to a submerged sphere, to a two-
dimensional doublet, corresponding to a circular cylinder. In § 5 expressions
for the wave resistance are developed for the particular cases of moving
spheroids of § 3. In the tinal seetion thes, results are illustrated by numnerical

and graphical calculations for certain series of models. In each case the
axis of the spheroid is Suplposed horizontal, and to make the calealat ions
definite the depth of the axis is taken to be twice the radius of the central
circular section. The models consist of a sphier,., radius 1 ; an oblate sphieroid
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276 T. II. Havelock.

with semi-axis a = 4bi5 ; and prolate spheroids with a = 5b/i, 5b/2 and 5h
respectively. Graphs are given for the variation of wave resistance with
velocity for these five models (i) when moving in the direction of the axis of

revolution, (ii) when moving at right angles to that axis ; these illustrate

respectively the effect of increased length, and the effect of increased beam and

area of cross-section. It is of interest to note that increase of length gives

diminished resistance at low speeds, with a subsequent rapid increase ; while

increasing beam in the second series gives increased resistance at all speeds.

2. Consider the motion of a solid bounded by the ellipsoid

x2  y2 Z2

in an infinite liquid, the velocity being u parallel to Ox.
It is well known that if V is the gravitational potential of a uniform solid of

unit density bounded by (1), then the velocity potential of the fluid motion is

given by
U _V (2)2n = 7(2 -- oc) ax'

where

co= abc (ao du (3)
f/ (a2 + u)3/2 (b2 + u)1/ 2 (c2 + u)1/2 '

Since
.. dX' dy' dz'(4

V )) tiX - X.') + (y - y,)p + (z - z')21•/ (4)

taken throughout the ellipsoid, it follows from (2) and (4) that the velocity

potential of the fluid motion is that due to a uniform volume distribution of
doublets throughout the ellipsoid, with their axes parallel to Ox, and of moment
per unit volume equal to u/27r(2 - oco).

Similarly for motion parallel to Oy or Oz we have a like result with a corre-
sponding quantity P. or yo taking the place of mo. For motion in any other

direction we resolve the velocity along the three axes and combine the

component doublet systems.

The gravitational potentials of two solid homogeneous ellipsoids, bounded

by confocals, at any point external to both are proportional to their masses.
lHence in the hydrodynamical problem we may replace the distribution of

doublets throughout the ellipsoid (1) by a uniform distribution through any
interior coafocal, increasing the moment per unit volume by the factor

fa.l/y ((,i*- + ),) (bl + )(c2 + X)}, (5)

where X, is t h, pramotter of th1, coinfocl.
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Wave Resistance of a Spheroid. 277

In particular, we obtain the simplest systenm by taking the confocal which
reduc's in the limit to the elliptic focal conic

X2 y2

(12 - -12+

with a > b > c. In this case the volume (distributiolu of (hoibhletS re(iuces
to a surface distribution over the plane area bounded externally by (6). The

nionient per unit area is found by putting V•" - C2 + -- 6 and taking limiting
values as 8 - 0, taking into account the factor (5) and the limiting thickness
of tile confocal at each point. We may refer to the distribution found in this
way as the image system for an ellipsoid in a uniform stream.

If the motion is parallel to Ox, the doublets are parallel to Ox and aro
distributed over (6) with a moment per unit area given by

(2 )( 2 abeu (I _X2__ 2_1/2  (7)
7z (2 -- o) (a2 _- c2)1!2 (b2 . c2•) 1 (1 2 b __ _/2 b2 -

There are similar expressions for motion parallel to Oy, Oz with Po, yo
respectively in place of oo.

3. We shall specify now the particular re.sults for spheroids, using the known
values of oco, PO, yo. We take Ox to be the axis of symmetry, with c =- b;
and consider first motion parallel to the axis of symmetry.

For a prolate spheroid, the focal conic reduces to the line joining the foci
of the generating ellipse. The image system reduces to a line distribution
along Ox, from x = - aet ) x = ae, of moment per unit length

Au (a'e2 - x2), (7)
where

A-= 4e/(1 - c2) - 2 log ((1 -- c)/(l - e)}, (8)

with e2 = 1 - b2/a2.
For an oblate spheroid under the same conditions, the system is a stirface
distribution of doublets parallel to Ox, over the circle

X ý 11 ; y 2 +l Z 2 ý= 1)2e '2, (9 )

where '2 I -- a2/b2 ; and tIi-- muomient per unit are.a is

jO,~ (/),21'21-y2 - z2)1/2, (Io)
'withI

B - 1 =2 ~ i n- 1 e '--e ' 1 - 2) .(

a 1 i . ill at I Ig l I ItI to tile ,i xi t ,if NVIIII(ti'v, we t k. I,, O .. lt . liI,.t on1
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278 T. II. llaveoc,(k.

of motion. F, a p riolaite spieroid thc. system is a line, distribuitionl alonL C)

between r \ 'I , with axes parallel to Oy, andl of noumient per unit length

V\'l (akc2 -- ,2), (12)

where
A' - 2e (2c 2 - 1)/(1 - C2) J- log{(1 + e)i"(l - e)). (13)

For an oblate spheroid the system consists of doublets parallel to Oy, over the
circle

.t y2  i JJ= ('. (14)

an-l of iomnient per kinit area

\V( re
Y'-I P -{,' (1 -±- e'2 (1 - e' 2)'1 2 - sin-li e'}) (1 J)

For e = 0, all these di.stributions reduee to the finite doublet at the origin

appropriate to the motion of a sphere.

4. Consider now the wave resistance when an ellipsoid is wholly immersed
at some depth in water a1n(1 is moving with constant horizontal velocitv ; we
olrain the first approximation for the resistance by replacing the ellipsoid
by the image system which was discussed in the preceding section. The
resistance is derived from the doublet system by expressions which have been
given p)reviously ; in particular, reference may be made to an expression for
the wave resistance corr(esponding to two doublets at any points in the water
with their axes in any given directions.* We shall not quote the general

result, as we require here only the case in which the doublets have their axes
parallel thtfl-,, direction of motion. Take the origin 0 in the free surface of
the water, Oz vertically upwards ; for a doublet of moment A1 at the point
(h, k, -f) and a doublet M' at (h', k', -f'), both axes being parallel to Ox, the
directio n of ,notion. the wave resistance is given bY

-. "M11' ,,-, �')- C',( .\ ((,s Iie sB ,(' (0 0(1 , (17)

withi
.,, g T1. 2 A K,, ih /1')s. (C 0 ; (A' - A") -i1 ) 1 .-2  O.

Ilhi- 'a -il bei extinhd d i() ,i c u ,ii uu'115s ,listriljoi ,, iui . I, ( list il* t)i()

* -Pr c. n,,\,. So'.... A. vol. 11., p. :2 Il1tz ).
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Wave Resistance of a Spheroid. 279

in a, vertical plane paraliel to the direction of motion, to which e previous work

has been limited, we have

R =l 6 7rPKO4  (if df' A A' JM (h, f) M (h', f')

X c-•.(f+f0).qCo• cos {K 0 (h -- h') see 0} sec 5 0 dO, (18)

where we have taken y 0 as the plane of distribution. This expression can
be written as

1r2

R = 16pK0
4 F (P2 + Q2) see5 0 dO, (19)

S0

where

P + iQ = Ki fd7v. 5N (h1, f) . -c -',f +h get- t". (20)

When the distribution is in a plane perpendicular to the, direction of motion,

say the plane x - 0, it is eAsily seen that we have the same expression (19)

for R, but now

P [- iQ jd (If ,fodk . 5l (k,f). ,-J . , (21)

If the doublets are distributed along a line, the suitable forms for R may

readily be deduced from these expressions.

Before proceeding to apply these results to spheroids, we may notice a simple

case of (21). The first problem in wave resistance to be solved was that of a

two-dimensional doublet corresponding to the motion of a circular cylinder

with its axis horizontal and moving at right angles to the axis ; the next

problem was the three-dimensional doublet for the motion of a sphere. By

means of (19) and (21) we may pass from the second problem to the first by

integration.
Write down the velocity potential of a uniform distribution of three-dimen-

sional doublets of moment M per unit length over a straight line of finite lJngth.

the axes of the doublets being at right anglo, to this line ; evaluate the expres-
sion in the- limit when the length of the distribution becomes infinite, and we

obtain the velocity potential of a two-dirneasionial doublet of moment 2M.

Consider now tle expression tor the wave resistance for the same process
if 21 is the length of the distriitbutiou, (21) gives

J-I
P -+ A4, me A. (22)
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280 T. It. iHlavelock.

Evaluating the integral alm using (19) we hvte

2• sin2 (Kg1 sill U seC2 0) ,,o
R = 67-op0 2.I2  Si 0 S 0 se -2,f.ee' 0. (23)U't si, 2 0 COS 0

The wave resistance for the eorrsponding two-dimensional doublet is for
unit length perpendicular to the plane of motion, and should be given by
irn (R/21) as 1 From (23), this is

Lim 3 2 7-pK0
2 NL2 e'/2K•f s + n2•1

2 du

- 167.2 pKo• 112e-2',. (24)

and this is the known expression for the wave resistance of a two-dimensional
doublet of the corresponding moment 2.1.

5. We proceed now to the wave resistance of a submerged spheroid, takiw•
:n each case the axis of the spheroid to be horizontal and at a depth f beloh,

the surface of the water.
Prolate Spheroid in 1)irection of Axis.-Froin (7) and (20) we have

(P - iQ)/A ue-.°if"' j (a12 2 
- h12) eiKih sec dh

- (87a0e0/K 0
3 sec3 0)1/2 J3/2 (Koae see 0), (25)

where J denotes the usual Bessel lunction. Hence from (19),

R - 1287c2gpa 3 f,.sk 2 J - ' K {dJ3/2 (•o0 aU see 0)}2 sec2 0 dO, (26)

a result which was obtained previously b)y a different method.* For purposes
of numerical calculation it is convenient to change the variable in the integration
from 0 to tan 0 ; we then have

R = 128rt2gpa 3Ce36e- j e-"' {J./ 2 (Koae \/1 I+ t2)})2 dt, (27)

where p = 2Kof = 2gfju2, and A is given in (8).
Oblate Sphcroid in I)irection Of Axis.-Here we have a surface distribution

given by (10), and remintmring that the centre of the circular distribution is
at a depth f, (21) gives

(P -+- iQ)/Bue- S'O (b'2 - 2- z 2 )1/2 e~ se' o + sin0see'to dy dz, (28)

taken over the circle y' -+- z-:--- b-'("2.

* ' Pro'. ROy. Koe..' A, v-I1. 95. p, 365 (1919),
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Taking the integration with respect to y first, we obtain, after integratioli

by parts,

(Ko sin 0 sec2 0)-1 y (b2c' 2 - y -- z)-112 sin (Koy sin 0 sec2 0) dy

7'r (b 2e ' 2  --z 2 )1/2

-o sin O seC2 0 J1 (Ko Vble'2 - z2 sin 0 sec 2 0). (29)

The integration with respect to z now becomes
Ibe,

(b2e'2 - z2)1/2 C a J•, (K.° -v/b2e'2 - z2 sin 0 sec2 0) dz, (30)

and this is equivalent to evaluating

2 cosh (ot cos 0) J, (P sin 0) sin2 o do, (31)

where a = Kobe' seC2 0, Kobc' sin 0 sec2 0.
The integral (31) may be evaluated as a special case of Sonine's integral, or

by expanding cosh(x cos k) in powers of cos 0, integrating term by term, and
summing the resulting series. The latter expression for (31). is found to be

G .2n 2"-1/2 r(n + J)
- o 2nI-- 3+1/ J.+312 /M (32)

Noting that in the present problem, a f , the value of (32), or of the integral
(31), is

2 1 I{(O2 - p2) 1 2}, (33)

where the Bessel function is given by

1312 W = (21)1/2 (cohx-Bn ) (34)
7 , X /

Collecting these results, we obtain

(P + iQ)/Bu e-'" 1"C' 1 =2(7•tb 3e'3 /2Ko 3 sec3 0)1/2 J3/2 (Kobe' see 0). (35)

Finally, from (19) we find

Rff32n•pKobSe'3B 2u2 10 eJ..!" {rI2/ (Kobe' sec 0)}2 sec2 0 dO6 (36)

or in the same form as (27),

R-32 rrgpb3e' 3B 2e-9 o e-"'"( I(1/ (Kobe' -%/1 + t2)}1 dr, (37)

where B is given in (11).
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Pro,,I'tc ,phrroid( at Right A ntles to its ix.i.s.--Tie (istributio, is given in

(12), and in this case we use (21) instead of (20) ; apart from this, the calcu-

lation follows the same course and we obtain finally

iR 12879gpa1e3 A' 2 on 'f•' {J 3/2 (Kdae sin 0 see2 0)}2 CoS 0 d0/sinO 0

128q2pa3c3A'Oe- e- 03/2 (K0 atd \/1 -+ t2)}2 1 t d- , (38)

with A' given in (13).

Oblate Sphero;d at Right Aiogles to its Axis.--Thre distribhition given in (15)

lies in a plane parallel to the direction of motion, so we now use (20) ; the

integrals are, however, of the same type as those already discussed and the

analysis need not be given in detail. Using (15), (19) and (20), we obtain

after some reduction

1 32T4gPb 3c 3B, 2(,--b C P'" {1:1, (t,'obpt \,''I + t2)12 t - (It. (39)

where B' is given iin (16).

Sphere.--It may easily be verified that in the limit when c, 6r c', becomes

zero, all these expressions (27), (37), (38) and (39), reduce to the known result

for a sphere, namely

R = 4rrgpK0
3b6 e-P J3 (1 + t 2)312 e-lPt' dt

= n +f (40)

where K, is the Bessel function defined by

K. (x) = e-Xcosn U cosh nu du. (41)

6. The resistances for prolate and oblate spheroids have been worked out

independently in the preceding section. It is of interest to note that the

results have the same analytical form and may, in fact, be deduced from each

other by" taking the eccentricity to be imaginary instead of real. For the

prolate spheroid, (, __ I -- b"' ! 2 ; while for the oblate spheroid, c'" 1 - aO/b 2 .
It may be verified that if it (27) we write e ý ie'bia, the expression transforms

precisely into (37) ; and the salue relation holds between (38) and (39).
7. The integrals in the various expressions oan be transformed into alter-

native forms, or expressed in infinite series in se,,eral ways ; but either the
series do not converge rapilly enough for the values of the parameters which
are of interest, or else the fmuctions involved have not been tabulated. It
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Wave Resistance of a Spheroid. 283

has been found simpler to make numerical calculations directly from the
integrals as given, although a considerable amount of work is involved in any

case.
The calculations have been carried out for a set of five spheroids, including

the sphere, the radius b of the central circular section being supposed constant
and the semi-axis a varied. The following are the data for the series :-A,
oblate, a = 4b/5, e' = 0"6 ; B, sphere, a = b ; C, prolate, a = 5b/4, e = 0-6 ;
D, prolate, a = 5b/2, e 0- 0.9165 ; E, prolate, a = 5b, e =-00.9798. The axial
sections of these forms are shown in fig. 1, drawn to scale, the diagram
showing one quarter of the section in each case.

FIG. 1.

We suppose the axis horizontal in each case and at the same depth f below
the free surface. To make a definite case for numerical calculation we take

f =- 2b, (42)
that is, the depth twice tlhe radius of the central circular section. We consider
the models in two series, (i) with the axis in the direction of motion, (ii) with
the axis at right angles to the motion. Our object is to show the variation of

wave-resistance with velocity for each model, and to see how the graph varies,
in (i) with increasing length, and in (ii) with increasing beam. To give one
example of the calculations, when a = 5b/2, (27) gives

R = 22"70rgpb3e-VJ e-P',{J 1/2 (0.5728 p Nijt2)}2 dr. (43)

For velocities which are of special interest, the parameter p ranges from about
1 to 8. A graph of the Bessel function J3/ 2 was drawn on a large scale and
values were taken from it, except for small values of the argument when they
were calculated from tables of J,/2 and J_-12. Values of the integrand were
calculated for values, of t at intervals of 0" 1, and the numerical integration
carried out by the usual methods. Owing to the exponential factor, it was
unnecessary to go beyond t = 2 in aliy case ; and for the larger values of p,
a smaller range of t was sufficient. This process was carried out for seven or
eight values of p, and so a graph could be drawn for the variation of R with p,
that is, with velocity u.
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284 T. 11. Havhelock.

A similar method was used for tlh, intlgrals in (37) and (3S). F,)r (39),
the Bessel function was expanded in powers of (1 1-. t2), and integration carried
out term-by-term ; the integrals involved are then of the form

2n +1

E (1 + t2 ) 2 eCPO dt, (44)

which can be expressed in terms of the Bessel function K. defined in (41).
By recurrence formiule, the terms can be reduced to expressions involving

Ko and K 1, and tables of these functions are available. In all these calcula-
tions no attempt was made to obtain any high degree of numerical accuracy
the object was to obtain sufficient values to enable graphs to be drawn showing
the nature of the results and the main differences between the two series.

The graphs are shown in figs. 2 and 3 ; the scale is the same throughout, the
ordinates being R/ffgpb3 , and the abscisss u/V(gf).

The nature of the results is obvious from the graphs. Fig. 2 shows the
curves for the end-on motion. The curve B, which is the same in both

"16

•12 E

.04- A

0 06 0!7 08 0.9 10 I!1 1!2 1'3

FIG. 2.

diagrams, is for the sphere and shows the maximum just before the velocity
(gf)'/2. The graphs for C, D, E show how much the resistance is diminished

{ at the lower velocities by increasing length in this way ; but this is followed
by a rapid increase at higher velocities. The latter effect may be described,
roughly, as due to the final interference between bow and stern system giving
a prominent hump on the resistance curve ; the interference effects at lower
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WarCe Resistance of a Spheroid. 285

speeds were found in the calculations for curve E, but could not be shown on the

scale of the diagrami.

The graphs in fig. 3 for the broadside motion are in striking contrast tV those

in fig. 2. Here we have increased resistance at all velocities as we go up the

series of models; the values for E were calculated, but could not be shown on

0 06 07 0.8 0-9 10 1!1 1.2

FIo. 3.

the scale of the diagram. It appears from the curves of fig. 3 that a rough

empirical rule for this series iF that the resistance per unit volume of displace-

ment is proportional to the area of the midship section.

HARRISON AND SONS, Ltd., Printers, St. Martin's Lane, London, W.C.2.
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By T. It.. HAVELOCK, F.R.S.

(Received Mar 9, 1931.)

1. In a recent apnpr* it was shown how to ob)taiin, to tle usual approxinmation,

the wave resistance of a solid of ellipsoidal form submerged at a constant depth
below the surface of water and moving horizontally with any orientation of

the axes ; and explicit calculations were made for prolatc and oblate spheroids
moving end-on and broadside-on. The present note is a bic f study of ani
ellipsoid with unequal axes, moving ill the direction of the longest axis. It had
been intended to examine numerically in some detail the effect of diflerent

ratios of the axes upon the resistance-velocity curve ; but, the necessary
computations would have been lengthy, and the main results of interest may

be seen from the form of the. expressions obtained for the wave resistance.
In the discussion attention is directed specially to cases in which the ratios

of the axes are similar to the corresponding ratios for a ship.
2. It is convenient first to evaluate some integrals which occur im the

analysis.
Consider the integral

A = ii 1 - cos x cos Py dx dy,-(1)

taken over the ellipse
-- + Y" 1. (2)
M"' n2

Putting x :m sin 0 cos 0, y = n cos 0, we obtain

A =mn sin3 0 sin2 0 cos (mi sin 0 cos 0) cos (io cos A) dO d1. (3)

Integrating first with respect to 0, this gives

A (Tcn/oc) cos c(s 4) J1 (in% sil #) sin2 0d1

27 - /2 2C s 2
(1, ()fi) sil )s ) .(, k 2 o. (I)

*Pre . I'Zo. N S c,,,' .\. vo. 131. p. 275 (1931
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This is a particular case of Sonin|,'s integral,* and we olbtain tidallv

, • J:,.... {(it,20t + 112fý211")

A = 2'%tm J- I / (5)
(M,212 + f) 3

A similar integral which we require is

B= f(1- x2 C-- "" COS Orxdty, (6)
P'it )t.

taken over the ellipse (2).

This may be evaluated in the same manner. To avoid possible aml)iguity

we distinguish between variou; cases according to the relative magnitude of

mot and n,3. W\e find

B3 -- 1)/27C3'2j _ *i.t . {(mt2y.2 -
2'''=' 'r n (jj,.a __ 11,132):I•,l M y. > li

= 2 '27.3 2 , I:, {(,, 2, ( ,, 'r "2 11t2M 2),'12

"-7CM11, lit (7)

where I denotes the usual modified Bessel function.

3. Consider a solid bounded by the ellipsoid
X2 Y , 0 Z2

S-- -- + -(8)

moving with uniform speed u in the direction of Ox, the axis Ox being hori-

zontal and at a depth f below the surface of the water, while the axis Oy is

vertical.
We shall consider first the case a > b> c.

The image of a uniform stream in the ellipsoid is a distribution of doublets
over the plane area bounded by the elliptic focal conic

X22

a2 -C 2 + 2  2  1, z O; (9)

the axes of the doublets are parallel to Ox, and the moment per unit area is

abcu X2  Y '1/27r (2 - = ) (a12 -- CI)Ii2(b - '}'a(1 a.21/' -- C "- b 2 - "

where
O -= abc. ('•2 j- i)3/2 (bOD d u (10)

0-I--!2 u)'2 + (c12 41)

For numerical calculation O may be expressed in terms of elliptic integrals.

(. N. \vat,,4rn, I1&e.5ssl Functions," p. 376 (lst edn. , 1922).

324



Wave Resisiance of an Ellipsoid. 4R2

From (12) of the previous paper, the wave resistance is given by

R= 16(',PKO4  1P2 se 0d0, (11)

P - abcue - --f see, 6 J (1 - a 2 c 2 1/2ec
7 (2 -- xor) (a2 - C2)1/2 (b2 -- c2)1Y/12 - a2 - C2 V - c2 /

X cos (K'x sec 0) dx dy, (12)

the integral for P being taken over the ellipse (9), and.Ko = g/u2 .

Comparing with (6) and (7), we obtain for the integral in the expression for
P the value

__2 (b2- 2 J3/2 [K0 sec 0 {a2 -6 2 - (b2 - c2) sec2 01/2] (13)
1/ K 0 3/2 see 3/20 {a2 - C2 - (b2 

- C2) sec
2 

0}3,A '

when cos 0 > -/{(b2 - c 2)/(a 2 
- c2)), and a similar expression when cos 0

is less than this value. Collecting these expressions, and for comparison with
previous results, putting tan 0 = t, we obtain finally

(2 -- () 2 (a2 - b2)p/2 e2-,,R
32it 2gpa 2b2c2

__ [1/[J 3/2 {(Ko0 (a 2 - b2 ) (1 + t2) (1 -- X2t2)})I'212 _.,1 o2 dt
(1 - (2t2)3/2

+ 3 [I/2 {(K (a2 - b2) (1 + t2) (2t2 -- 1)) 1/212

il/a (At2 _ 1)3/2: e- 'Atdt, (14)

where a2 = (b2 - 02)/(a0 - b2).
This expression is for an ellipsoid moving horizontally in the direction of the

longest axis, and having the least axis horizontal and the mean axis vertical;

or, we may say, with the beam less than the draught.

4. We consider now the case when the beam is greater than the draught;

that is, keeping the axes Ox, Oy, Oz as before, we have a > c > b. The

elliptic focal conic is now in the horizontal plane and is given by

X2 z 1, O. (15)
a2 -b 2  0 2 -bV

The doublet system is distributed over the area bounded by (15), the axes being

parallel to Ox and the moment per unit area being given by

M (Z, z) (b)" 2)1 2 ( - 02 2 12)* (16)Tc (2 -- otn) (a2 -- h2)1/2 (c2 -- b2)/ a• -b b2 c•-b2)
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For a distilu)tion of this t'pe the expression* for the wave resistanc, of

aiiy two doublets 'eneralises into

It 1---l; t ,, 1 i'e -' sec 0 dO, (17)

where

1)2 AM Al, ) (X%:', ) COS {K0) (X X) ,OG 04 Gos tio (Z - _-') Sil 0 S 2()

dxdzdx' dz'. (18)

From the symmetry of ihe distribution specified in (15) and (16) we see that

P M (r, Z) COS (KOX Sc 0) COS (KOz sin 0 sc 2 0) dxdz, (19)

where M is given in (16) and the integration extends over the ellipse (15).

Comparing with (1) and (5), we obtain

p ý (2T-)12 abc, J:,;:I [K0 SeC 0 {a2 - b2 + (c2 - b2) tan2 0}112] (20)
" -os, 0 {a" - b2 + (c0 - b2) tan2U}Ji4

From (17), after putting tan 0 1, we deduce

(2 -- %o)2 (a 2 - b2)3 2 e: 1 R
32-2gpa 2b2c2

= j312 {K0 2 (0' - 62) (1 -4- t2) (I + 02 t2)}1 2 ]2 ft dt, (21)
4) (1 + 72 t2 )3 ,2

where %2 = (c2 b2)/(a2 
- 62).

The cases c < b and c > b have been worked out sepazately; hewe'-er, on

comparing (14) and k21), we see that the results could both be included in the

same formal expression with a suitable interpretation of the integrand when

ýtn d 1 + M2t2 are negative.
5. A numeric-al examination of these results could be made for different

ratios of the axes a, b, c; certain points of interest may, however, be seen

from the form of the expressions, keeping in view the analogy with the wave

resistance of a Jijip. We note in the first place that the exponential factor
exp. (-2KO, 2 ) in the integrand means in practice that the greater part of the

value of the integr:Ils arises from small values of the variable t.
An interesting feature of curves of wave resistance and velocity is the

occurrence of so-called humps and hikow. which, on a simple theory, arise

from interference between bow and stern wave systems. In (14) and (21)

* , I'rov. Boy. ,o,..' A. vol. 118. p. 32 (1928).
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these os( (llatifiis are due to the Bossil fii,oi itlI .J ill Ille i ra'.is, l tle

11-t~difi(hi Bessel function I hein'tg noi-oscihlahiry ; .,'lI o"ne 1i-ght traei, the

relative importanwe and p),,sitifal";s of thleifo 11 ur, h -' and hhollvWs with variat, iol

of the q uantity Y.2, that is, ( A )/,(,2- _-1 b). Fo0, instance,, in (1.1)t ll, second

integral is non-oscillatory; a.1 d, as one would exp(ect, it beconies of less
relative importance as the ratioo of a to b is increased. Or., again, consider the

positions of the humps and hollows. The maxima on the resistitnce-velocity
curse will be in the neighbourhood of the maxima and miniima of

J3 /2 (Ko''` -

while the minima will be hear the zeros of this function. Suppose, as an example,

we take a = 5b and compare ellipsoids with different ratios of c to b. When
c lies between zero and b, the factor (1 - CX2t2) in the integrand of (14) lies
between 1 - t2 ,tnd unity ; further, if in (21) we take c as much as 2b, the

corresponding factor is I -iP'. It is clear, without further calculation, that
the positions of the, interference maxima and mininma will be altered ofly

very slightly by sutch a variation in beam when the ratio of length to draught
is five or more. It appears in fact, that when the beam and draught are of

the same order of magnitude and the length is of the order of 10 times either

of these quantities, the form of the resistance-velocity curve is comparatively
insensitive to changes in beam. This consideration may, perhaps, account
partly for the measure of agreement which has been obtained between calku-

lated values of the wave resistance of ship models and experiaental resv'lts ;
the theory, of course, fails in many detais, but the agreemei.t in general
character is better than might have been anticipated in view of the simplify-

ing assumptions which have to be made.
6. The calculations for ship models are usually made from Michell's formula

for the wave resistance. That expression holds for a model with a longitudinal
vertical plane of symmetry, and is derived from an assigned distribution of"

horizontal velocity at right angles to that plane ; it is, in fact, the same aq can
be obtained from a distribution of sources and sinks, or of horizontal doublets,
in the vertical plane. In ,pplying the expression to a ship there arc two

approximations, which probably involve the same limitation; one is in

extending the distribution right tip to the surface of the water, and the other
is in obtaining the equivalent distribution from the slope of the ship's surface.

The latter approximation could, of course, be examined quite independently

of the wave phenomena, but it is of interest to compar3 the expressions for the
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wave resistance in one or two definite cases. In a former paper* the com-
parison was made for a submerged prolate spheroid, and from the formulo
given then numerical calculations were made later by Wigleyt in connection
with an experimental investigation. We may make now a similar comparison
for a flat ellipsoid moving in the direction of the greatest axis, that is, for the
case a > b > c worked out in § 3 above ; it hes, moreover, been found possible
to put all the expressions into the same analytical form, and we can see from
inspection the difference between them.

Michell's formula for wave resistance is

R . 4Pu5 00 (P2 + Q'.) m(dm
ng I,,ul (m 2u 4/g 2 

- 1)1/2' (22)

where

P + iQ $ýZ e-M't'/IG+imzdxdy. (23)

The integration in (23) is taken over the vertical longitudinal section of the
model, that is, ,in the present notation, over the section by tie xy-planc;
and z/1ax is derived from the equation to the surface. Applying this to the
model specified by (8), with Ox at a depthf below the surface, and putting the
expressions into thU form used in § 3, we obtain after some reduction

R - 47c-lgpK0
3 U2 j A 2 e6-'jf' 0 0 sec 5 0 dO, (24)

A f - - ) e .. e.. cos (KoX secE 9) dx dy, (25)

the integration in (25) being extended over the area of the ellipse

x2/a2 + y2/b2  1.

Carrying out the integrations in (25), we obtain finally

4aU e2"-' 1/J[ 0K2 (a2-b 2)(j±t2)(1--2t2)}1/2 2

327u2gpa2b2C2  fo {i-1 3 t 2 ) 3/2 ed

P 3O [2 {K 2 (a 2-b2) (1+t2)(02 t2-1)}1/2] 2

__I il -2 to ft dt,
where jS=b N -. (26)

* ' Proc. Roy. Soc.,' A, vol. 103, p. 574 (1923).
t W. C. S. Wigley, ' Trans. Inst. Nay. Arch.,' vol. 68, p. 131 (1926).
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Comparing (14) and (26), we see how the latter approximates to the former
when b and c are small compared with a. We have, for instance, a difference
which is independent of the velocity in that the factor (2 - x0)2(a2 - b2)3/2 in
(14) is replaced by 4a0 in (26) ; this makes the value of R calculated from (14)
greater than that found from (26) in a certain ratio. To give a few numerical

examples :-When a 5b, c = b, the ratio is 1"2; when a =- 5b, c = jb, it
is 1.12 ; while for a = 10b, c = b, it is about 1.05. Again, comparing the
integrals in (14) and (26) the quantity a=\/I(b2 -c2)/(a2- b2)1 is re-

placed by # =b V/a2 -- b2 . From the considerations given in § 5, it
appears that this difference would have only a slUht effect upon the
character of the resistance-velocity curve for a body with proportions

like those of a ship.

7. For a ship model with fine ends and the usual ratios of length to beam
and draught, experimental results have shown that the theoretical expressions

form at least a good first approximation. A more exact solution of the
theoretical problem for a surface ship of simple form moving in a frictionless

liquid is desirable, but it presents considerable difficulties. As regards com-
parison with experimental results, such a solution would probably not improve
the present position appreciably, on account of the effccts of fluid friction in

the actual problem. So far as tLe ship problem is concerned, it seems that the
approximate theory might be supplemented by semi-empirical assumptions of
a suitable nature, possibly as regards the effective distribution equivalent

to a ship under actual conditions.
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From the PHILOSOPHICAL MAGAZINE, VOL. xi. Il. February 1931.

The Stability of Motion of Rectilinear Vortices in Ring
Formation. By T. H. HAVELOCK, F.R.S.

Introduction and Summary.

1. JHE stability of the two-dimensional motion of an
t infinite system of vortices arranged in a single row,

or in double rows has been worked out in detail in recent
years, but not much attention has been given to cases in
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which thle number of vortices is finite. The obvious analogous
problems arise when theo vortices are equally spaced unmild
the circumference or one or more Concentric rings ; thm
problnms are not perhapts orU special impo'ltance, but they
are of some iiitere.t, and, further, one inmv obtain the
infinite straight rows as limiting cases of ring fI'ormation.

We examine first the motion or a single rim, of' vortices,
a problem which attracted attention m'any years ago in
connexion with the vortex tl,,or'y or atoins. Kelvin * worked
out the case of three vortices, but tailed to obtain a soluticu.
for a larger number; it was in this connexion that lie drew
-ittention to the now well-known experiments of Mayeir with
floating magnets. Shortly afterwards the problem was
attacked by J. J. Thomson 1-, and it is usually stated that
lie proved the configuration to be stable if, and only if, the
number of vortices does not exceed six. He, in fact, worked
•out the small oscillations for the particular cases of three,
fonr, five, six, and seven vortices, obtaining an instability in
the last case. It appears that the equations for the general
ease are capable of a simple explicit solution, ond this is given
in § 2 ; a ring of seven vortices is neutral for small displace-
ments, with less than seven it is completely stable, and for
more than seven unstable. 'n § 3 the effect of an assigned
velocity field in addition to that of the vortices is examined
briefly.

In the next two sections we work out the effect of a
concentric circular boundary upon the stability of a single
ring, the boundary being either internal or external to the
ring. In both cases the stability is diminished, seven or
more vortices being unstable whatever the radius of the
bonndary. For a smaller number there is a limiting ratio
of the radius of the ring to the radius of the boundary for
stability in each case. For an external boundary the motion
is unstable in any ctise if the radius of the boundarý is less
than about twice the radius of' the ring', and there iga •similar
result for aii internal boundariy. Ttie effect of the boundary,
estimated in this way, seems larger than might. have been
anticipated.

In tihe remainiuig sections we examine the motion of two
concentric rings of vordces, cf opposite rotat:ons, the vortices
being spaced alternately. A steady state is possible in whieli
6e rings rotate and retain their relative positions unaltered,

but there are always modes of disturbance which give rise

*, Kelvin, Math. mnd Phys. Pap'rs, iv. p. 13.5 (1878).
"t J. J. Thomson, Treatise on Vortex Rings,' p. 94 (1883).
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to instability. By suitable choice of the relative strengths
of the vortices in the two rings it is possible to limit the
instability to only one special mode of disturbance; it is this
particular configuration which becomes in the limit the
stable Kurnian vortex street, when we make the radius of a
ring and the number of vortices both infinite, keeping their
rio finite.

Single Ring of Vortices.
2. Let there bo n equal vortices, each of strength i,

equally spaced round the circumference of a ring of radius a.
In steady motion the ring rotates with a certain angular
velocity co. Let the vortices be slightly displaced, and
suppose the isturbed positions to be given in polar co-
ordinates by

a+,r,+1 , 2s~r/n+tot+O-+l,.....(1)
where s=O, 1,... n-1, and r,9 are small radial and angular
displacements from the steady state. Consider the motion
of one of the vortices, say that at the point (a+ri, wt+0) ;
its velocity is due to the other vortices, and the radial
component is

•_.•-1 (a + r,+1) sin (2swln + 0ý+j - 01)

_D2 ,(2)

while the transverse component is
A "•'(a+r,+,)-.os(2s~r/n+8*÷'1-81)-(a+,'') (3)

- 2r,=-t DY (3

where

D2 -'-(a + rs+3) 2 + (a-+-r1 )2

-- 2(a + r,+ 1 )(a + r) cos (2s'r/n + 0,+, -- 01).

We expand these expressions to the first order terms in
r and 0, and so get the equations of motion of the vortex under
consideration. After some reduction we obtain

K 0"l .+1--01
rj= -• - 1 -C

47ra i I-C.+

+1 + C 1 1 r.41
(a+r)w~a•-- 4ra 1 1I-C, a I-C* a 1' (4)

where C,=cos(2s7r/n).
The steady state is given by w = (n--1)Kc/4ral, and since

n-1 1 I7 ---=-• (= 2
1 -C, 6

2S2
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cquations (4) give

(47ra/K)?'*f=A 1 -- " a,8,,+1,
1

(4 7ra,/x)dt=Br,-- ni ar,+, .. . (5)
I

where
1 1 ~-)nl); .i(-,)

A= 6(n -i); B= 8 -)n1) a=11Q)

There are similar equations for each vortex, giving altogether
a system of 2n equations.

The simplest method of treating the equations is to examine
a possible simple solution of the form

r,+,=L ee2k*-'i" ; O,+1Re"ke .... (6)

where k=0, 1, 2, ... n--1.
It may be proved that under the conditions stated

I- =, 1 (n 2_1)-k(n-k) (7)

"8=1 1-cos(2sr/n) 6

Hence, from (5), we find that the equations for a, g reduce to

(47ra/x)&=-k(n--k)f,

(4u-a3//c) -j{k(n-k)-2(n-1)}a..... (8)

Finally, taking c: and j to be proportional to eat, thbse
give

X-- . k-k)k(n-k)--2(n-1) .. (9)

It follows that in (6), (8), and (9) we have, in general,
2n independent solutions of the equations of the system, and
that we can build up the complete solution for any arbitrary
small initial displacements of th11 vortices.

An alternative method of solution may be noticed briefly,
namely, the method used by previous writers for particular
cases ; it may be extended to give the general results, though
not quite so simply as in (6)-(9). In the 2n equations (5)
we assume each coordinate to be proportional to eAt, and
form the determinantal equation for X. The determinant
can be reduced to one of order n in ;k2, and it can be shown
that it is of the type known as a circulant, and can be
factorized in terms of the nth roots of unity ; after some
reduction we obtain (9) again, and can deduce the corre-
sponding simple solutions given by (6).
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F:on (9), when k=0 we have X-O. ITv we examine this
c:tse we find that the displacement consists of a rotation of
the ring combined with a small change in its radius ; the
result is a now steady state with a corresponding small
change in the angular velocity. The condition for stability
is that X2 ,iust be negtative for all the other values of k,
namely, 1, 2, ... n-1. Hence, from (9), the steady state is
stable if

k(n-k)-2(n--1) .. ..... .. (10)

is negative for all the values of k, and this is the case if it is
negative for k=-nwhen n is even, or -(n+ 1) when n is odd.
It follows at once that the steady state is completely stable
when u < 7. Whon n=7 the expression (10) is zero for
k-=3 or 4 ; while for n > 7 there are always some values
of k for wvhich X1 is positive, and hence the system is
unstable.

Whatever the value of n there are always two modes of
possible small oscillations, namely, those given by k= 1 and
k=2.

When k-=2 we have
X2= - 4 (n-2),

ý747raj) (11

while for k=I

""- (n--)=--o . . . (12)

We notice that in the latter case the period or the small
oscillation is the simo as the period of rotation of the ring
in the steady state ; this motion was worked out for the
particular ease of three vortices by Kelvin in the paper
already quoted, and it is illustrated in a characteristic manner
by the description of a working model to show the motion
of the vortices.

The single infinite straight row of vortices may be obtained
by making both n and a become infinite, with the ratio n/27ra
finite and becoming in the limit equal to the distance between
consecutive vortices ; the usual results then follow from (6)
and (9).

Siagle Ring in assigned Field.

3. We have so far considered the vortices to be moving
solely under their mutual actions. Suppose now that there
is an assigned velocity field which is maintained indepen-
dently ; for simplicity we suppose the flow to be in circles
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round the origin, the angu!ar velocity being fl(r), and the
transverse fluid velocity at. a distance r being rfl.

Then, referring to equations (4) for the itIotion of a typidal
vortex in the ring, the only diflorence is that we have to add

all(a) + r{fI(a) + af'(a) }
on the right-hand side of the second equation. The aagular
velocity of the ring in the steady state is pow

(n - 1 e4 a2+ fl(a
Following the same procedure, we obtain, instead of (8),

the equations

(4,ra/K) = t.(n- k)2,

(47ra 3 !K) =- {fk(n - k)- 2(n- 1)- +(47ra'`ltc)!'(a)}, (13)

and hence we have

X2=k(,,-k) {k(n,-k)-2(n-- 1) + (47ra/K)'(a), (14)

with k=O, 1, ... n-1.
It follows that the steady state can be stabilized for any

value of n, provided f2(a) is negative and sufficiently large.
Two special cases may be noted. First, if the fluid is

rotating like a rigid body-that is, if f2(r) is constant-the
conditions for stability are iit uffected. In the second place,
suppose there is an assig.,o i vortex fixed at the origin, so
that f(r)=K'/2--rr 2 ; thei. , ic' i' is of the same sign as /K, we
can make the steady stai,, . table for any value of n by taking
/C' hat-ge enough.

Single /,';ng with Outer Boudury.

4. Suppose the lFqiid is contained within a circular
boundary of radius b, the vortices beingr in the steady state
on a concentric circle of radius a (< b). The motion in the
liquid is due to the given vorlices andi their images in the
circular boundary.

Taking the steady state first, the radius of the image ring
is b2/a, the strength of each image vortex being --x. Writing
down the velocity at any vortex in the given ring, the angular
velocity in the steady state is given by

(n - -1)K .. /c Lz (b•/a)( --
aw---- 4---- + T -o I.a• '3 (15)

ae= 47ra Wi s- l 4/a 2 + a' - 2t 2 C'. 15

where C = cos(2s7rin).
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We shall have oceasion to use the following sunimations,
which can easily he proved

n-I1 I--• 2  2a

,- 1 -pC n 1.

-S=1 1--2pC+p2 =T1-j" 1--p,

"n-I (1 +/))C--2p n72p/'- 1

:ý -(I _ 2pC + ,I)2I (1 -1~), 2 (I-p)2 ' (16)

with 0 <p< 1.
Writing p=a-2/12 , we find from (15)

a ~( 2,, ,- i). . (17)

For small displacements from the steady state we have
for each vortex K at a point

a-+ r,+iot + 2srr/n + O,+1,

an image vortex -1, at the poiint

•1- I -) , cot +[ 2s,"rl /+ 0,,jq-.

Considering the motion of' the vortex given by s=O, we

havo for the radial velocity the expression (2), togetherwith
,- " ' (bIla)(1 - r.+ i/a) sin 6

7ro (18)

and for the transverse velocity we have (3), together with

K- I (b 2 /a)(1 - ?,,+I/a) cos --(a+ r) (19)
2-"r s=U E 2

where
0= 2srr/n + 0,+1 -90,

and

-,.1, + o+-2 (a +1 rj:+,) cos S.

The steps in the reduction of the equations of motion need
not be reproduced here : naking use of the summations
given in (16), and writing

p=a2 l/b•2  S=sin (2s7r/n) ; C=cos(2sv'/n), (20)
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we obtain eventually the eqnations
4 a 2 2 - 1 ( -," - )I I1 '

-7r r ,i-.- + (2-.p)'+p ) } 0 1

n,-i 2p(l-p 2.)S rpt+i

8=1 (I-- + t 2 1U) +

4n 2 (2 pC - 3 p+ 2 ) a r147ra(i-p) 2 7t~p

'- { r+ 2 p{ (1) -p-)C---2p} r +

e=i I -- C (l--2p-C4-p-) f a
n-.1 2p(1--p)S +

-- I=1 (I s•i-..-) .+ . ....... (21)

There are 2n equations of this type, and we examine now
a possible solution of the form

r.+ i/a= ae2Asffi/n; 0,+i = ,8e2kvri/n, . (22)

with k-=O, 1, ... , n-i1.
On substituting these cxpression- we obtain two equations

in a and 8. In simplifying the various coefficients we use
the following summations, whose proof need not be given
here:- -

"-(1--p2 )cos(2ks~r/n) ,,(pkk+pn-k) 2 + I
S=8 1 - 2pC +p 2  1 -p n p
n-1 (1--pC) cos(2ksir/n) n_ +pn-.) 1

1 -- 2pC --p' 2 (1--_pn) 1-p

"-j {(1j+Pj )C--2pIcos(2k.97r/n) nk(pk-I _-pn-'-)

(1 -- 2pC +p2 )2  2(1--pn)

+n2pn-I(1,P-,p) __ 1
2 •-(P,)2 _N2 1 (23)+ •( -p•) I -p)"

valid for 0 <p < 1, and k=1, 2, ... , n-1.
We obtain after some roduction tho equations

(47ra2 /x)a = P,3 - iRji,

(4r7r ),= Q3,7-iR,8 . (24)
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where
P =k(n- k)- "k1--pn-• (I"- _-Pn)2

1 -- pt ( -- Pt)2'

R= ak(pk + P"-k) n2pn-A.(l _p2k) (25)l-pi (I ...p. .)2  (2

We may check these expressions by deducing the equations
for the corresponding disturbance of an infinite double
symmetrical row of vortices. If d is the distance between
consecutive vortices in each row, and h the distance between
the two rows, we have, in the limit,

27ra/n=d; 2kir/n=--b;

p = (I + 27rh/nd)- 1.
With these (17) gives the limiting value of the linear

velocity of the vortices, namely,

d coth rh

further, the quantities n2P/27T2 , n2 Q/27r2, and n2R/2"r2 become
respectively the quantities A+C, A-C, and B in the
notation of Lamb's 'Hydrodynamics,' (5th ed. p. 221).

Returning to equations (24), we take a and 8 proportional
to

ekfAt4wal'

and obtain
x=_iR+(PQ).. . . . (26)

For complete siability the product PQ must be negative,
or zero possibly, for all the values of k. To prove instability
it is sufficient to show that PQ is positive for one value at
least of k. From the form oi the expressions in (25) we see
that P and Q are symmetrical in k and n-k, and that the
-critical mode to examine is k=-u for n even, or k--(n-i1)
for n odd.

For n even we have
P(j., = j2,,,-,,pj./(j +pi,)2,, (27)

vhich is always positive. Further,

Q(½,i) =_+ 2(n + 1) - 4n n2 (28)
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and this is positive if

(n' + Sn + 8) ,3 + (3nt2 - 8n - S)x2 + (3 n2 + 81,-S)x
+ n"2- 8n + 8 > 0, . (29)

where a,1 ==pi"= (alb)n.
The left-hand side of (29) is always positive for n ý 8.

From similar expressions when n is odd we find that there
is always a positive value of Q for n=7. Hence we conclude
that the motion of the ring is unstable when the number of
vortices is equal to or greater than seven, whatever the radius
of the outer boundary. For n < 7 we shall see that the
motion is stable provided the ratio of the radius of the ring
to that of the boundary is less than a certain value in each
case. We shall examine the cases briefly, noting that in
each case the mode k=0 means simply a neutral displacement
of the ring.

For n=2, k=1, we find from the previous expressioi.,
that Q is negative if p < 0"2137 ; and as P is positive, it
follows that the circular motion of the two vortices is stable
if a/b < 0'462.

For n=3, k=l or 2, Q is negative forp < 0"322, and the
motion is stable for a/b < 0"567.

Similarly for n=4 we find the critical value of a/b to be
about 0"575 ; for n=5 it is 0'588, and for n=6 it ;s 0"547.
When n=7, which is the critical neutral case when there is
no boundary, the effect of an outer boundary of any radius
is to cause instability.

Single Ring with Inner Boundary.

5. Suppose now that the fluid is bounded internally by a
circular harrier (r=b), and that a ring of n vortices is
rotating in circular motion in a ring of radius a (> b). The
image of a vortex ic at r=a is a vortex --x at r=bP/a,
together with a vortex K at r--0 this combination makes
the circ,,latior, zero for a circuit enclosing the boundary
without including any of the actual vortices

We find the equations of motion of a given vortex, s=O
in the previos notation, just as in § 4. The only differences
arise (i.) from the additional image vortex nx at the origin,
and (ii.) in evaluating the various summations, as b/a is now
less than unity instead of a/b. For the steady state we have

(n--1)= nx - )-i 1 -qI (30)

47ra +ý -~a 2w-a, 0o - 2qC+q (30)

where q-b2/a2 and C= cos (2s•r/n).
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This gives

a= (.3 n" . . (31)

We shall merely state now the results for the general
equations of disturbed motion. The equations for r' and 0d
are the same as in (21), with the following alterations :-
(i.) write q forp in the coefficients, (ii.) change the sign of
the last term in each equation, the coefficients of r,,+ and
0,+, respectively, from - to +, (iii.) change the coefficient
of r1 in the second equntion to

1 4nqn 2n2q• 22- (n2 -- 1)--2(n- 1) + + (l4q")2  (l-q-2 *61 ( - 9q)2 ( q)2"

Taking a simple solution of type (22), and proceeding as
in (24), (25), we obtain, instead of (26), the result

X= iR'+ (P'Q) ........ ... (32)

where
nk (q k-q,,-k) 712q?-k(1 _9 A)2

P'= k(n-- k) - 1- ) - (I -- q").'2

4 nq" ngq"-k(1 --qqk)2
Q'-k(n-k')--2(n- 1) + (l+qI) 2

+ (1/,(qk- .n-k)

RI= nk (qk + qa-k,) -- nq-k(1 --q2k) (33)
l -- qn (1--q )2  . . . . . . .

As before, it appears that stability depends upon there
being values of q less than unity for which Q' is negative for
all the values of k. It is easily seen that there is no such
value of q when n5 7, and therefore the steady state is
unstable when there are seven or more vortices in the ring.

Examining the expressions numerically for smaller value.;
of n, we find that the steady state is stable under the
following conditions :-n= 2, b/a <0386 ; n=3, b/a <0522 ;
n=4, b/a<0"556 ; n=5, b/a<0"579 ; n= 6 , b/a<0"544.

These values are slightly less than the corresponding
limits when the ring is within the circular bouidary, but
there is little difference in the general conclusions.
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Double Alternate Rings.
6. In the previous sections we have been considering in

effect a double symmetrical ring, in which the motions of
one ring-the image ring-are constrained in accordance with
those of the actual ring. We shall leave on one side the
general case of a free double symmetrical ring, and proceed
to two alternate rings iij an unlimited liquid.

Let there be n positive vortices, each of strength K, equally
spaced round a circle of radius a, and n negative vortices of
strength x' equally spaced round a concentric circle of radius
b (>a), the arrangement of the vortices being alternate.
Thus, iN the vortices in the inner ring are given by polar
coordinates a, 2s~r/n, those of the outer ring are given by b,
2 (s+l)-r/n, with s=O, 1, ... , n-1.

Examine first the poisibility of a steady state with the
two riugs rotating with equal angular velocity, the relative
configuration remaining unchanged. The radial velocity of
any vortex is zero. The transverse velocity of a vortex in
the inner ring is given by

(n -- 1)lc nd,-1 bC t a ( 4

4-ra + 2• ,o b2 +a 2 -2abC" (3"

and in the outer ring by

(n-iO)i' x"- aC'- b

47rb 27r=o a2+b 2 _-2abC"

where C'=cos{2(s+ J)r/n}.
We shall require the following summations, with

p =a/b < 1 :

8=-I 1_--pCp n

n-I 1- 2

0 1- 2pC'+P 2 - l+,p

",-I1 ((+p2)C1-2p __ _

o (1-2pC'+p 2 )2  (I+pn) 2  (36)

The condition for equal angular velocity of the two rings
then becomes

"2 ,,p , 2np - -1(37)

It can be seen that for a given ratio of x' to c we obtain
from this equation a corresponding value of p less than unity,
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and herce a possible steady sO te. Consider now the general
equations for the disturbed motion. Let the positions of the
vortices in the inner ring be given by polar coordinates

a(1 +r,+,), 2 swr/n + wt +,+,

and those in the outer ring by

b(i+p,+1), 2(8 + ½)'/,n+wt+0,+i.

We form the equations of motion as in the previous
sections. We choose a typical vortex, s-O, in the inner
ring, and to simplify the notation we take the vortex s=n-1
in the outer ring. Expanding the components of velocity to
first order terms, and reducing the coefficients by means of
(36), we obtain the equations for these two vw rtices

47ra2 •1  •C • -(, 21) ( 1 p )2 }J

_,'n-1 0 ,'+ ,n-1,2p{(1 +p2) C'-2p}

+• X p1--pC
o % pC+1,

-(n 2 -1) -2 (n- 1) + -n (I )p.) r1

l-2p (1+p2)C'-2p}

1 1-C o D2
-I 2p(1 -- p2)S' •

4wb% -X 1 (n2- 1) -227L2 }
4-bp. -- , 6 (1 +pn)• 2 "

n--1').

0.' • .+1 ni-"p(j+p2)C'--2p}

I 1-C•D2
ni "•2p(1--p2)SI

-K r 8 +1
0 D2 ,+

4,'b,, - -/'{1 (n2-_l)-2(n-l)+ 4n __ +p"

:E -p{(l+p-)C('- 2 P}

1 0 D
-,-I 9p (1 -- 1') S'

-0+1, . . . (38)
0
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w here
C = cos(2s-/rn) ; C' = cos{2(s + )•r/n}

S' =-sin {2(s + •)-r/n} ; D = 1-2pC' +pl.

We now assunoe a simple solution of the form
r ,+ j • ae2I's'ri/n ; 0,+ 1 -- 8 t~ 2kovii ;

ps+i =. fe2k(s+ý)"in 0; + 2(8+j)"f ;. (39)

and, further, suppose that o, /8, a', •' involve the time as a
factor .  . . . . . . . .- . . . .. . . . .  (40)

In simpli'yin, ihe coeflfcients we use the following
suminations, vatid for k=--, 2, ... , n-], which may be
proved vVithout difficulty

p- (1 -;-) E (1/_ _ pnk- )
x+PS1-- 2lC'+y-'2,

"-it1 2 p{(I +p 2 ) 21-- 2p E n{kpIA- (rn -k)p" - }

o (I--2pC' + )- +p,
2- P "" ' ( -- P _-k)I , (4 t)

ki +I/n)• 2 '

where E --e"k('+-)I'f,`.

The 4n equations of the system now reduce to

1=(3 + Q'a' +11'1a',X'8- P-.n + It'd -Q8
Xa' = P'a' + Q ' + R'8,

XP' -P 2'0&' + R1, - Q'8 .... ...... 42)

-w here
2,d'p K' + h(n -- k)K,

/)2n' K--k(n - ')p',
KP2=knk)2II-rK 2 2n P-

,d'•=k~u--)--2I-l)} + 2 p" (I +p"),*•'
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1=-k~-k-2n-)jY- 2n n9•ts " 2/C
2 . +t -" j 1

Q = ip2n p1{ k - (n - k)p"n} + 7nk(n - k - kp")
(1. +p")2

pA '0 k - (n - k)pn t -pn--(n - k - kp")
R=p2n(lp)

Q= I'Q/ipq9; R'- -c'{/xp 2, . ..  . . . . . . . . ..  (43)

The equation for X is
x - 13 -Q' -R' =0. (44)

-P 2  -R' Q'
-Q -R x -P

-R Q -XP'

Using the relation (37) we see that P--P 2 =P'-P,'
and we find that (44) reduces to a quadratic in X2, which
can be solved in the form

4X = (L* 4-Mi)-- (e,--P2)2, . (45)

where
L= (PT + P2 ')2 + 4QQ',

M=(P 1- P,1')' + 4RR'..... (46)
The condi'tion for complete stability is trit for then values

of k all the values oE X2 must be real and negative, including
possibly zero. From the symmetry of the coefficients (43)
in k and n-k it is only necessary to examine the values of
k from zero up to in if n is even, or 1(n - 1) if n is odd.

7. We might examine now in detail the case when we
take X'=-K, that is, when the vortices in the two rings are of
equal strengths and opposite rotations; we shall state the
results without giving the details of the algebraic analysis.
It can be shown that when p satisfies the equation (37) the
quantity QQ' increases in absolute value from k=0 to k=jn,
while the quantity RR' decreases in absolute value as k
increases in this range. Further, except at k=0 the
quantity L of (46) is always negative, and thus the criterion
for stability is reduced to M being negative. But when
k=in we have R=R'=O ; and sioce P1 is not in general
equal to P.f, it follows that M is positive at k=-n. Hence,
if n is even, the system is unstable for the mode k=in at
least. It can be seen that in general there are always some
unstable modes in the neighbourhood of this mean value of k;
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further, there is always an instability associated wltit the
mode k =0.

8. It remains to he seen whether we can obtain a greater
degree of stability by a suitable choice of the ratio of AJ to K,
that is, with vortices of different strengths in the two rings.
To avoid complicating the discussion we shall assume n even.
Then the previous discussion suggests that we mahe the
central mode stable, that is, we fix K' by the condition that
P,=P1' am k==n. From (43) this gives

_____ 2p",+2

4 2 2(1 (1 +p)s,,)2 &.. . (47)

The ratio of K' to K and the value of p are now determined
by equations (37) and (47).

Without examining the expressions in general a numerical
example will show tho nature of the results.

Taking n=10, the appropriate roots of (37) and (47) are,
approximately,

p=0"8 4 0 6 ; x'//c=0"897. ..... (48)

The following table shows the values of QQ' and RR' and
of X2 for all the modes, calculated from (43) and (45) ; the
values for k-=-6, 7, 8, 9 are omitted, as they are the same as
for k=4, 3,2, 1.

7C. QQ'. BR'. A,.

0 ............ 0 -411 0 85
1 ............ -61 -350 -318 -142

2 ............ -177 -72 -307 -95

3 ............ -292 -48 -545 -143

4 ............ -369 -5 -475 -316

5 ........... . -396 0 -418 -418

We see that the motion is stable in all the possible modes
with the exception of k =0. Reverting to (40), wb find that
KX/47ra 2=27-X/6'3T approximately where T is the period of
rotation of the rings in the steady state ; thus the periods
of the small oscillations in the stable modes range from about
two-thirds to one-quarter of the period of rotation.

It is easily verified that, X2=0 in the mode k=0 corre-
sponds to a neutral displacement of the system, consisting
of a rotation and dilatation of the rings without alteration of
the ratio of their radii. On the other hand, the root
%2=85 in this mode g: .es rise to definite instatbility.
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633 Rectilinear Vortices in Ring Formation.

9. The Karman vortex street may be obtained as a limiting
case of the present problem. We make the radius a and
the number of vortices n both become infinite, their ratio
remaining finite. If the limiting value of 21'a/n is d, the
distance between consecutive vortices in each row, and if h
is the distance between the rows, we may put

p=(1+27rhlnd)- . ; . . . . . . . . (49)

p approaches unity, while the limiting value of p" is e-•2 ,h/d.
"We see from equations (37) and (47) that the ratio x'/Ak
approaches unity, and (47) gives at once, in the limit, the
Karman condition

cosh' (7-h/d) =2. ..... (50)
Further, if from (42) and (45) we write down the

expressions for X2 when k=O, we find that for the positive
root, AX/47ra 2 is of order n-2 ; thus, as the limit is approached
the instability in this mode merges with the neutral state in
the same mode. It. is only in this particular limiting case
that we obtain a system which is completely stable.
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Ship Waves: the Calculation of Wave Profiles.

By T. H. HAVELOCK, F.R.S.

(Received August. 20, 1931.)

1. The surface disturbance produced by a ship is usually analysed into two
parts : one is called the local disturbance and the other forms the wave pattern,
the supply of energy required for the secoedd part giving rise to the wave
resistance of the ship. For a direct comparison between observed and

theoretical surface elevation it is necessary to cal.2ulate both parts of the
disturbance. This has been carried out recently for a ceitain case by Mr.
W. C. S. Wigley,* working at the William Froude Laboratory. The model
was of uniform horizontal section and sufficiently deep to be treated as
theoretically of infinite draught, while the section consisted of a triangular
bow and stern connected by a straight middle body; the surface elevation
along the side of the model was observed at various speeds, and compared
with the theoretical calculations.

The following paper deals with the calculation of the surface elevation in
ceses of this type. The theory is developed here from the velocity potential
cf a doublet at any given depth below the free surface of the water ; this has
the advantage of being capable of wide generalisation, and, moreover, the
introduction of a small frictional term, which is ultimately made to vanish,

keeps the expressions determinate throughout the analysis.
We examine first a imiform distribution of doublets on a vertical line, and

then a similar distribution of finite length in the direction of motion ; graphs

* W. C. S. Wigley. ' Trans. N.E. Cutat Inst. Eungineers ainid hiphilderr,' vol. 47, p. 153

(1931).
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2 T. H. Havelock.

are given of the surface elevation along the line of motion. A similar analysis
is given for the distribution corresponding to the model described above, and
the connection between the distribution and the model is indicated.

Finally, the results are generalised to givt the central surface elev,%tion for a
model, of infinite draught, of any sectional form. The general expressions
are of simple character and some deductions can be made from their form.
In addition, they are suitable for the numerical or graphical calculation of the
profile for any required rnmdel of this type. A brief analysis of a parabolic
model is made to illustrate the general results.

2. Consider a doublet of moment M at & depth f below the surface of water
and moving horizontally with constant velocity u. For the present applica-
tions we need only the expressions when the axis of the doublet is horizontal
and in the direction of motion ; further, we take moving aRes with Ox in the

direction of motion, 0 in the free surface, Oz vertically upwards, so that the
position of the doublet is the point (0, 0, -f). The velocity potential of
the fluid motion is given by*

LN cos OdO e-K(Z+f) + if KdK27 = - I. f ",

ScosOdOf K +K.. seC2  e-OU-:)+i=K d, (1)

2r .... K KO seC 0 •- il sec 0

where ,- z cos 0 + y sin 0 and K. = g/u2. The real part of (1) is to be
'taken. The first term expresses the velocity potential of the given doublet in
a form valid for z ±f> 0, that is for points above the doublet. In the second
term ji is a small positive constant which is ultimately made zero. The surface
elevation ý is given by

_ = - (2)
at az

This gives

Lim A dO dK. (3)4 -->0u 7 oK-- KOsec20+ i[Lsee0

In this form • is finite and continuous, and the expression may be generalised
by summation or integration for a distribution of doublets. We shall consider
here the distribution to be in the vertical plane y = 0. If M(h,f) is the moment
per unit area at the point (h, 0, -f) we have

1 '® = i "._, O f® K2 e-xf +ilr' .
-.(h,f) dh d 0f K dc, (4), - K u K sec 2 0+ it ec pe

P 1'r, ti. S• te.,' A, vol. 121, p. 518 ,192b).
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where n-' = (x - h) cos 0 + y sin 0. We have onitted here the symbol for

the limiting value as tL is made to vanish, but that is always to be understood,

It is assumed that the integrals are convergent. From a physical point of

view it is easily seen that divergent or indeterminate integrals nlay arise if

the distribution contains finite sources or sinks which extend up to the free

surface of the water. From the method of obtaining the velocity potential

(1), we see that the appropriate form of (4) in such cases will be found by taking

the integration with respect to the depth f to extend from a positive quantity

(1 to infinity and then considering the limiting value as d is made to vanish.

We may note another form for (4) which is obtained by integrating by parts

with respect to h. Provided M is continuous in this variable and is zero at

the two limits, we have

-- - . am Ad(f see, 0 dO 0 dK. (5)

f:u _Vfl d<wOdj K( K - K~osec 2 0+ i sec 0  .(

Further, the normal component of fluid velocity at any point of the vertical

plane y = 0 is equal to
27r aM/lh. (6)

Hence from (5) we may obtain the surface elevation for amy assigned dis-

tribution of normal fluid velocity over this plane.

3. Consider first a simple line distribution of constant moment M per unit

length on the z-axis, extending from the free surface to an infinite depth.

Here we shall have to suppose first that the distribution extends up to a depth

d below the surface, and then take the limit as d is made small.

Integrating with respect to f, we obtain

J dO F - eK.(7)
7M f f.( K -Ko see 2 0 + jit seo 0

In the integrand we write

K + Ko sec2 0

K- KOsec 2 0 + i1 t seC 0 K - Kose("2 0 + iv.sec 0'

omitting terms which will give no contribution in the limit when ýt is made

zero. The integrations in 0 and K in (7) corresponding to the first term on the

right of (8) give the value 2
7/Ko(d

2 + x2 + y2)'. Hence, putting d = 0, the

contribution of this part to the surface elevation is 2M/u (x2 + y2)*. Taking

the second part of (8), the corresponding integral in (7) remains convergent

349



4 'r. 1I. Havelock.

whon we put d = 0, provided u is not zero. Hence we obtain, for all points

other than the origin,

2M + .Ko sc2 _d__(00 __ dK. (9)

u (X2+ y2)1 + u _ ., - Ko secC2 0 + i~t sec 0

We shall limit consideration at present, to the surface elevation along the line

of motion, that is for yF= 0; N~e have
uf 7-----•2+ sses0 dO el" 0 dK, (10)2,1 u +o ,, K -- KoSec 0+ i~see0

noting that we require the limiting value of the real part as t is made zero.

The integration in K may be transformed by regarding K for the moment as

a complex variable and considering a contour integral taken round a suitable

path according as x is p-itive or negative. In this process it is the residue

at the pole of the integrn.nd which gives the expression for the waves in the
rear of the system. The result, when j has been made zero, is

f cos (K0 mx sec 0) di, for x > 0
0 1 ±m dn ox0

27r sin (KOX sec 0) + r® cos (K,?mx sec 0) din, for x < 0. (11)jo + m

Foi. the integration with respect to 0, Wve require the following results

sec2 0 sin (KoX sec 0) dO = - 2 Yj (KOX), (12)

'see 2 0 A O. S (Ks nx see 0) d'M = - C J1 (KOmx) dm

- + 7 J0 (K mx) din
2 KoX 

2 KoX J 0 (1 -j_ M) 2

-- 20-7 + 7C H, (KoX) - Yj (,coX) - (13)
2K0 x 4 Z

In this J and Y denote Bessel functions, and H is Struve's function, the

notation being that of G. N. Watson's " Treatise on Bessel Functions." Col-

lecting these results and putting in (10) we obtain the surface elevation on the

line y - 0. To avoid any possible aabiguity in signs, we shall find it con-
venient to write x' for -x and so restrict x and x' to positive values; x is

thus distance in front, and x' distance behind the moving system. We obtain

-Kmý {H, (KcX) - Yj (icOX) - '; X> o

__ g-M H (Kox') -- Y, (KoX') -. "I + E ( X') x>O (14)

U U0
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The quantity H1 - Y1 is monotonic and decreases to an asymptotic value
2/7r. The symmetrical terms in (14) represent the local disturbance, becoming
infinite near the origin like x-1 . The last term in (14) represents the wave
disturbance in the rear. The expressions are easily calculated from tables
of the functions, and fig. 1 shows the two parts of the disturbance.

FIG. 1.

It will be seen that there is discontinuity at the origin, but that arises from
extending this particular distribution right up to the free surface. If we
retain the quantity d used at the beginning of this section, it is easily seen that
the discontinuity is associated with the last term of (14) ; for any finite value
of d, this part of the disturbance is zero at the origin.

4. Consider now a uniform distribution over a finite length of the vertical
plane y = 0, extending over the range - 1 <x < 1. This might be deduced
from the previous section by integrating with suitable precautions to allow
for the discontinuities in those expressions; but we shall use the general
formula (4). Suppose in the first place that the distribution extends from a
depth d to an infinite del, th ; then we have

M = dli IAfdff' "dO " Iý ir dK. (15)
7rU J- Jd J- Jo K - Ko sec2 6 + i4 sec.

For the elevation along the line y 0 0, this gives

1e O 0 e-'(d {ewi (z-1) cose -o elp (X4 1) Cos d(

nu fo Jo K -K-Ko sec 0+ ij sec 0

We may put d = 0 in (16). Further, the disturbance separates into equal
and opposite disturbances associated with the front and rear of the system,
or, as we may call them, into bow and stern systems. Writing q, for x - 1,
we have to evaluate the real part of

K -e Ko Jsees 0+ ill se 0
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6 T. H. Iavelock.

We transform this as in the previous section, and also make use of the following

evaluations

,sec 0 cos (K0qj sec 0) dO 2- 2Y (Koq).

sec 0 dO sin (KOmq1 sec 0) dm = 7: f J° (K0 qjmn) dm

o 1+-m 2 ,, l+m

- {H 0 (Koql) - Yo (K•q 1 )}. (18)

Using, as before, q, for distance in front of the bow and q,' for distance behind

the bow, we find that the bow system is given by

!=NM {H(o (K-q) - Yo (,,oq,)} ; q1> 0
U

{H° (Koql,) - Yo (KO(q')} - Yo (K 0oql') ; q'! > 0. (19)
U

There are similar expressions for the stern system with q2 = x + 1, all the

signs being changed. These results are easily calculated from tables, and

curves for the local disturbance and the waves for both bow and stern are

shown in fig. 2.
The complete disturbance is the sum of all the curves shown in the figure.

The distribution of doublets is equivalent to a vertical line of aources at the bow

and a vertical line of sinks at the stern. It may be noticed that the elevation

ii

FIo. 2.

becomes logaritbmically infinite at bow and stern, and the discontinuities
there arise as described in the previous section. The local disturbance is

symmetrical fore and aft when taken as a whole, but is anti-symmetrical for

bow or stern separately. If the complete disturbance associated with the bow

is called a positive system, the stern getieratcs an equal negative system.
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Ship Waves. 7

5. The system we have just considered may be supposed to correspond to
a ship with bluff bow and stern. We may examine the effect of pointing the
ends by the following distribution ; the moment per unit area

=M, for--a <x<a

= M (I - x)/(1-- a), fora <x <1

=M(i+x)/(i-a), for-il<x<-a, (20)

where M is a constant. The moment is zerb outside the range specified in

(20).
If we replace M in (20) by ub/2Tc, in accordance with (6), we see that if b/i

is small the corresponding form of ship is that examined by Wigley in the paper
already quoted. Wigley has worked out the surface elevation along the line

y = 0 from Michell's formula., giving suitable interpretations to the indeter-

minate integrals involved in those formuhe. Here we shall use the general
form (5). We may take the distribution to extend right up to the free surface,

as it appears that the resulting expressions are finite and continuous through-

out.
From (5) and (20), after carrying out the integration with respect tof and h,

the surface elevation for y = 0 is given by

Tcu a) F . K ( - Ko0 sec 2 0 + ip. sec 0)

where
N = e (x-ca) cos, 0 _ -ix (x+) o., 0 _ e G (x-1) cos 0 + e•{ (.-a) Cos 0 (22)

We notice fiora the form of N that the singularity at K = 0 in the integral
with respect to K is only apparent. On the other hand, the integral as it

stands cannot be separated directly into four parts associated with the points

±a, ±1 respectively; this may, however, be effected by a slight alteration
which does not affect the final result for the complete system.

If we write ~~~0 G7) cog 0l a e•0
4M sec dOr 1 -t% e O - dK

- I -- )u K (K - Ko ssec2 O +ipLsec 0)

_ -4M F (q), (23)7(l a)

then we have

S== (x -- ) (x -- a) -- (x + a) -- (x + (24)

The integrals in (23) may be transformed in the usual way to separate out the
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8 T. H. Havelock.

two parts of the disturbance in each case. We require also the following
results

'CJo Sin (/ q sec 0) dO 2 f- Yo (t) dt = Po (Koq), (25)

where the P functions, which have been used previously in wave analysis, are
defined by

P2, (P) = (- 1)" f cos 2" 0 sin (p sec 0) dO

+ (P)= 1)" ~ j cos 2"+ 1 0 cos (p sec 0) dO. (26)

We have also

/0dO O 1 - cos (KO mq sec 0) dm

., ,o n (1 M + m)

7rfOc~q Jdt 5•r= •_ f°qdt 0 o(Tt) d.

irfJ HO (t) - Y. (t)) dt Q0 (K'cq), (27)
4 o 12

using the notation introduced by Wigley for this part of the disturbance,

Retaining q for points in front and q' for points behind the origin of a dis-
turbance, so that q' = - q and q, q' are both positive, we find after collecting

these results that
F (q) =-2-• Qo (Koq), q > 0

- Q0 (Koq') + Po (Koq'), q' > 0. (28)2K° o (~' Ko

The complete surface elevation may now be found from (23), (24) and (28).

The Q terms represent a local disturbance which is symmetrical fore and aft
for the system as a whole, while the P terms give the wave di.3turbance in the
rear of each of the points ±a, ±1.

If M is put equal to ub/27r, these results will be found to agree with those
for the model examined by Wigley in the paper quoted above, and reference
may be made to it for a detailed comparison with experimental results.

It should be noted that the method used in (23) and (24) for separating the
disturbance into four parts is reflected in the artificial character of the local
disturbance associated by (28) with an isolated point q = 0; the function

Q0 is zero at its origin and increases indefinitely with distance from it. The
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Ship Waves. 9

local disturbance decreases with increasing distance when we sum for the
system as a whole. The localisation of the disturbance into parts associated
with special points is in general no more than a convenient help for purposes

of calculation and description.
6. The previous settion gives a surface elevation which is finite and con-

tinuous throughout, and it is simple to extend the method to cover any form of

distribution.
We begin, for simplicity, by considering any limited distribution of which

the graph is made up of straight lines.
The general expression (5) gives, for infinite depth of distribution, the

elevation along the line of motion as

--• •d e 0 -OK dZ•. Cos9

nu-L , o K :- KO see 20 + Ji sec 0 d~c. (29)

Take the integration with respect to h along two parts of the range meeting
at a junction h,,, and we obtain, associated with this junction

-w 0, (30)
Kcos 0 d0

where the coefficient in straight brackets is the increase in slope of the M, h
graph in the positive direction, or tan 0, - tan 0, in terms of the slopes of
the adjacent parts of the graph. It should be noted that the positive direction
of h, and of x, is taken here in the direction of motion, that is, from stern to
bow.

It is clear that for any limited distribution which is zero outside a certain
range in h, we have from (29) and (30) the complete surface elevation in the
form

- eL O sec,, (31)
= u s o K (K- K.sec2 0 + i. sec 0)' (1

where the summation extends to all the junctions, including the bow and stem.
Further, the algebraic sum of all the changes of slope is zero; hence we may
separate out the calculation for each junction by writing (31) in the form

(I' sec2 0 dO 1 -

r fo K (PC- #csec2 + iL see6

= I -F (. -/,,). (32)
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10 T. H. Havelock.

where F is the function specified by (28) for positive and negative values of the
argument.

We may now complete the expressions to include a distribution in which
there are ranges of continuous change of gradient. It is obvious from the
preceding argument that the complete expression is

- f F (x-)±+ F(xh)dhj, (33)
Sdh, J dh2

where the summation covers all points of sudden change of slope and all ranges
of continuous variation.

The function F can easily be tabulated and graphed by means of Q0 and P0.
In summing and integrating in (33) it is to be noticed that the Q0 terms are
symmetrical before and behind each element, while P0 only exists in the rear
of each element. When the distribution M is a sum of integral powers of h,
it appears that (33) 6an be expressed in terms of the P functions defined in
(26), for the wave disturbance, together with a similar series of Q functions
for the local disturbance. But even if M is not given in simple analytical
form, the elevation could be calculated directly from (33) by numerical or
graphical methods of integration.

7. We have been discussing the fluid motion due to a given distribution of
doublets, the surface elevation we have calculated being one of the stream lines.
It would be of interest to trace, if possible, other stream lines so as to exhibit
the form of a submerged solid to which the given distribution is equivalent;
but the calculations would be lengthy, even in the simplest cases we have
considered in the prc rious sections. For a ship model we have already men-
tioned the usual approximation for the equivalent distribution of doublets
when the ratio of beam to length is small enough. For a model of infinite
draught, whose horizontal half-section is given by y =f(h), we have

dMA I ud 2 f, (h). (34)

Hence (33) gives

2 = 11 '()1: F(xh- F ,., + f" (,h) F(x - h)A}. (35)

We note that the magnitude of the contribution due to an angular point on
the, model is directly proportional to the change of slope that occurs there.

,. We may illustrate the general result by considering briefly a model with
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Ship Waves. 11

parabolic lines. We take the origin at the bow, and let the form of the half-

section for y positive be given by
y 7= b (I -- (h +4 1)2/12) - 21 < h < 0. (36)

The discontinuities of f'(h) at the bow and stern are both positive, and equal
to 2b/l ; while f"(h) is constant throughout the iange and equal to -2b/1 2 .

Hence from (28) and (35) we have, from the discontinuity at the bow,
_ 2b

Y -b 2oQ 0 (Ko x), X.> 0

7tKOl1r~2)b o(0' 8b x" Q01 (K X' + o (Ko X'), X'> 0. (37)

There is an equal system for the discontinuity at the stern.
Consider now the contribution due to the curved portion and take first the

wave terms. For a point behind the stern (x' > 21) we have

8b PiO o {Ko (x' - h')} dh'. (38)

\Ve have, in a notation already used,

"P0 (u) du =I + P,1 ()

P•-1 (u), say. (39)

Thus from (38) and (36) the complete wave disturbance at a point behhind the
stern is given by

_ 0 (o')+ -PP 0 {,cO(x' 21))- 1{P7' (KoX')- -P ' (KOx'o- 2l))]. (40)

Taking a point between the bow and stern (0 < x' < 21), it is easily verified
that (40) gives the wave elevation for all points with the convention that the
functions P0 and P,7-' are to be taken zero for negative values of their arguments.
It may be noted that as these functions are zero for zero values of their argu-
ments, the expression is continuous throughout.

Similarly, if we consider the local disturbance and take first a point in
front of the bow (x > 0), we readily obtain from (28) and (35)

2b( (K&) +1 Q0 {KO (xv + 21)) ±-i Qj (,c.X) - Q, (Kox +21)}1 (41)

where

Q, () - Qo (u) du. (42)
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12 T. H. Havelock.

By taking points between the bow and stern and behind the stern, it may be
Vw rified that (41) gives this part of the elevation for all points on the under-
standing that each function Q0 is symmetrical about the zero of its argument
while each function Q, is anti-symmetrical, thai is Qo (- u) = Q0 (u) and
Q, (- U) == - Q, (U).

In (40) and (42) we have the total elevation expressed in terms localised
at the bow and stern, and in functions which are easily calculated and tabulated.
The quantities have -been calculated, without attempting any great degree of
accuracy, but sufficiently to show the character of the curves. These are shown
in fig. 3 in relation to the length of the model for the velocity given by

K0l = gl/U2 = M

FIo. 3.

The total elevation is the sum of the four curves which are shown in fig. 3.
One curve, symmetrical fore and aft, is the complete local disturbance given
by the sum of all the Q terms. Then there are two equal curves, one starting
at the bow and the other at the stern, for the wave terms due to the discontinuity
in slope at the bow and stem. The fourth curve is the total contribution of
the curved surface to the wave part of the elevation.

9. Another case of interest, which will only be mentioned here, is an un-
symmetrical model whose wave resistance has been discussed previously;

its form is given by
y - ah(h +1)2, -- < h <0 . (43)

Here there is only one discontinuity in f' (h), namely, at the bow, and f" (h) is a
linear function of h throughout the range. It will be found that the wave
ele, ..tion requires the first three terms P., P1, P. in the series of P functions,
while the local disturbance can be expressed in terms of Q0 , Q1, Q2 of a similar
series of Q functions.

To return to the general expression (35), it will be seen from the examples
that the localisation of the disturbance at special points is largely a matter of
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suitable integration. Co ensider. f'ori sI al ce, iI'e asiudl f onr of modil which

consists of a parallel midhdle l, I v wit h a curve.d eitrance exteleillng from the,

fore-shoulder to the bow and a curved run extendiw, fromt lthe aft-shoulder to

the stern. In the sense in whiidl the term has been used here, the total eleva-

tion caln always he separated into parts hocalised art fhles foul. points, the how

and stern and the shhlo lers. This (an rfadlilV I).o .xpl•'rssI ammalytfically by

suitable manipulation of (26) and (35) ; but it is hardly wvorth while puirsuing

the general analysis further, as it is simpler to work out the results directly

for ,ny particular form of model.
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Ship Waves : their Variation with certain Systematic C"hanqes
of Form.

By T. H. HAVELOCK, F.R.S.

(Received February 24, 1932.)

1. The following paper is an examination, by analysis and by curves, of a

single definite problem in wave profiles. Consider a ship model, of great

draught, in which ht some point in the form, at bow, stern or shoulders, for

example, there is a sharp corner giving a sudden change of slope of the hori-

zontal lines of the model. What is the effect on the wave profile of replacing

this sudden change by a gradual change of slope of the same total amount,

but distributed uniformly over any given length of the ship's form ? Apart

from direct applications, the problem is suggested by certain other considera-
tions. In comparing theoretical and experimental resistance curves, I sug-
gested some years ago* an indirect effect of the friction belt along the sides

of the ship in that it may be equivalent to smoothing out the lines of the model,

especially towards the stern. From an examination of interference effects

with experimental models, it. has been estimated that the effective length of

the model is roughly 8 per cent. greater than the actual length, and this may

probably be ascribed to some such frictional effect. The present paper deals

with wave profiles since measurements of surface elevation are now becoming

available, though the main results so far are for a simple model with straight
lines and sharp corners ; such a form simplifies the calculations but no doubt

introduces other complications in practice, and a small correction for the
smoothing effect of a friction belt would not be likely to account for the remain-

ing differences between calculation and observation. It must be noted,

moreover, that there are other approximations in the theory, apart from the

neglect of fluid friction, but these need not be discussed here.

For these reasons no attempt has beeni made to apply the results of the
present paper directly to .xperim•nellta I data, but it is hoped that the progressive
series of curves will be of interest in showing the changes in profile due to

successive changes of form of a definite kind.

2. The general analysis will be quoted from a recent paper,t to which refer-
ence may be made for further detail, and the expressions will then be adapted
to the particular problem.

* ' P .. Roy. S A.." . vol. 11 , p. 233 (1926).
+ Prov. IHo,'. S ,..,' A. v,,l. 135. p. I (1932).
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466 T. 11, Havelock.

Take 0 in the free surfac,, with ( Ox iii the direction of inot ion am d Oz verti-
(ally upwards; and leti, be the velocity of the model. We consider first
a distribution of liorizoiital doiljhets in the plali( y 0= 0, ext(ending from Olw
free surfacve down to K grrat depth, and wv take the moment M per unit area
to be a function of x otnly. Fturther, we suppose tIhat the disltrihiution of N1
is confined to a finite range ii x, is continuous within this range, and is zero
at the two limits of the range.

The surface elevation along the median line y = 0 is given by

½ , {u(Iv(l~' ~ - x")÷ + M"(h) F(x--h /dh} , (1)

where the sminniation covers all points of sudden change in the gradient of M,
and the integrals extend over tht ranges of continuous variation of gradient.
The fniction F is defined for positive and negative values of its argiAnent by

F (q) = - T' Q0 (KOq)
2K (2)

F (- q) = - -7C Q0 (Koq) + L (Poq),p(2)2 K- Oo

with q > 0, and Ko =- g/u.2.

We have also, for positive values of p,

1- (7) 7- y. (P), )1
2 ,

, (3)

Q. (p{) - { f (P) - YO (P)} "I2 j)

in the usual notation for Struve and Bessel functions.
Oe of the approximations of the theory lies in the connection between the

folin of the ship and the equivaleat distribution of doublets in thk. median
plii, y- = 0. For a ship model, of infinite draught, whose horizontal half-
sectithio is given by y =f(x), the usual approximation amotuts to taking

M' (x) = (u/2) f' (x). (4)

With this relation, the surface elevation along y = 0 is given by9 f2 1 Z lf(x) 1,F (x -- x,,)+ f "(h) F(x -- h)dh A (5)

Here r, and h, are positive in the direction from stern to bow, x,, being the
position of auiy ,harp corner in the form of the model. With this convention
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h hip Waoes. 467

the discontinuities it f'(a) at st 'rn and bow arc both positive; at an iml er-

mediate sharp corner, say, at a shoulder, the discontinuity would usually
be negative. Along the curved lines of the modelf"(h) is negative, except for

hollow lines where the form is concave outwards and where f"(h) is positive.
Thus, knowing the character of the function F, the exp)ression (5) gives a
general idea of the contributions of thc 'various parts of the form. These
possifilities are illustrated in fig. 1, which represents a half section of a model
by a horizojtal plane ; or, to [)e more exac(t, the diagram gives the distribution

R , j(ec)

p ~0
Stemn Bon

of doublets which is approxinmately equivalent to a inodel of this form. The

figure, also indicates the conventions Wor direction which are adopted t hroughout
this paper.

3. We now isolate one particular feature for examination separately. It
should, however, be noted that the function Q defined in (3) increases without
limit as its argument becomes greater, though the expression (5) for the model

as a whole remains finite everywhere. Therefore there is a certain artificiality,
as regards that part of the disturbance, in applying the expressions to all
isolated element of the form ; but that may be allowed for, and in any case
the method gives the differences made by changes in any part icidar element.

Consider a point on the model, given by x x,, where the lines of the model

are straight lines meeting at a fiitP amrlh, for example, P, Q, or R in fig. 1.
Let C be the discontinuity in f' (a) at that point ; that is, C is the difference
of slope of the lines forward and aft of that point. Then, from (2) and (5),

the contribution of this element, to the surf;ce vlvatiou is

N =2 -F (x - xi)

4(,/7iKo) {- i'Q,) (Kq 1 ) +- Po (Kq'1 )}. (6)

where q, = x,-- x1 and q' t - x- x. Furt her, we may use' (6) for all values
of x with the ,onvettition thIat PO i 10o be la ken zero for noat ive vatltes of its

argument, and that Q0 (- p) - Q0 (1). No'w sulppose that the sane cu'hange of
slope is carried out uniformly in a, given 'range ; t JIM, is, suppose the sharp)
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468 T. H. lavelock.

corner replaeied by a parabolic ar(' ;it e lixitidg from xr = .2 to ' K, the point

a¾ iVilig within this r,,g,. Considering the off.vt ,I' this by itself apart from
any other changes, we sev from (5) thai It h, ctorrespotiding contrimtnio to I lte
surface ehcvation is now

a23 2- F(. -- h) dh. (7)
r2 (r'- ' 2) • x

We shall itse the notation

Q1  o Q. (8)

PO- (') - 1 + P1 (A ) PQ ( 1) dp. (9

After evaluating (7) for points in advanice of '3' between r 2 and a3, and in the
real, of x , we find that we may express (7) in i single expression for all values

of x, narhiely
4C

ý23 ý= 4C '01 ((o,-2) + .Q 1 (K,,3) - -1 (K 0 .'2 ) - PO-' (Kt/Y 3 )},

(10)
with q2 = x - X3 - q' 2, q3  .ý -J, - q'a, and with the convention that

P0 -1 is zero for negative valtes of its argument, while Q, is anti-symmetrical

so that

QI (- P) -A - Q1 (A

The expression (6) is, of course, the limiting value of (10) when x 3 - x2 is

small and the points j2 and d'3 ulttimately coin(ide with the point a',.
Numerical values of the ftuietions may be ('aleulated from their definitions

as integrals, or from siuitable series ; for example, using the expansion of Ho
as a power series, we have

Q 0  ( P ) == ' o ( P ) + i ." 1 2 . 3 . 5 26 ( 1 1 )
F2 3: . 1. 3ý2 . 52.6 '

Q,(__) == P (12)
23 32. 45 12. 32. 5267

4. The special object in view is a comparison of the relative values of (6)
and (10). The quantity C may bIe either positive or negative, and x, may be

at any point between X. a"(d '3. But to make the l)eolthIm definite in the first
place, we suppose (v negative and take x3 = x and x2 <x, ; thus we are

considering a sharp-angled shoulder on the1 model, such as Q or I in fig. 1,

with h,, smoothing out entirely to thi' reatr of t hat point. This process, if
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carried out on an actual model, would no doubt involve other changes which
would have to be considered in a theory capable of taking exact account of

actual dimensions; but meantime we may isolate the effect of this particular

change.

For convenience we consider separately the effect on the local disturbance
and on the wave motion to the rear. Taking the former, we see from (6)

and (10) that the difference amounts to replacing J Q0 (Koq1 ) by

4 I (q -- 1) {Q (Koq 2) - Q, (Kiq,)}. (13)

This can be shown in a form applicable to various velocities and to various

ranges of x. -- x1 by graphing the quantity

I {Qj (p + k) - Q, (p)} (14)4k

on a base p, for several values of k. These curves are shown in fig. 2.

O" 3

U S- '3 -2 : 1 0 1 2

FIG. 2.-Curves of {Q (p + k-) - Q1 (p)}/4k for different values of k.

In applying these curves to actual distances along the ship model, we note
that p-= KOX = gx/u 2 , where u is the velocity; and similarly k ý= gd/u2,

where d is the range over which the original sudden change in slope has been

distributed. Thus the relative importance of the effects depends upon the
ratio gd/u2 , or upon the ratio of d to X, the wave-length of straight water waves

for velocity u. In the diagram, k = 0 denotes the curve for the sharp corner ;
the bow of the model is to the right of the diagramn and the stern to the left.
Apart from the general smoothing effect, the (hief point to notice in these
curves is the raising of the profile forward of the point in question and a lower-

ing to the rear of it. This is due to taking the range d entirely to the rear of

the original sharp corner. If, on the other hand, the comer is taken at the

middle of the range d in each case, by a suitable relative displacement of the

curves, it is easily seen that the smoothing of the corner does not make any

appreciable difference to the local di:- urbance except within the range d

itselh.
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470 T, H. Havelock.

Turning now to the wave portion of the surface elevation, the change from
(6) to (10) consists in replacing - Po(Koq'1 ) by

1

KO W 1 - q'2) (PO- (Kdq' 2) - Po-1 (Koq' 1)}. (15)

In fig. 3 curves have been drawn for the quantity

{P'o-1 (p - k) - Po-' (p)}/k, (16)

on & base p, for several values of k.
There are several points of interest in these curves. Since k = d/2-?,, the

relative effect of smoothing out a sharp corner over a given range is less the

0 2 1 0.50

025 4 /3

0.25

0,

1.0 20-

"9 8 7 6 5 4 3 2 i

Fiu. 3.-Curves of {P, (p - k) -- PO '(p)j/k for different values of k.

smaller the ratio of d to X, as might be expected. In the curves for the smaller
values of k, although there is some diminution of amplitude, the more notice-
able effect is the displacing of the troughs and crests to the rear, an effect
which would increase the apparent interference length of the model. P): the
larger values of k, from about k = 2, there is a pronounced lessening of the
amplitudes.

On the convention already described, in calculating these (urves from (16)
the first terni is zero until after p = k, and hence within the range k, the curve
is simply the value of - P 0-1(p) . Ik. This quantity has a first maximum
nunuerically, at about, p - - 54, and this may be observed in the curves for
k = 3. 4, 5, 6. Further, in the curves for the higher values, the effect of later
inaxima of the saime quantity may be noticed ; for instance, with k = 6 the
range of continuous variation of slope is practically equal to the effective wave-

length, and so subsidiary interference phlieiomeia of t his niiture are obtained.
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Ship Waves. 471

By displacing the curves to right or left we could examine the case when the
smoothing of the lies takes place partly in front of the corner ; a•id for a
positive (lis(.olitinlhlity the curves may be invert ed. We may thus obtain, for

example, some idea. of tihe eff,(t of smoothilig out tlih lines of a sharp-anigled

stern, whelt herl :11tmilly or 1y tle. 'qttivalvit effect of a frietiou belt.

Summary.

An examination, by analysis and by curves, of the changes in wave profile

produced by replacing I sudden chalnge of Slope II th-e lin.es of a model by a
continuous variation of t he same total amouit imiformllv dist ribuited over a

given lemgth of thle model.

HARRISON AND SONS, Ltd., Prijt,'rý, N. Mlartmi, ', Lariridj, W.C.2.
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The 1'hcory of Wavc Resistance.

By T. 11. HJAVELOCK, F.R.S.

(Rcceived August 6, 1932.)

1. Iii the following papeRr gene~ra eXpres'siOns. are ob)taliedu or the wave
resistance of a continuous distributi: - sources and.sinks over a stirfiie wit hiiii
the liquid, and also for a simil: tist ributioii of normal doublets. These
expressions follow directly from ialdts given pruviously,* anid may be applied
to give thc wave resistance of xiý solidl for wh~icli a sidtable distribution of
sources or doublets over its 1. 'Ice can be found.

The opportunity is takeni glive, for comparison, the similar results for a
distribution of pressure over the surface of tho liquid, u.iýnig the same notationl
and the samne general method of calculatinig the wave resis'tanlce.

The various results are discuissed briefly iii relation to the ship proIltiic.
Certain interpolation fornitihe, of a semi-enipirica I nature, have been pro p o t I

recently in attempting to extend the latige of ex.;iwexpressions for the wave
resistance of a ship ; these are shown to have their intiterpretation as- particular
cases of source distributions of the nature considered here.

,Somrce Distribation..

2. W~e begrin with I simple point, source of strengt h m, at a depth!f below tlie
free surface of the liquid, and stuppose die sýource to be movingr horizonitally ill
the direction Ox withl uniform velocit y c. Take thle origin 0 in thle free Surface
with Oz vertically upwards, the source being at the p~oiut (0, 0, -f) referred to

* iroc. Hluy. Som.,' A, vol. 118, p. 241 (19.28).
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340 T. H. Havelock.

moving axes. Let ý be the surface elevation, and assume a frictional force in
the liquid proportional to velocity, the frictional coefficient being ultimately
made zero.

The pressure condition ,t the free surface is

-' - gý + 14'0 == constant, (1)at
and this gives

a2 + 1o• IL 0=o, (2)aX2 az x

at z = 0, with i0 = g/c2 and [ = 1.'/c. Assume for the velocity potential

= -M dO J e-(z+fl+i-wdK

+ dO J F (K, 0) e"'+" dK, (3)

where -, x c3s 0 + y sin 0, and the real part of the e, pression is to be
taken. The first term in (3) gives the velocity potential. of the given source,
namely m/rI, in a form valid for z +f> 0. From the surface condition (2)
we obtain

F (K, 0) m K -- K0 sec2 0 + iU sec 0 e-f. (4)
27r K- KO sec2 0 + j~ Seec0

Hence we may write the solution in the form

L" -l Kf_. sec 2 0 dO dK, (5)r r. 7 -o K--Kosece2 0+i Lsec0

where
r1

2 = x2 + y 2 •_ (z +f)'; r 2•• X2 + y2 + (z -f) 2 .

It is to be understood that the limiting value of (5) is taken for [L - 0.
We may now gencralise by integration. We replace x and y by x - h and

y - k respectively, and take a to be the surface density of source at a point
(h, k, -f) on a surface S within the liquid. Thus the velocity potential is
given by

f- $ adS 5 sec' (W 0 dK, (6)I -. jo K -- Ko sPC3 0 + i68ec 0
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Theory of Wave Resistance. 311

with
r12 = (x - h)2 + (y - k)2 + (z +f)2

r22 = (x - h)2 + (y - k)2 + (z -f) 2

ri = (x - h) cos 0 + (y - k) sin 0.

It is assumed that the distribution is such that the various integrals are

convergent.
3. To calculate the wave resistance R we use the method of the previous

paper to which reference has already been made. With the inclusion of the

frictional term in the equations of fluid motion, energy is dissipated at a rate
equal to 2u' times the total kinetic energy of the liquid and this must be equal

to the product Re. As t±' is made to approach zero the quantity so calculated

approaches a finite limiting value, and its physical interpretation in the limit
when there is no fluid friction is the rate at which energy is propagated out-
wards in the wave motion.

The rate of dissipation of energy is given by

11P LO(is, (7)

taken over the boundaries of the liquid. As we require only the limiting value,
we have the wave resistance given by

R = Lim tp •-dx dy, (8)
PA--)-0 -Q -Q 0Z=

taken over the free surface z = 0.
Referring to (6), and putting the first two terms in the same integral form as

the third, we obtain, at z = 0,

= • ads see 0 dO -d, (9)7r _,,'0 K -- K. see2 0 + i ýL see 0
-- 1 K2 e-2 +;"

-adS dO dK, (10)
az 7- f f I 0 K - K, sec2 0 + ij sec 0

where the real parts are to be taken.
After some reduction, we may write the real part of (9) in the form

S---.dO ( {F, cos (Kcx cos 0) cOs (Kcy sin 0)

+- FS sin (.cx cos 0) cos (Ky sin 0) + F3 COS (DCX COS 0) sin (.c sin 0)

+ F4 sin (Kx cos 0) sin (cy sin 0)) Kcds, (1i)
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342 T . 11. Hlavelock.

inl Which
F, - (K - K 0 ,;ee

2 0) 11. _ Q see 01 D

F 2  ( (K - K,,.qec 2 0) Q. +- [LP. seec0) D

F~3 -- {(K - Ko se('2 0) Q0 IROP sec 0) D

F4 -( - K0 stec 2 0) P0 4- iQ)0 svc 01 D

1) Kbstqý2 Oi0 ,.K {(K - K 0 sec,(2 0)2 + pj2 se 2 0), (12)

and the quantities P~, Q are given in ternms of the source distribution by

P,= ac-x(0co (Kit co~s 0) COS, (Kk sin 0) d1S

P0 = Jae-Kfsin (Kh COS 0) sin (Ik sin 0) (13

Q, C-KSin (Kh cos 0) COS (Kk sin 0) (IS

fo ac-Nfcos1 (Kit cos 0) si n(Kk sin 0) dS. (13)

Similarly from (1IP), Fo,'Fz is obtained in the same integral form -is in (11),
with (plant it iv G insteadl of F given by the samie expressions as in (12) but

1)=K-,%1(K - K0 54t*(.) 1 .2, fi).2

Thoe xpre.,sions f' ir the surfaee values of 0 and 70i't: are now ill a form to

whielk we may' a pply a thevorem 4 l'iived from thle Fourier mtl -gral t iteorvin in

two variabldis ; name1ly, IN4 have, wvith Ilte ab1 ove not ati~on

jj I .- F1 l 11G (1 2- J,': 1 +F4(14) iK vl. (14)

Using (8), t his reduces readlily it)

E~~~ Q.n 2 (ti 5( d .k
It Lim .K0(0 (I-(5I-I~ dKG(

2 2 Q.2 ()P,- 2)._,, d, , (13

whlert, in (15)) thv 'jtumt it iv, P anid Qhave flv v.1lt1', given by (13) shn has
been1 1-4)V43CId b%. KU Sq. U.
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Theory of Wavie Rcsistmice. 343

This result may also be put in the fornm

11 8-K 02p (12 - Q") sec 3 0 dO, (16)

with
Pf - a c Sil o{. (x cos 0 y sin 0) sc 2 0' dS. (17)qJ - sin

In (17), the co-ordinates (h, k, -- /) have been replaced by current co-

ordinates (x, y, 2) ; since the sourc(.s are withir, the liquid, z is negative over

the surface S.

Doublet Dislribation.

4. A surface distribution of normal doublets could be obtained by general-

isiug an expression for any two doublets, but it, can be deduced directly from

(16) and (17). We have simnply to regard the surface S in (17) as a double

sheet with source dcnsities a and -ar respectivcly, and then proceed to the

limit in the usual manner. The required result is obtained by applying the
operator

1 x+ + n =c

to the expressions in (17), (1, tn, n) being the direction of the xvormal to the

surface. If M is the doublet moment per unit area, the axes being e-ecywhere

normal to the surface S, we obtain, in t his way, t he wave resistance

R = 8, 0
4-, (p2 + Q2) sec 7 0 dO, (18)

in which

P f .1M 1 '" {-- (l cos 0 + m sin 0) sin (Ko M seV2 0)

-V+ ;j COS (Io s--T 0)) dS

Q - J M c''1 ((1 Cos 0 + -II sin 0) eos (Ko_ secC 0)

V isin (KOM, secC2 0)} dS, (19)

wit h M. == x CoS 0 + y sin 0.
These expressions may be put into various alternative forms, and, of course,

may be simplified wli,'i the surface distribution is syninietrical with respect
to th, ('o-ordinate plane.s. It may be remarked that anl expression given

previously for the wave nrsistance of any two finite doublets in given positiotis

may be deduced as a particular case of these results.
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344 T. If. I.avelock.

Prc..esr 1)is•ribittiOll.

5. The wave resistance for a tira veling (i.i ribtion of prssure applied to

the upper surface of the liquid has beein work,,d out [% Variot:i net lhods, but

not by that used in the previous stctions. It is, (.onvenliet, for (omp'rison,
to have the general case set out in the samni way and usi•img the sanie J)rinc'iple

for the calculation of the resistance.
We begin by assuming a Ipossiblh form i' rt hle vlocity potential and finding

the surface pressure to which it coresponds.

We take

f sec 0 dO K (K, (20)-- - ,j K -- KO sc,"*!-' - 'J. se'v

with Z) = x cos 0 + ysin 0.

From the kinematical condition at z 0, the surface eh(vation is given by

S- scc 0 dOK - - d K dK. (21)
c.... 0 gK c" 0 -+ . sec 0

The pressure at t he surface (: = 0) is found from

v- cz -• + (22
Sp

Using (20) and (21), this reduces to

p = C2 -- (10 d KF (K) ' . + • "0' d

= - ?.•Pi KF (K) Jo (Kr) dK, (23)

where r2 = x2 + y2. Since We may write

p(r) f Jo (Kr) K dK p (7.) J, (KY.) 0-1. ., (24)
.0

we see that

- . sc 0 dO ...... KdK, (25)

represent s the solut ion for a surface pi, -. ure p(r)..-ynaiit rival r uiid t li moving

origin, with

f(K) - 1- (=t) . 1 (",K ) Y. dx. (26)

To gener:i list, this, we first S11spose thle pr,,slur crtientritiated round the origin
and of iut,.,rated at ,iotint P, -m) t hat f(K) ii(2.') is tjl a,.,,l by 1 2•. Then for
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Theory of Wame Resislance. 3453

any continuous distribution of pressure 2(x, y), we obtain by int(egration

4tc p (h, k) dS sec 0 dO ,1 dK,- (27)f f K K- oSec'°0 1 Ti-zsec 0

where now we have ,.i = (x -- h) cos 0 + (y -- k) sinO.
6, We obtain the corresponding wave resistance from the rate of dissipation

of energy exactly as in the previous sections, and we uto the formula (8).

The surface values of 0 and C9O/(9z are put into the form (11) and the (cahd'ulat ion
carried out as in (14). From the similarity of the forms for ý in th, two eas:.s,

the result may be written down. We obtain

R = Lim [" - se(,.o 0 KO 2C (pe
2 4- 1),2 2 Q 2 + Q"2) (K

4 - 7o 4 2f C2 (K - K0 seeV-' ()) -L- se,', (

_ O-- 2o (p.2 P(12 + Q'2  Q" ., 2) s"ýC5 0 dO, (28)

where the quantities P and Q are as in (13) with f zero and , replaced by p.
We may also write this in the form

I 2= K-- (P2 + Q2) se,. 0 (10, (29)

with

QX, Y) '{K0 (x cos 0 + y sin 0) se(.2 (t (IS, (3o),

the latter integrations extending over the given surface distribution of pressure.

We may obtain an alternative form by integrating awit lh respect to x in (30)
provided the pressure distribution is (ontinuouvs and is zero at its outer

boundaries, we then have

R-- 1 - (P2 _- Q2) se,, 0 (10, (31),-•2 p-

with
).= Fp COS ( (d, cos 0 +- y sin 0) Se, 2 01 iS. (32)

We may compare (31) and (32) with thei expressions (16) and (17) for a dis-
tribution of sources on a surface within the liquid. Suppose we may neglect

the depth of this latter surface at every point ; then witho-lt considering the
actual surfac-' elevation, which would require a closer examination, we may
say that the wave resistance for the two cases would be Ilhe same with "the

connection between the source density and the pressure :Iistribution given by

4irgpa c Optax.
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346 T. 11. iavelock.

Morjivg Solid.

7. An obvious application of these results is to the uniform motion of a sub-
merged solid when we replace the solid by a distribution of sources or doublets
over its surface ; for a first approximation we may take the distribution to be
that appropriate to the motion of the solid in an infinite liquid. This will, of
course, give the same result as if we had used the system of sources and sinks
which is the image of a uniform stream in the solid, or, in fact, any equivalent
surface or volume distribution on or within the surface of the solid. Simple
forms, such as the sphere or ellipsoid, for which the wave resistance has already
been found, have been calculated from the known image system. For instance,
the sphere was replaced by a doublet at the centre; it can be verified, after
some reduction of integrals, that the expressions (16) and (17) with the proper

value of a over the s&,rface of the sphere, lead to the same result for the wave
resistance. In general, the expressions (16) and (17) allow the wave resistance
to be calculated for solids for which an inmage system is not knowr., but for
which the distribution of surface density can be determined by known methods
of approximation.

Consider now an open plane distribution of sources and sinks over the
vertical zx-plane. In this case the normal fluid velocity at a point on either
side is 27:a, where a is the source densit v at the point. For a ship of slender
form, and small beam, symmetrical about the zx-piane, the normal velocity
is taken to be approximately c F'yj'•J, if the surface cf the ship is given by an
equation y =f(z, x). From (16) and (17), the usual expression for the wave

resistance follows :

R -- (P2 d- Q2) seC 0 (10, (33)

- q FYe'uz'' C cos (KOX sec 0) dx dz, (34)
Q1 j 7CX_ sinl

the latter integrations being takein over the vertical longitudinal section.
For the other extreme case, a ship of ilat form and smarl draight, .omuparison

is usually made with a suitable ldist rib•t ion of pressure ap)pli,,d to the surface
of the water, wilh the wave rcsistance given by, say, (31) and (32).

The similarity between the expressions for the resistance in these two extreme
forms has been remarked upon by WeinblAm,* and more recently by lIogner.t

In an attempt to cover botli vases lIv a single exprossion, llogner has proposed
* G. Woinblum, 'Z.A.M.M.,' vol. 10, p. 45S (1930).
t" E. Ilogner, 'bthrb. Sehiffbautech. Ges.1 (19.32).
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Theory of Wave Resistance. 34'?

a so-calle0d interpolation formula which, when put into the notation of the

present paper, is

R __= I (P2 + Q2) seCe 0 (10, (35)
2Ccc - ýIC

P - ze° see 2 C (X COS 0 + y sin 0) se 2 0-} dx dy. (36)Qf -fa sin

In (36) the integrations are taken over the section of the ship by the water
surface, and the surface of the ship is given by an equation z -= F (x, y). It
may be noted that if dS,, and dS, are the projections of an element of the
surface upon the zx-piane and the xy-plane respectively, we have

(az/•x) dS,, = (8y/•x) dS,,.

In the limit y-> 0, (36) becomes equivalent to (34) under the conditions for a
ship of small beam. On the other hand, in the limit z -• 0, (36) reduces to the
expression (31) for a pressure distribution with the assumption p = gpý.
Without discussing this argument, it may be remarked that (36) is a particular
case of the expressions in (16) and (17) for a distribution of sources over
the surface of the ship. In the one extreme case, the narrow ship, we
take a = (c/2-) Zyi~x, the sources forming in the limit a plane distribution.
For the other extreme, the flat ship, a similar approximation would be
a = (c/27) Fz1/Fx. But it is only in these cases, when the source distribution
approximates to a plane, that the normal fluid velocityv can be expressed
simply in terms of the source density; these expressions do not hold when
the distribution is on a curved surface or, in other words, when the finite beam
of the ship is taken into account.

It has been remarked that formulte in use at present are in "flect special
cases of the general expressions (16) and (17), with simple approximations to
the density of the source distribution. If we think of the distribution, appro-
priate to motion in an infinite liquid, as a suitable first approximation, it nmight
be suggested that this should be used over the curved surface of the ship
instead of the present simple expressions over the vertical longitudinal plane.
In one sense this would be an imiprovement, but it is not likely that it would
give any better agreement with experimental results ; for the more we depart
from the simple narrow ship the anore necessary it is to takei into aceount the
effect of the wave motion upon the distribution of fluid velocity round the
ship.

Instead of attempting to assign in advance a distribution of sources or
doublets over the surface of the ship, it might be left to be dete-rmined, from
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348 Theory of WI'ar'e Resistance.

suitable integral equations, so tlhat all the conditions of lhe problem should be

satisfied. This, in itself, would not amount to m1oi. than a formulation of the

general problem in different terms and woull( not advance its practical solution,

unless possibly such a form of statement should lead to improved methods of

approximation for the equivalent distribution.

, , L3d., 76rintur S, Martin' l-ane, Laidn , \.C.2.
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\VAVE 1PATTEINS ANI) \WAVE HFEsISTrANCE.

By Professor T. H. HAVELOCK, F.R.S.

[Read at the Smtinuaer Meetings of the Seventy-fifth Session of the Institutio(n of Naval Architects,
Jul., 12, 1934.]

I NTRODUCTION.

1. It is not my intention to discuss in this paper practical problems of ship resistance,
but rather to review briefly certain points in the mathematical theory of ship waves and
wave resistance. In doling so, I shall not attempt to give the derivation of formuIle or
any mathematical analysis of themn my main object is to give a descriptive or qualitative
account of some of the mathematical expressions and to show how in some cases deductions
may be drawn from an inspection of them.

The wave pattern made by a ship is familiar both from observation and as a subject
of mathematical study, and it is equally fascinating from both points of view. Perhaps the
earliest theoretical account is that given by Kelvin in 1887 in his well-known lecture oin
ship waves to the Institution of Mechanical Engineers. That lecture was based on mathe-
matical work of which a later imlproved version was pul)blishe(d by Kelvin inI 1904,* and
it is this later work which is usually quoted now in the text-books. The ship, in that
work, is idealized to a point disturbance travelling over the water and at the same time
sending out groups of waves which combine in such a way as to produce the characteristic
pattern of transverse and diverging waves. The early history of this idea of wave groups
and group velocity is also of some interest. In a letter written to Stokes in 1873, William
Froude describes the motion of a group of waves, how the group as a whole advances with
a less velocity than that of tie waves comlp)sing it. wave crests advancing through the
group in its motion and appearing to (lie away at the front while new ones are formed
at the rear; he writes, in his letter from TIorquay, " In my long experimental tank or
canal here, I have frequent ol)lportunity of noticing this in the propagation of artificially
generated waves. I have not. in(leed, yet investigated it quantitatively, because my hands
are full: but at a later date when exl)eriments on the oscillation of mo(lels will be the work
in hand. I shall have to establish regular appliances for the generation of waves, and the
investigation to, which I refer will be comparatively easy." It was in 1S76 that Stokes
gave the kinematical explanation of group velocity, a more general account b)eing given
shortly after hy Ra 'yleigh. This was followed in 1877 by Osborne Reynolds' dynamical
theory of group velocity. counnecting the flow of energy and the rate of work of the fluid
pressure in a train of waves: it is this latter point of view which is of fundamental
iml)ortance in the theory of wave resistance.

Much wodk has been (one since then, both on the detailed structure of wave patterns

* Ed i. Roy. ,S,. 1'ruc., ViOL. XXV. (i). '" ()ii l)'i \W&'l. Two-4i"me insioniisl Wves plm i'esi by atniy

given Iit ialiniig I")is itisi ' "' O 0n le Frollt an11d Rear' Of a Fe'eC 1't'O('tVSiUi Of ) Vives in Dcep Watet";
and " Dvep Watetr Shlip Wav,'s"
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2 WAVE. PATrTE'RNS ANDI WAVE n ESIS'rAN( E.

andl on thle calculation of' wae sistanceP. anid Illore recentl *v oil the comiarisOil of ca Iciilated
results wNithi experiment. lbit tile hfil~lainelital princ~iples remnain the samile. 'And~ -t is these
,%vhjehi I maish specially to keep ini view% ill the f'ol h owiig no( tes. We b egi n 1by (onsidlerilnt
freely moving wave patterns; that is. not, f'orcCel waves produvedl lbY thle mo ti(l of' a s.lip.
hut waves movinig freely andl steadlivy over the sturfalce of' the(' water 1inuler thle action of'
gravity alone. W~e imagine the paitternl to be 1 )rodticedl by' the mutial itutertfrenece of
Simpl)e plane waves moving freely in all (lirections, their phases 111d velocities being sulitably
adjusted; the elemeiftary properties of the pattern are (lescribed from thi~s point of view.
Then, considering tile waves lro~i)(ucedl by a ship, we see that these must :Ipplroxil1lflte,
at a sufficient distance to the real- of the ship, t~o such a freely;N movinig pattern; this is
illustrated by calculations, madle for certalin ship) models. FinallyN. it is shlown, hlowý thle,
wave resistance Can be obtainedl from considlerations of energy whlen we know thle, structure
of the wave pattern formied at a great distance in the rear of the ship.

FREE WAVE PATTERNS.

2. The Simplest form of free w,%aves onl the surface. of water conisists of simple harmonic
waves with straight p~arallel Crests, the pro~eession of waves exteiu(ling over the whole snirface.
It' thle velocity of, thle walves is c, thle waeeghis 2 7r c2j'f, fort (heelp water; so thiat if
we take anl origin 0) in the suurfiace andl take 0) x in the direction of propagationi, tile, wav-es-
might be represented by

~=sin 9 (x - C )............. ..... 1
C2

where 4 is the surface elevation, and wve have taken the Nveves to be of unit amplitude.
Suppose now that the waves are travelling in a (direetion making ant angle, 6 withi 0 x,

and that the wNave velocity is c Cos 0; thent, with 0 y in the surface and perpendlicu~lar' to
o x, the waves are now represented by

S-Sill {KsecC
2 0 (X COS 6 ~-[ y sin 0 - c t cos 0)} (2)

w~here we have written K = qjC2.
An equal procession of waves moving in a dlirection making at negative anigle 0 with

o xv is given by
ýýSin ýK SeC-0 (17COS 0 -- y sin 6 -c- t Cos 6)1............

Stiparpose these two sets of' plane waves, and we'C have a wave pattern given by the
sum of (2) and (3), Or1

21 Cos (/< ! Sinl ( sec- 6) sin f) - e 01 . . . (4)~

TIhese haesomeutiunies I eice caliled cormriligated %Wit yes. We 11i),a get it, rouigh i lea of' tilie
res-imilt I w drawing parialIlel straight Iilmies ton represent the posit imi~s (W the( Crests mid( t roughs,
Of tihe ci n~Mompoent svPtem~s at a* gi \'en instant amid Son we get, thle p)icture of at ilia miiond 1-
sha pedl Iptternl .covVIring thle whole surtilee and moving steadinljl inl the (lirectionl Ox. with
vehcit v n..

X\e Vu It)\' geiiendIize b y simim H '4ng that %\e hit\-ye sunmple stria ighit-cerstedl waves like (4)
travelling fradin :111 dinrectjoius inclelinld 'a ithmin 9 ()II oivither Side of, (Ox. Stiperp~osinig
t hese compmm onjent plamue wa"ves w\ill give a Smirfilcv VelevationI

g Jsin {K scc& 0 (xn co 0 y Sill 0 - c I cnos 6)) (10 . . .()
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anld this will ic presenit a fice wavye 1 atteili ()I Sml fiormPw t ra ;ejl illg Stealilly pn arallel tI ( )x
with velw-ity c.

W it ' v againl obtaiii a i'oiigh pictili'c of tile IesI IIt, Il* si m llle gra ph ical Imet hods.
SlIppose we repiresentit acmilipmeii~it pliiein wave (A' (5) I)v parai~llel straighIt linles Slmimwii the
(rests nall troughs at. sa. v tile inst ant, 1. :0, ill tile manuir sho wn in Fig. 1, the ftill Ii iies
rep)resenting crests andl the u~n ken lines, trouighs.

Now dlraw simil ar lines. onl the( Samin diagfra in for a hingre n itin her oif valules of' f inl thle
ranige from 911" to +1419. It is itistructive to take, for jitstatice, intervals of 14, anld to

N I

dlraw 19) sets of lines as inl Fig. 1 . Suceh a diagram is not given here, as there is too much,
detail for ieproduction on at small scale: but it is interesting to see the plicture of at familiar
wave pattern emerging from such a. diagram. rhe curves -which wse see in process of
formiation are shown in Fig. 2.

These eurves are, of course, the, envelopes of tl~lt line-, of constant phase of the Com-
ponenit waves, and their mathematical equations are most easily obtained by expressing

Fit.2.

that. fact. When we look into the fbritiat ion of the curves we see that thex' represent pilaces
where Component crests, orI t ,'oughs as the case may lie, combinme together to give prominent
featulres (4, tilie pattern : ('1 the( other ham I. we nun v sa v that at wi int" liat some distancee
Outside thle regiol covered 1) ' t hese curves thle coipm~ 'uent crests alidi trouigis tenid to caiwel
each other oult on the( av'erage. We arrive inl this w\a\. ait thle pict umre ()f at wave puattern of
tranisverse anid diverging maves. with a focuis jbiiit (). flild extending ill advancev f this poinlt
as well as to thle rear: the wvhole forms at freely niovinig patterit triavellhiig forwai d with
Steadly velocit~y. It need hlardly iev saidl that thiis dlescripition of the patterpi reir~eseited
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4 WAVE' PATTER'l:FNS AND WAVTE m-sisTrANCE.

by (5) is only at first approxim~ation; (le~tailell ratthernatir,'al analyvsis, is necesýsaryv for a more
w~rect andl~ intimiiat~e knowledIge of tilie surim- rae levat ion.l

E'xamine more, e 14 sel v oNie of t lii' cuIrves ot' Fig. 2, sa ,N thie po rtim 0 )A B whiich is
shown inl Fig. :4 along wIthl thle crest, lines- of, tile comnponient planle waves.

We hnld that tile transverse part A 11 i.s- made uip fF41111 tim sc planle \%,;vt's wihose
direction angles range froml ?.ero0 11p to anl angle 0, wh-icuh is snebi that, cos'O : 2 . or,

35,~ 16' approximatelIY; tile, divergin g pariit (0 A conies f'ronii thl plane w\aves \X-iose
directions range from 6, to m)". Thle angle between tile cr1est line 0 A and thle central
line 0 1 B is I19' 28', rca rI.Y. To cornp1 lete ()ilir pictutre we requ inre some i niorrat ion about
thvŽ height of tile waves inl the pattern dlefined )l thle express5jOio (5). All that nleed lhe
said here is that, following a curve such as 11 A 0,) the height is fairly constant over the
central portion of' the tranisverse wave, increases inl tile, neighbour-hoodl of a ('rest p)oint A
and then (lecreases along tire (hivergingc wave to z/er(o at the poinit 0.

ft mayas be noted that the waive- length A of a comiponient plane waive beiing
(2 7i' C2 ,/) co)s2 6, these wave-lengths range from 2 7( 2 . to ,e o.

3. Consider for a mioment thle dlifferenice ill tilese gen~er'al rveirhts if' thle, water'. Instead~
of b~eing very (feel), is of giv'en finit~e depth 11. Thle relation hetwc.u'n velocity and %a;ve--
length for' a simple planie w~ave is oliflerenit. arid, moreover', thlere 'ali lbe ir; planie Nvave,

A

0

whose velocity is greater thian Q/ (h I). Suppiose we Imnild irp a pattern likhe (5) wh'len the
velocit 'y c of the pattern is less thian this critical val ire \," (! h ). We t111(1 trace the envelope
curves inl the sanie wvay andl obtain a w\ave pratternI simrilhar' to Fig. 2. The chiief oliflererice
is that the wave p attern'mi d ens o)1 t: tile( awrgle 4f tit h cuisp line is greater' thIan thle vall
19' 28' for' dfeep) Nater' arid it increases withl thle velocity, c. f it add~ition. tilie transver'A.';e
wvaves becomie less curilvedl. thle al rigle 01 of, Fig4 :1 lbeirrg less t Ira i the valu 3 re:5 for0 deep
wvater an 1( Ircominirg less as the veb icit 'v c is i nc(reased.

If thle veb icit ruc sinahe greater' than11 tile \'iic ',kilir(' (~ h ), We Seo' at (iri(e thlat
wve rmust. oil it a ('emntral porat ion ot' the imit egrat i in inl (5), I ecil rse tile ('4011114 erit plllir(v i e

ta ll only beginl to exi~st at srrchi anl inc(liniationr 0 thiat thir'il wave veb cit'iY c ('05 6 is eq nial
to \/ Q1; h O. ( miw'Erking( ouit th lit' w p'Iatiteni inl mo re d etail, it is 1f61rn I t hat it consists
tlerr it, only di ver'ginrg wvs

4. We ret iri'r to( thle exp r'essjo n (5) foir' deep w~ater. The origin ( ) wvas taken at a fi xedl
pol int, lint it is 14mo re VE.r rve~ltitr ,t to lake a mo0 virng origin rIm f'Er te co -or'dinrates at the I'oclus
ioimit, of' tile \a vtc pat terrn:s r( ri wIra t, Ii 4114ws we slIaI! wr'nite x iristlvad ()it x 0'. Firti-hler',

for' hnevitY m e sinl wIxrite.

(It-, Y) Ii' S(,(':-6 (xi cos ) i- YSill 0)..........()

We mray call tile ,ill-fice celevat h ni givý l bry

S sill (.r, y) (10....... ................. (7)

a simplec sine piatterrn.

380



WV.VE, I t.\T''l'1NS A\ND WAAVE RESlST-ME. .

We could also liave iistd a formII

\Vliti ,I\ iv t be clled( a siliiijle cositie patterni. 'I'le getieral flu-iji ot t tilt pattern is "lie samie

andt troughs. It N~olild 1w oti jittevest tto have ai iliore ,tletailel miathiemiatical andI ililliieritcIl
allalvsis of these two si mplte fbrilm.'

fin (7) and (sX) the aniplittid es o01 the c(Ollipmenet I la lie wale areS tai keni to he thle salle
for all direct ions. W\e 11ay ta v \t flo pr 'v to at titial L'generiiatiuii hv sup ivs that ill each
case there is alil ampllitud~e factor. deptendting it pio the thirectitl diof each coililtolelt diadding
the two foii'ns. We-( arr'ive at it gveittal express5hion for ia fi-ee i moving wave p attein. lia iiielY

f () Sinl (.r. Y) do FF (0l) cos (r, y) (to . . . .

It is trule that the ampltputdae fart ois nia ,v alter t't lisiletab .dv ourI pictitt'io, tlit' llattt'iit,
esipee iaII if tile\- have' Ipiollotiiie' ilnaximia oi 1111li1i1ia: however, we shall see t hat m(i )St
(aes(I Which have been (a lculatttd ftor shjip mod i els call Iiet redt it'et itt termi is like C 9i) with
,Siniiile ampllhitutite facttrs.

.Still \AVE.kiS

5. We have been (dealing so fll-i mith at 1,ree watpattern: that is. we have .itts'
thle system to he t'oiiipletelY inl existenice at smile iiistanit and thIei i a ft erwart s it nit 1vt'
frteely andh ýSteailty forward.

Consider nlow tile (list tIllbanle I "ý prodied ill a fiict -tiilt'css l'I iquh. h\ . ilt 11V ing( shinp ori
b\a dist urbinig pressure systeir ini' vii g stt'atd Fiiv rwaid. .At s' nie dist ance ill advance

of the ship there vall be lio appj reciablet disturblaiice. ats weV ShltIP~st it iioviliig ttt~rdat iiitt
still water. Ini the imiiiiitdiate, liteiglotiliu ttn111o of' tlie( shipl the (list irblaite wvill Ih' of a
complicated character. But as we got f i i-thIn andt fuirlthei' to th le irtar. tlie( sii rtace (list Itl tbait .t
iliulsi apiltimitxinot liiot'( 'and .i~ott't to s;onlv ic O .ý(l . y patttern ft t(Ilt i (iii o \%it Ii thit
sallie spe as5 the shipt.

For' instance, it' ait tung ý,\vhiitrit'aI It t, is \61t'eh itI steady vvltttitv v at righit aulLithc
to its !eiigttlt. the (list11.itrlaIcwv at at great di~taiict' ill thet rear' Iluist aillyntxilliattt' to a silinplt'
plane w, Ive of vcltu'it ' c. m hom.s \%avt'-Ieluutl is tli et'i'lit 2 -. c It coiilI bet e'xpre'ssedt
hy~ (1). takiiig some Suitable potjint as tiit- tIirigii I)anI i (I incliliil, smnie (Itlt'Iitj t t'iipll'tit lt

ftrinl of thet ci'o's-st'titli of tIw lit dliitlt' andt itý t'lotit x Siiiilarhv\ for anl ourdinal. ý,Ilip
fttrun, tlit(. waves at ai great Iki itte ill t lie real, 111i1.t altlrttxiliatt tt ' stllie reyni. u
Wa\0' patterli sichitas wev hlat( t'cel~ti tttisideilt'i: antI forv S(tl- llo titahtlt tuigiliu ) ill or1 liitai
tlit' ship. thitv , v ii11.t thit'itftrt' Ile' t'\ltt'."illit' ill th flt oIr'in (9) t iaii.til It'llctill.

dtattils t(& tittatii.zIlse vtx plv'ssit In., wo 1Ii -1\l iit vttiliiill' a 1'i-w tast' ill ourder too ilhiiý.tiall'
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6WAVE lPA'I'TEItNS AND1 WA\VE IRESIS'l'ANC F.

dlisturbiance examined bv Kelvin ill thle, paypel' tko which retei-etce has already ileen Inadle.
III this case' tihe waves Hil tilf. !viii- aJpproximaite to the fTin-1

A S(,("- 0 sit I (r, Y) O....... . . . . ....

where A is a constant, mid we. use tile iotat ion pvciftied ill sec t ionI 4.
We unav ihescil-ie t hii Is a sin-e pjitteiiij \%ith .11, viilhiul I~~O se 2 0 h aries

from unity at 0 U 0 'to infinity it 6 9 We have seen, inl sect~on 2, that thle transverse
wvaves of the patterni comec from the rangre 0' to :35 apphirxitnately, while the dliverging
waves come from the rest of' thle range 35ý to 90., taking one side ot thle central line, ()x.
Thus we should expect the (diverging waves ill this case (10) to be increased inl magnituide

5 [7 -/

44

ISO 0 45- Go 7 o
,( f..vj 0 /

Fi(;.~ ~ 4. RPI FSFR IFRN AUSO

compared~~',~ wit ths o h ipeSn atr -)ýteefaue wIld rmnn

in~~~ ~ ~ ~ tit Kevnpteni-cmaio ihtos aeb l ldlaysi nd

it eir t I depth---- -, 1-1 -----g ih vl)i . Th 1111ýkl s lM

30" 0 45 10 c0 75ll (x900it

t~ih~fr~ ihtoe fou ln )bigvr thsicple s lv ine patl(it) thliespefetires r i.i~ Jliif~

in IFg th Kelvi patten iiie cid' theis miii itud toe fiima'l he- by ani) kiflnar 0h Im o dfervl.

%-aluies at th focuht s, (I (ift.2'

Flm)theeosej in cuve iig et :itai sm oivtlie ideat ic tilt- rle iv sphere.v i tetialselK
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an(1 diverging wvaves for Ii tlei'eit dlep ts s(o fin. h sifftrent ~speet I. We see t hat th effe(ic(t 5 Sf
increasing (depth . at the sanie speedi. is to (inii iiii h whcat ivel,%. the div~ergin, \ilgwves.

But thes~e are per~~thap dettails (sit ptiit'k theIicit ical tilt ies t ;Ind \%.e ttiml1 1ts w tos ~solutt
cases of ship models.

7. e (otnsiler i first a lus islet it' great uliaatighit ,pi, I II i fi win Its si/. uittalI cros s-sect it on

throughouIt andl with jparablicsi lines: this is a Iltnuulel %Nliiels has beenI uinvestigaitedl by

~Mr. W. C. S. \Wigley. \%wk iung at the W~illiamitl-Iwuidet Fasttoy ig, .# sits \ tihe liui-

'ioiital sevtion.,
1i1king the( Wgitiul 0 at Ait tituit-jint su , uai it tf t I'tsttl wd t c tii\ v A B I is y~ , 1 ~.12 12),

it

C

the beani being 2 b~ and( the length 2 L. It can looe sIh wn that. (iii the iiuais m Iin tiiuit isal
theory, thet waves ill the real- (of the unwIel appjroXiullIate to

4- fm I s am t Q I's Wo "I WWOIt (K I -. s c ) t u ()) ,i ) 40H 12 1
77 K 2 12

T1his might be regarded as :t sine pattini-1 wit h a sqInviivhtat c( )Ittjialdti all uitjiltudc
factor h ut fortunately woe ca;n shis-.ect it inito, 'iliitpler ct)I o IsII ents. tow it is ideitt ioal I.
equal to

sill 0i- 1. loo) -- ~sin (.1 1. q

Here the patternit s seeut tuo ho' lthe ewsitbiiiieil ro.-tilt sit [Ilwilniiui"6L (II tin1t1A iijit alto-sIil"
twoI foeussed at the I)()\% aitil l\%1) at thelt, gi Thle tir.'t 1%oosi are -jtilnl .i' l Ijn lat t 4isIti."
with (.tInstanit ainpiitnti. fals , t uia giveuiiel htsk& II(',v uIwt' in tict ivAt rtitliutitil siisvlt I.\
to) the tinlite angle Ait the 1us1-oe a11 lie 11(1ý A alnsI at II( tv lii 11 rvissitiel .\ TIi il Ith I

twil terils ill( 13; art. pia- itttiw " \% i.h I II an pi lt fatscttsf le t.s 1-4, 1 ill 4tl .,,v ; It bi 1w 11
(Ine is Pni-iss.es at t lii I It)\%t ands ilit' titlicti at 'ht I -tel it. it i, 111155w ait 1i1( piiasiii t.I rs _, itz id
t these t %% ( ) teIrill. tsiouletillsi a replresenlt ogii' I re. ll iltot slfyet iii t 1 t' t Il ut, (1 ,ii sIv- A ( I iliisl

A I) It (it' th itt insitel.

A Iiiatter (Iii great inlutieýt is thet niitit il itiltIdt iJlie-c tin la~ttot-1i0 Itt'i(14in ii to-i
the( spxett. thet e\te.Iit lts tM huh it I., hslissilsls' iti tus.ks tilt,' 41111.ii i liasteltit stiusisciti
\i Ith tilttrssitlghs sit ansithet- anti the itt'i at %ihuch iit.1\61iu11it 'tletwt- sit th. Itil LiisI slil:

hi~t~t't'. he..e jitilots ale, Isttel tiiii..tilseiesl ilk is 111i-tto tiil \%tith Ithei'iilel tstl~'a

l'essstaieM



8 ~~WAVE PATT1ERNS ANDI WAVE RESISTAN( E.

Notice first the magnitudes of' the( termis in (13). The, bow ftf( stern systemis are
factored by c~r .while the effect of the curvedl sides has thle fact~or dig2/y21*2 Hence at
low speeds the bow, and stern provide the ngreater part of thle wave s 'yst-en, l)ut as thle
Speed increases their relati,,e imiportance hecotines less. Then we have the effect of the
amp~litude factor cos 9 inl the last two termis of' (13). Remnenmhering the listinction between
transverse wvaves anl (diverging wa -vs inl a simple pattern, and( that cos 0 (lininiiishes from
unity a~t 0- to about ()- 8 at 35-' aid theni to zero at, 90'l , we may dlescrib~e the result in
general terms: the effect of the graduial chanige of slop)e along the curvced sides of the model
compared with the finite angle at bow and stern is to dliminish the relative importance of
the diverging waves. This poinit is amplifiedl further in the following miodel.

S. In this model one enid. say the stern, is dirawn out to .a fine point. The model is
again of great draught and is of uniform horizonital section throughout. Fig. 6 shows thle
form of the horizontal section.-

C

0~ x

F!w 6.

Taking the origin 0 at thle bow, as in the diagramt, the equation of the curved side
OCB is

27 h )'

The maximium beami 2 b occurs, at one-third of the length from the bow.
The wave pattern inl the rear is given, lin ouir abbreviated notation, by

- ---- sin (x, y) -4 ()Cos 0 cos (.r, y)-6 ()COSL' 0 Sinl (x :)
2,. 2

-~2I~ cos 10 tos (xi I ) 6 - cs 0sn( )'10 (15)

Here we have five simple patterlis, the( first thr~ee foCcuSSed at theC b1)% and~ thelas
two lit the stern., Tlel first termi inl (I5) is t ie( simpille sine piatterni duie to the finite angle
of thle moitdel at thle I% 'w %%e not ice there is It( Simiila r term for the stern lbec-use thle angle
has beeti Smuoothed lmawy comlpletely , ,at tlie( stern. I'lle last fmir ormus oif' (-5) taken together
repiresent tile restiltant effect o f the cur-ved Sides 0) C B and 0) I) 13 of thle model. The
genleral imit'renices are thle samile its for the previouls m1odel : but we notice that we have
nowV, in (IS. tteramis withI anl am plitumde factor (osO,~9 and foir such the relative i nipoitaicev
of the( diverging w~aves is still further diminiiished.

It. Atiother polint about which we iiia %, make sonme broad (ledlu(tiouml from thle form intla
for ti,. wave lpatthivis is the effect of tite drauight (it the ,modA~. lit the previotis casess
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WAVE, PATTrERNS AND WAVE RESISTANCE. 9

we have supposed this to be %,ery large, or theoretically infinite. Let' us supp~ose' iow that
the model is of uniform horizonital 4ectioni downi to a depth d b~elow thle surface afld is then
cut off by a horizontal plante. For our presenlt (leScrIip~tive pIMIr-)OS. We Inav make someI
simpl1ifying assumptions inl deducing the formulne for the wave systemn buit thlese nleed not
be investigated here; it is sufficienft to state the genieral result. The effect of making thle
model of' draught d1, instead of inffinite dIraught, is simply to iiitrodluce into each of the
term~s for the component patterns, in say (13) or (15), anl additional amplitude fact~or,
namely

I - t C2~.............(wf)

Since K d y d./C 2, the value of tlhi.- factor depends upon the speedl. Fig. 7 sh~ows
curves of this quantity (16), for different values of K d, for the half range of values of
0 from 00 to 900.

From inspection of this diagram we see at once that, for a given speed, if the dlraught
is diminished the transverse w ayes of the pattern become less important. We may put

.00 1.00

50 -SO0 5 6 ~ 75 Q

FiG. 7.---CRAP10 OF I - P se'qFOR DIFFERENT VALVES OF Kd.

alongside this a remnark (Irawii fr-oi observation; for instance, in Taylor's Speed aiad Polver
of iShips there is the. statement: " Narrow deep ships have. wave patterns whose transverse
features are more strongly acceiftuatedl than those, of broad shallow ships.''

TPhis might, of course, be anticifpated without. any mathematical expressions. F~or the
effect of' a planle wave onl thle surface is onily appreciable downi to at (lefpth of, say, half' its
wave-lenigth. But of thle componient p~lane waves which combine~n to make thle pattenin
that which is trav~ellinig inl thle same (lireetiont as the ship has the greatest wave-lenigth, anid
inl inclined (directioins thle wave-lenigth is proportionial to cos5 0 and dliiiiuiishes to zero -itt 110.
Thuls ats we (himmlinish tile (Iratigit . for at giveni speed, thle first eomlpoiletts to) be atfectcd are
those of longest wave-length and~ those are- th- compIolneiits which l)rovidet thle tranisverse
waves of the pattefli. -However, the mathematical exl)ressionis enable uts to obtainl at least
at rouigh qJuanititative estimaiite of tile effect.

W~AVE. RE~sisTANCE.

14). We turnt now% to the (alcalat ionl of wave res-istanice, and~ for this pilrrpose It is,

essenttial to have it kinowledIge )t' the wave pmat terns we have beeni considerinig. Throuighoult
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10 WAVE PATTERNS AND WAVE RESISTANCE.

all this work we are assuming the liquid to be frictionless; or, rather, we suppose that
frictional resistance and the effects of viscosity have been treated set)arately and so eliminated
from the wave problem in order to make it more amenable to calculation. It is true that
the most direct idea of wave resistance is to regard it as what it is in fact, namely, the
combined backward uesultant of the fluid pressures taken over the hull of the ship; but this
is by no means the simplest method for purposes of calculation.

On the other hand, by a direct application of the method of energy and work, we
shall see that we only need to know the wave pattern at a great* distance in the rear
of the ship.

Denote by S the position of the ship at any instant by A and B two infinite vertical
planes in given fixed positions at right angles to the direction of motion of the ship, the
plane A being in advance of the ship and the plane B to the rear.

Consider the rate of increase of the energy of the fluid in the region between the
surface of the ship and these two planes, and consider also the forces operating at the
boundaries of this portion of fluid. The fluid possesses kinetic energy due to its motion
and potential energy arising from alterations in the surface elevation. Calculate the rate
at which total energy, kinetic and potential, is floving into the region in question a,-ross the
plane B and call this E (B). A similar calculation would give E (A) for the rate at which
total energy is flowing out of this region across the plane A. At any point of the plane B
let p be the fluid pressure and u. the component fluid velocity inwards at right angles to
this plane. The fluid to the left of B is doing work on the fluid to the right at a rate p u
per unit area at each point of the plane; summing up for the whole plane, we call W (B)
the rate at which work is being done on the fluid in question across the plane B. Similarly,
- W (A), calculated in the same way for the plane A, is the rate of work across that plane
upon the fluid between the two planes. Finally, if R is the resultant resistance to the
motion of the ship and c its velocity, the ship is doing work on the fluid at a rate R c.
Hence, equating the total rate of work upon this portion of fluid to the rate of increase
of its total energy, we deduce a general expression for R,

R c - E (B) - W (B) -- E (A) -- W (A)} . . . . (17)

This holds for any two fixed planes, one in advance of the ship and the other to the
rear. If we take plane A further and further in advance, the quantities E (A) and W (A)
approximate to zero, since the ship is advancing into still water. And if we take B further
and further to the rear, the disturbance approximates to a free wave pattern such as we
have considered in the previous sections and we can calculate the quantities E and W for
t.ny plane of that free wave pattern. Thus we have finally

Rc -= E - W ............... (18)

where E and W are calculated from the free wave pattern to which the disturbance approxi-
mates at a great distance in the rear of the ship.

11. This method is familiar in its application to plane waves with straight parallel
crests. It is probable that the first calculations of wave resistance were those made in this
way for plane waves, the argument being usually expressed in terms of group velocity.
For simple harmonic waves of height h the average total energy is * g p h2 per unit area of
surface thus the quantity E of (18) is ygph 2 c per unit length parallel to the crests.
The quantity' W is exactly one-half of this amount; or, as it is usually expressed, the group
velocity is one-half the wave velocity. Hence from (18) we ha R- 4 gp k2 , where R is
the wave resistance per unit length of the cylindrical body to whose motion the waves
are due.

It is rathier curious that this method has not been used for obtaining the wave resistance
from the wave pattern produced by ordinary ship forms. The formule in use at present
have been develuped by other methods. In some cases they have been found from the
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r'esuiltanit flu id priesstir' ( )it thle shinp. A not her nietlio'1 is to i nt roduce all art tificil kindI of
fluidi resist ; II I('c ca Ic Iiltev t he ia(ýt ~)f ( Ii,.i I)a t i4 )nI of einergy. and so,( ii It itmat el , arri veý at
eXpr)essioim. for tiIlie wa v'4 vicsistaiiccv All t iln' S imethod s 11111."t lead t to tle same1( re(sulits
if carried out eorriect lv- Imit peiwliaps thle Iii( st natural imeth od is that outlinled above itnd
embilodiedl ini the general expression (IS).

It. has bieeni slo wii~l receeitl v that the iWecesŽ55i".iV elciilat jons call readlY be extend~ed to0
paXejatterns of the genleral tY1)e which oeccur in shjip waves .* The results iiaY be given

here, without go ing inito the h ~tailedl analysis.
Suppocse tiist that iehaet free wave pattern given by

f f I ) Sill (.'r, ?) de. . . . . . . . . . ( 9

2

and supp)ose that the amp~litud~e factor f (0) is an even function of 0, so that (19) is
equivalent to

2ff (0) sin (K x sec 9) COS (K y sin 9 sec2 9) (19 . . . (20)
0

We can write dIownv the velocitY potential of the fluid motion for the wave form (19) and
so obtain the pressure and~ velocit 'v at an\y point of the fluid. The quantities E and WV
of (18) canl thien be calculated,. with suitable limiitations onl the function f (0) wihamlount
to ensuring that E tiui( W are in fact finite and calculable. Under these condlitionls it is
found that E -XV for the p~attern (19) is given by a remarkably simple expression. niamely,

E - N -7 0~C {f (9))ý2 COS3 0d .... ... ....... (21)

Hence the wave resistance of at body moving with velocity c and leaving in its rear
a p)attern (19) would be given b.,)

7T p C2  (9)} 2 c0s3 9 dO.........(22)

12. Suippose, fori illu~tration, that the aiaiplitude factor is independent of 9 and that
we have

hr si in (.r y) (19 . . . . . . . ( 3)

at simple siine paittern~i, with hi possibly at function of the velocity c. T]his is certainly a
hypothetical case! (23) is like the flarst term of (13) or (15), so presunmably tile sort of
body which wouldl produce this wave pattern would be the bow of a ship of great dIrauight,
but withlout an\y sides Or stern, However, without inquiring any further into that. if tile
wave patternl is (23), then fromt (2'.2) tile corresponding wave resista~nce would ibe

7r rpc' vos" idO -i ir per . . . . . . . . . (24)

"Pi'r.. Th~y. Now. A..144,.1. -'sM 1:14.
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WVe might even carry this calculation a step further and divide the integration into two
parts: (i) from 0 1) to a 351 In)', (ii)fro(m 0 35` 1 W' to 0 !00'; and we Illight associate
the first part of I so calculated with the transverse waves of the pattern, andl the secoCId
part with the diverging waves. Oin that basis we easily find that for (23) the transverse
waves account for about 77 per cent. of the wave resistance, and the diverging waves fir
the remaining 23 per cent.

The formula for I given in (22) was for a sine pattern (19), but the same expression
ho1ls for a similar cosine pattern. For instance, to compare with (23) we may take the case

h cf es 0 cos (x, y) dO... .......... (24a)

which is like a term of (13) or (15) giving the effect of the curved sides o;f the niodel. For
this pattern the corresponding wave resistance is

R pc ý k7 , co2 h2 rp2 0 ao 2....... p C2 h2.(25)
'0

If we make a similar division into transverse waves and diverging waves we find that
the former now account for a greater proportion of the total resistance, about 86 per cent.
However, this is, no doubt, carrying the dissection too far; the wave pattern as a whole
should be treated as a single system.

13. As an example of (22) we may consider the model with parabolic lines for which
the wave pattern was given in the expression (12). We have at once the wave resistance
given by

IT

R - 44 { K I Cos (K I see 0) - Cos 0 sin (K 1 sec 0)}2 cos3 0d . (26)

On expanding this expression we have

32bl-• K -2 cos6-10 cos (2Ksec 6)

ITK
4 14 "0

-- 2 K 1 'os 0 sin (2 K I sec 0) + cos2 0 cos (2 K 1 sec 0)} cos0 3 dO (27)
And this leads to

-- 32 p 1)2 c*2 [ 2(r2 2~ 8 C2)1 (,2 )27 ~5( ( )R ... . 7 .1", -/ - i5 ,q! - \ " • c s, 0 cos (2 K I S U_ 0) (10

Sf C-,)4
-2 (,) cos 4 0 sin (2 K I see 6) dO 6 eos- 0 cos (2 K I see 0) dO (28)

The result has been put into thii,; forim for direct comparison with the expression for

the waves given in (13), where they are analysed into four simple patterns, one for the

bow, one for tile stern, and two for the combined effects of the curved sides of the model.
From this, iond the caleulations of the previous section, we (can now identity tile origin of
each of the terms in the expression (28). The first term is the resistance due to the how
anti stern battrinis ais if each existed alone. while the smeond term is similarly due to the
curved sides cah cuilated :separately. T'lhe last three term.s of (2%) nave been left in the forim
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ofI integrals: these iItegrnIlS hi\ve bI(een taihilateil lor numeic~~ial wor,Ik htit Ne are ()uII e onl-
sillering hecre sonlie geniirnil iIlt'eI~onces. These three t( r1 efIrt.4Ilt thle roo1t iriý' inlterterence

of, tile fooul. SirlleI platternis colhtairned ill (I3). adil it is IhlwiolS, fivlui the pIIIver of' the factor

(C2 j'Y I) wh~ence theY arise. Th'ie tir'"t ot t hese represents th lle tt elferei oe of* how arlid Stern
platternis, tile se~condil the initerlere n(e If' h~ow% or ste~rn wkith entranie orI ron, iili~ tilie last

teritn thle .1ii urtii inter Ierenice ot, the Vo patt ern's In i~o the ci rel Ie sid es or, as o~ne mna y s-a ,v.
the initerference of, enrt ance andl mun. It is t I iese last t hree term-s in (2,S) \%-hi i ch have
oscil latinig Values. anwl So give rise to the Wl- I IWO inii IIJ anl(l liol lows oi thle curve of'
wave resistance.

14. W~e have seeni t hat the wave pattern left b~ehind1 Iy a shiip can in general be p uit.

inito thle t~orni given in (9) w %e have (lescrih~ed this as sinle aMid cosine platternis with know-n
aniplit(ide factors,. The (aleliationl of' the qjuanititv ' NE -- N can readily vle extcfl(ledl to this
general form and wve obtain then the wave resistance for any general case.

W'e first put (9) into the equivalent formi

Tr

(F, sin A cos 13 - F., cocs A sin 1B I'F F3 cos, A cos 1B -. F4 sin A sin 1B) (10 (211)
"0

where A K Xr SCC 0. B - K Y Sill 0 See' 8, and t he Fs, are functions of 0, in general, and of
the fornui1 ot thle ship andl its Speed. The calcuilation (If It followvs is in the simpler case
of (1 9), and leads to the general result

7R __ 0'p f( 42+ F,,2 4 F3  2 ) COS3 a dO1* (30)

The determination of the functions F is. of couirse, another matter. Approximate
methods in use at present anlilunt to replacing the ship lby Some equivalent distribution of
sources and sinks; the functions F' then usually appear- as integrals taken over the surfatce
of the ship), or over its longitudinal section for a first approximation. One of the out-
stan(Iiflg lproblenis of Ship wave resistance is the improvement of methods for determining
these functions.,; the line of attack open at priesen~t w~ould seen, to be bly fuirther steps of
mathematical and numerical approximation, assisted a nd correc ted by3 comiparisoni with
explerimental results.

The ob~ject of thle present paper was to recall some of the elementary properties of
wave patterns anld their Lprodluctiou by the mutual interference of simpilie plane waves, to
illustrate these by examplles from ship models, and further to emphasize thle. direct connection
b~etween the wave pattern and the wave resistance.
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The ( alculafwon of J'aoe Recýsts/uce.

By T. If. HAVELOCK, F.II.S.

(Ilci void Januaryv 25. 1934.)

1.The wave rosista !ae of a 1101lv iuv 110I~ InI II frictionhess Ii (1i~ld I as been

calculated by various m ethod(s. III at fewý ca ses it hass bween foulnd (1ireetly as

the resultant of the fluidI prssures on tile surface of the body N. Anlothier

inethod, which has boonl m~ore generallY useful, involves thle 11trodlictionl of

a certain type of fluid friction Into the equations of motion. The wvave

resistance is then found I)\ calcuilatinig the rate of (dissipation o(f en'rgv and

taking the limiting value w\heni thle frictional coeffhcejet is tiiiide vaiiishingly

small. This method has certain Impllortant analytical avitienvrhls

it is hilgh1l- artificial. A tbIrd inethod, (lealIing, di rectly with a frictionleis

liquid, conlsists In examilriungz the flow\ of energy In tLewae motion ;tlins has

hitherto been uuset only for twvo-diniensioujal probldems whenl the wNav-e mnotion

conisist's of Simple wAaves x1 itjl straight parallel crests. the( usual,1 theory of

group velocity being dlirectly apidicable.

In the following" note this inuthiott Is extendled to tluree-diumncusional fluid

motion. Although no new special results are obtained so far as expressions

for wave resistance are concernedl, it sveemed of suffhicienit interest to obtain

them by this direct methiod, namely, lbv considering the flow of energy and the

rate of wvork across planes far Iin advance and far in the rear of the moving

body.

I hese quantfities are examuinedi first for a free wave pattern of simple type.

TIhen a general expression is given for w-ive resistance Iin ternis of the velocity

potential of the free wave pattern to wh'ilch the disturbance approximates at

a great distance in the rear, and this is applied to a general foruut of wave pattern

and( to some special cases. Fiitally, a Isimuilar exaniunation is made of a curtain

problem \whn the water is of finite dleptli.
2. Withi the origin 0 in thle free surface of deep water. mnd Oz vertically

uupm-ards, thie surface condition is

- gL = , z =O,()

v'here 0 Is the velocity potential and ý the surface elevation. For a wave
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515 T!. 11. Havelock.

pattern advancing steadih" with rilcitv , in th4 l IiretiIin Ox, we mayv write

(1) in the formi
*7 (4')

with Ko =: g'c 2.

A simple plane wave advancing in a direction making an a lglh 0 with ().c
is given by

=a sin {K. se-. 0 (x cos 0 - sin 6 - Ct cos 0)} (3

(IC cos Oc,' . os {o fK0 ," 2 (j (." (.oS 0 J- y •in 0 - di cos 0)} f (

We may geoieralize this to obtain a free wave pattern made up of plane waves
advancing in all directions, so that the pattern itself Ilmoves stewadily with
velocity c in the direction Ox ; we have then

- t f(0) si, {Kj, ec2 0 (1 oCS 0 y Sill (, 0- (,' Co,, 6))} . (4)

We shall suppose in the first, place that the paltern is synimmetrical with respvct
to Ox, so that we have

2 (f 0) sin (K. x' seC 0) cos (Ko y sin 0 sec2 fj) dO

2c ff f0) > cos (K'sec 0) (.OS ( y Sin S*se2 0) cos 0 10

with x' = x - ct.

Consider a fixed vertical plane x - constant. The rate (if flow of total
energy across this plane is given by

pc dz_ j(L)2 d_ lao dy -I 1.ypc 2_ d2 y. (6)

The variable part of the fluid pressure being paU/at. or - pc0ol/x, the rate at
which work is being done across the same plane is

PC dz ) dy. (7)

We shall assume that the wave pattern is such that these quantities are finite
and determin-ate.

To evaluate these expressions with the values (5) for 4b and • we use the
following theorem;
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Calculation of Wave Resistance. 516

If

F1 (y) (A, cos yu- + B1 sin yu) du,

"(8)
F2 (y) (A2 cos yu + B2 sin yu) du,

A, B, being functions of u, then

F1 (y) F 2 (y) d(Y (A1A2 +- B1 B2 ) d(u, (9)

assuming that the integrals are convergent.
To take one of the integrals in (6) as an example, we have

TX_ _ - 2K- C .f(0)°• sin (KoX' see 0) cos (K0y sin 0 sec2 0) dO. (10)

To put this Iito the form (8), we write u = Ko sin 0 se&- 0, then carry out
the process (9) and finally replace the variablh u in terms of 0; it is clear
that we shall have to introduce into the integral in the final form a factor
dO/du; that is, a faetor cos 3 0,i",o (1 + sin 2 0). Thus we have

f dzj L)2 dy
4-z f )}V'2 '0 G. sin2 (K X' sec 0) cos 3 0 dO

If (0). 1 + sin 2 0

C0s5 0 dA
-= 2c 2 J{f (0))• sin2 (Kox sec 0)1 20 (11)

From (6) we find in this way that the rate of flow of total energy across the
vertical plane is

7rpc 3  ,f(3 1312 0) S'12 (Kox' se 0)

+- (+ ± si 2 0) (!.;2 (K~X' see0)cos3 0 dO (12)
+1 sin 2 0

and that the rate at which worlk is being done across this plane is

2-,Tpcs Aý {f(0)) 2 siil2 (Kx' sec 0) "8s5 0 d. (13)

It is the differencle of tliese two qinuatitns that is signifiicant for our purpose

it is, as would be expected, indepeident ofi the ttiv and of the position of the
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517 T. H. Havelock.

plane. Subtracting (13) from (12), we find that the rate at which energy is

being propagated less the rate of work reduces to the simple expression

7Cpc fJ {f (0)}) cos3 0 dO. (14)

It may be noted that if we take mean values of (12) and (13) we have as the

mean rate of flow of energy

2r.pc3 i• ({f (0)}1 cos 0 dO, (15)

and as the mean rate of work

7Cpc 3 i{f(0))2 108 0 Ad. (16)
fIo I + i o

The connection indicated in (15) and (16) is a generalization of tile well-known
result for simple plane waves that the mean rate of work is half the mean
rate of flow of energy.

3. Consijer now the forced wave pattern produced by a body moving through

the liquid, or by a localized pressure disturbance. The complete surface
elevation may be separated into a local disturbance and a wave pattern. In a
frictionless liquid a possible solution is one in which the wave pattern extends

to an infinite distance in advance of the body as well as in the rear. The

determinate practical solution is that for which the wave pattern vanishes at

a great distance in advance, and we may suppose this obtained by superposing

over the whole surface a suita.ble free wave pattern. In that case, considering
the flow of energy and rate of work across two fixed vertical planes, one far in

advance and the other far in the rear, we see that (14) is equal to Re, where R
is the wave resistance. Hence we have

R -- pca {f (0)}2 cos 3 0 dO, (17)

when the wave pattern at a great distance to the rear approximates to the formn

(4).
For example, the forced wave pattern produced by a submerged sphere, or

more precisely by a horizontal doublet of moment M at depth f, approximates
at a great distance behind the disturbance, to the free wave pattern

- sece 0 eK-f 80c, sin (Ko (x' cos 0 + y Sin 0) so00 8) dO. (18)
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Calculation of Wave Resistance. 518

hence, from (17), the wave resistance is

R =167rPKo4M2  sec 5 0 e " • dO, (19)

which is the kn)own result for thifs case.

4. Before generalizing these results we may put (6) and (7) into all explicit

form for the wave resistance.

The kinethi energy of the liquid in a strip between two parallel vertical

planes at a distance ax apart is
"0 2 )2+laO

jp 8X dz Lo , (L2 I dy. (23)

Transform (23) into the equivalent form of a surface intAgral over the boundaries

of this portion of fluid, assuming the wave pattern to be such that the various
integrals tire convergent. Thus we obtain the rate of flow of kinetic energy

across a vertical plane as

Z ±y + pc ' 1Z(T 2 dy (24)

Further, we may transform the other terms in (6) and (7) by using the surface
condition (2) together with gý = - caoiax at z = 0.

Finally, equating the difference between (6) and (7) to Re, we obtain for the
wave resistance

R = - "j -_{ a 20 (_}i dy - )1 d20 dy.
(25)

In this expression 0 is the velocity potential of the free wave pattern to which

the disturbance approximates at a great distance in the rear. Considering the

disturbance produced by a body of any form, it appears that this free wave

pattern must be expressible, in general, in the fermn

f'ýf(0) SInI {,0 sec 2 0 (C' COS 0 -- ysin O)}dO
-iff

+ F (0) cos {o se 2 0 (x' COs 0 +- y sin 0)}db, (26)

that is, in the forim

(P, sin A cos B b- P2 tos A sin B +- P. cos A cos B + P4 sin A sin B) dO,

(27)
where A K-= K%" s-EV (, B K Hsin 0 sO U.
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519 T. H. Havelock.

The corresponding velocity potential is

S(P, cosA cos B - P 2 sin A sin B - Pssin A cos B

+ P4 cos A sin B) e-"" cos 0 dO. (28)

With this value of 0 in (25), we use (8) and (9) to evaluate the integrations

with respect to y as in § 2 ; and we obtain readily the general result

R = jlrpc2  (P 1 2 + P 2 
2 + P3

2 + P 4
2 ) cos 3 0 dO. (29)

The actual calculation of the quantities P for a body of given form is, of
course, another problem. Methods in use at present amount to replacing the
body by some approximately equivalent. system of sources and sinks; the

functions P then appear, in general, in the form of integrals taken over the
surface of the body. We need not consider these here as the expressions for

R given above lead to the same results as those obtained previously by differ',mI

methods.
5. It is of interest to examine a similar problem when tile water is of finite

depth h. It is clear from the derivation of (25) that we may use it in this case
also, taking the lower limit of integration with respect to z to be -h instead
of -- 0.

For the simple symmetrical type of free wave pattern given by (4), the corre-
sp;onding velocity potential is

2c- 2 '.( 0 )COShK + h) cos (KX' cos 0) cos (Ky sin 0) cos 0 dO, (30)) 0 sinh Ah

the relation between K and 0 bding

K - K. see" 0 tanh KA == 0. (31)

We shad assume first K0& > 1, that is c2 < gh, so that (31) as an equation for
K has one real root for each value of 0 in the range of integration. In evaluating
(25) we carry out the integrations with respect to y by means of (8) and (9).

For this we have to change from an integration in 0 to one in a variable u

given by
U = K sin O, (32)

together with (31). The corre,4ponding factor d0/du has now the value

COs 3 0 (,oth Kh - Kh cosevh 2 Kh)

K, (1 - sin12 0 - Koh sech 2 Kh)
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Calculation of Wave Resistance. 520

We have, for example,

.0 2x

= 4c 2 ý cosh2 K (z + h) (coth Kh - Kh cosech12 ih)
-h .o Ko sinh2 Kh (1 + sin2 0 - Koh sech'Kh)

x sin2 (KX' COS 0) K2 cos 7 0 dOe 2- coth2Kh - Kco,,0 oh KA.
= 2rCC2 i~ff (0))2 coh h-Kh oeh hsif (KX' COS 0) K cos 7 0 dO.

-- 2K, (I + sin2  Koh sech2 Kh)
(34)

Evaluating the remaining terms in (25), we obtain after a little reduction the

result

R = 7pc2 f {f (0)12 (coth Kh - Kh cosech 2 Kh) cosS 0 dO, (35)

with K given in terms of 0 by (31).

This may be compared with (1,) for the similar wave pattern in deep water.
For a horizontal doublet M at depthf in water of depth h, an expression for

the complete surface elevation can be derived from results given previo'usly.*

We have

•._ M I'__, dO fl° cosh K (A -f) 6(X''>8+ys'n)d- K2 dK, (3Y'

7.c J cosh iih (K - Ko ec2 0 tanh A + i1A sec 0)

where we take the limiting value of the real part for L -* 0.

From thiL we may easily deduce the free wave pattern to which the dis-

turbance approximates at a great distance in the rear. It is given by

S4K0 2M If cosh K (h -- f) tanh2 Kh sec4 0

c _ . cosh ,J C - K0h sec2 0 sech2 Kh)
(37)

From (35) this gives

R=I- =K3 cos 0 cosh2 K (h -f) dO. (38)
J o cosh 2 Kh (I - Koh sec2 0 secbc Kh)

It will be found that this agrees with the result obtained by a different
method in the paper just quoted, when the previous expression is correcmAd
for an obvious slip; in formula (37) of that paper 32 should be replaced by 16

and tanh Kh (I + tanh Kh) by (I + tanh Kh)
2

.

"Proc. Roy. Soc.,' A., vol. 118, p. 33 (1928). ['This paper is No. 22 of this
collection and the error mentioned above has been corrected. -Editor.]
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521 Cal-ulation of Wa 'e Resi.xta we.

When K 0h < 1, that is c2 >qh. the equation (31) for K hal a real root only
for a more limited range of valutes of 0, the low*.r limit b'ing (),, - -cos 1-V(Koh)

instead of zero. It is readdilv s.en thlt the expression for It will be as in (38)
with 0, as the lower limit of the integral.

Summairy.

An examination is made of the transfer of energy in a free wave pattern,
and expressions for wave resistance are deduced. The" e are appled to certain
cast's both for deep water and for water of finite depth.
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Ship Waves: The Relative Efficiency of Bow and Stern

By T. H. HAVELOCK, F.R.S.

(Received January 11, 1935)

1. It seems fairly certain that one of the main causes of differences
between theoretical and experimental results is the neglect of fluid friction
in the calculation of ship waves, and further that the influence of fluid
friction may be regarded chiefly as on'e which makes the rear portion of
the ship less effective in generating waves than the front portion. The
process may be pictured, possibly, in terms of a friction belt or boundary
layer whose more important effect is equivalent to smoothing the lines
of the model towards the rear. Some calculations were made from this
point of view in a previous paper,* the purpose then being to show how
such an asymmetry, fore and aft, reduced the magnitude of interference
effects between bow and stern waves. We may also describe the frictional
effect as a diminution in the effective relative velocity of the model and
the surrounding water as we pass from bow to stern. This is not very
satisfactory from a theoretical point of view; but, on the other hand, it
leads to a comparatively simple modification of expressions for the
waves, :oduced by the model. From a formal point of view, we may
regarc the modification as an empirical introduction of a reducing factor
to allow for decrease in efficiency of the elements of the ship's surface
as we pass from bow to stern.

There are now available experimental results, for wave profiles as
well as for wave resistance, which make it possible to attempt such a
comparison. The following work is limited to a few simple cases, and
the assumptions are made in as simple a form as possible for the purpose
of the calculations; these deal with the wave profile and wave resistance
of a model of symmetrical form, and also with the difference between
motion bow first and motion stern first for a simple asymmetrical model.

2. Take the origin 0 in the undisturbed free surface of the water, with
Ox horizontal and Oz vertically upwards; and let the origin 0 be moving
with uniform velocity c in the direction Ox. We suppose that there is a
given distribution of sources and sinks over the zx-plane, or, alternatively,
that the normal fluid velocity is given over this plane; let it be F (h, f) at

"*eProo. Roy. Soo.,' A, vol. 110, p. 233 (1926).
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418 T. H. Havelock

the point (h, 0, -f). Then the surface elevation • due to this Trav:lling
distribution is given by

•-- 2e CdhIKefsKfIc-d0 dK
- ff 2J 0F ) Af see 0 K - K0 sec2 0-- it sec 0

where r, =-(x - h) cos 0 + y sin 0, and the limiting value iN' to be
tUken as the positive quantity L tends to zero.

If the form of the ship is given by y as a function of h and f, the usual
-r:)proximatioi1 is to take F (h, f) as equal to c cy/1h. We modify this
now by supposing that the effective value of c in this explession for
F (h, f) diminishes from bow to stern; we introduce what rnhay be called a
reducing factor f(h), so that we shall use in (1)

F (hf) - cf(h) -7'" (2)

We have assumed that the reducing factor is independent of the depth.
It will, no doubt, depend upon the velocity and form of the model, and
in particular upon the value of the Reynolds number; but, meantime,
we shall neglect any such considerations. It may even be that, in
certain circumstances, the factor should allow for an increase of
apparent efficiency near the bow of the model. However, it appears
from such experimental evidence as is available that the wave profile
near the bow agrees fairly well, for simple models, with calculations made
without any allowance for frictional effects; so that the chief effect of the
latter appears to be a reduction in efficiency over the rear portion of the
model. In view of these considerations, and also to lighten the numerical
calculations, very simple expressions have been used in the following
work. Calculations are made for two cases, and in both we assume the
reducing factor to be constant and less than unity over the rear portion;
in one case the factor is taken as constant and equal to unity over the front
portion, while in the other, to avoid possible discontinuities, it is assumed
to diminish uniformly from the bow to the value which it has for the rear
portion.

We shall consider only models of great draught and of uniform horizontal
section; for such, (1) and (2) give for the surface elevation

f =- f(h) ,dhA sec 0dAf K K M dK (3)27 _ ah fj"K -- Ko sec' 0 --4 i4L sec 0

3. We consider a model of length 21 and beam 2b, and of symmetrical
parabolic lines given by

y =b(1- h2 !3. (4)
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Ship Waves 419

The reduction factor f(h) is to mcan a diminution of effective velocity
from the value c at the bow'; to a smaller value Pc at the stern. In order
to allow the calculations to be made in terms of known functions, we
shall suppose the diminution to take place uniformly over the front half
of the model ; thus we assume

f(h) + (I - f5)h/l, 0 < h < /
:I <• - h <0. (5)

Using (5) and (4) in (3) and carrying out the integration with respect to
h, we obtain

ý 'lb sec 2 0O AcAf(6)
r ,23 3, (,C - K0 sec 2 0 +- it,. sec 0)'

where

A ý {2 (1 - [) sec 2 0 - (2 - r5) iKI sec 6 - K212 } etiK[ 04 -)•°i YSill01

- 2 (1 - (3) sec2 0 e iK (X'v1o ' V il°)

- (iFK/ sec 0 + PK 2l) e iK [(-.i 1) COS 0 +y.Sin0i] (7)

This expression gives finite and continuous values for the surface elevation.
It is convenient, for purposes of calculation, to separate it into finite
and continuous expressions associated respectively with the bow (x - 1),
amidships (x - 0), and the stern (x = - /). Further, for points on the
central line y = 0, we can express these in terms of known functions.

Writing
G i se 0 A (8)

, eK - Ko sec 2 0+ iu sec 0

Go (q) G (q) dq, G, (q) qGo (q) dq, (9)

and so on, it can readily be shown that (6) gives, for the wave profile
along y - 0,

-- {/G - 1)- (2- P) lGI(x-- 1) + 2(1 - P)G 2 (x 1)

-2(1 -- ) G 2 (x) -+ F312Go(x + I)- P3IG 1(x+ 1)}. (10)

In the limit, when we take I± zero, we have*

G(q)= r2{Ho(Koq)-Y 0 (,Kq)}, q >0
= 2jH0(K~q)-Y0(K~q)1-41f2y(Kq), q <0. (0l)

* 'Proc. Roy. Soc.,' A, vol. 135, p. 5 (1932).
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420 T. H. Havelock

In the notation used in previous work, we have

Q0 (u) H( (t) -- Y, (11)} dii,
I)

Q1 (u) = "Q (it) dui, Q2 (11) Q, (u) du,

PO (U) - ("Y (u) d1i, (12)

Po0 ' (u) fPO (u) du 1 + P, 00,

P0
2 (u) P=-- (u) du = u + P2 (u).

* Summing up these results, we obtain finally for the wave profile

= 2b f 1 F2(Kq 1 ) + '2 " F(K~q1 ) (1 + -- Q F2 (KOqj)-- 7 ,o(o&+ p--Z-p(00 p 3  "

2(1 ---- ) F2 (K0q 2) + - Fo (oq: 3) - F1 (,q3) (13)

withKo =g/c2,p=- K01,qz x - l,q 2 =x,q3 =x --X- . Also we have

Fo (u) = Qo (u), u > 0

= Q0 (-u) - 4Po (-u), u < 0,
F1 (u)= Q (u), u > 0

- Q, (-u) + 4Po-1 (-u), iu < 0,
F 2 (u) Q2 (u), u > 0

- Q2 (-u) - 4P0 -2 (--u), u < 0.

Using tables and graphs of the various P and Q functions, the wave
profile can now be found, for any speed, for any assigned value of (.
We have chosen the value P == 0.6, and calculations have been made for
a sufficient number of values of x to give the wave profile for two different
speeds; the speeds are those for which K0l = 6 and K01 = 3, or for
ci,\1(gl) equal to 0.408 and 0.577 respectively. The wae profile has
also been calculated at these speeds for the value (3 = 1, that is for the
usual theory without any allowance for frictional effects. The four
curves are shown in fig. 1, tlhe full curves being for f =- I and the dotted
curves for ( = 0.6.

These curves may be compared with some given recently by Wigley*
in a comparison of experimental and calculated wave profiles.

* Proc. Roy. Soc.,' A, vol. 114, p. 144 (1934).

401



I. oI

Ship Waves 421

In fig. 2 of that paper, the full curves arc calculated from the usual
theory, that is, for (1 := I in the notation of the present paper; while
the dotted curves are observed values. It may be concluded that the
value P = 0.6 is of the right order of magnitude to bring the calculated
values into better agreement with observed values, at least for medium
value.i of c/V/(gl). It should be noted that Wigley's model is slightly
different from that of the present calculation, in that it has a certain
amount of parallel middle body inserted between the parabolic ends.

g 8

1'2 "\

0-6

------ __ ___ c/v( Ig)=&O 577
,/ *\

1-2 _Bow \ Stern

0 6 -

_________~~ ___ -4~, ' 08

I 0 -2
x/l

FIC. I

For that, and other obvious reasons, it is not worth while attempting any
closer comparison of the results meantime.

4. It is of interest to examine the corresponding change in the wave
resistance for this model. It can easily be deduced from (6) that the
wave pattern at a great distance to the rear of the model approximates to

' ,,{p2 sin (x -- 1, y--(2 -- P) p cos 0 cos (x -- 1, y)
7rp3

-- 2(1-- f)cos2 0sin(x-1,vy) +2(I -- )cos2 0sin(x,y)

+ Pp2 sin (x + 1, y) -i- fcos 0 cos (x y)-, ) dO, (15)
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422 T. H. Hlavelock

where we have used the abbreviation

(q, y') = ,c, sec-) 0 (q cos 0 + y sin 0).

In (15) the wave pattern is analysed into simple constituents associated
with the bow, amidships, and the stern; putting the expression into the
form

({A sin ll(x see 0) + A 2 cos (Ktx see 0)}

cos (K 0 V sin 0 sec 0) dO, (16)
the wave resistance is given by*

R,1P7C2 f(A 2 +A' 2 ) cos3 0 dO. (17)

Carrying out the reduction we obtain

R - 16pb 2c2 2(1 + P 162 128(1 - p)2 -F-P2 p)
7r 3 ý+- p P 2 P3 (2p)

+- 2p( - 3) 4 2P (3p -4)V5(2p)- 4P( -- P) p6 (2p)
p3 p4 p5

4(1- 32) p•(p)_ 8(1 - ) p (p) 8- (1 -P) (8)p4 p5 (P 5 pf,; 7(ý(8

In terms of P functions which have been tabulated this becomes, for
the particular case P = 0 6,

R 16pb 2C• J"72. + 0"384 + 20"48 +(1_2 0 "3 2 )p 2)
7~ 3p2' -7/

7r Pa 35p

(3288-• 0 L_8) 2.32p__+i_ P5 (2p) H-I-"5

P5/ '2P52P) 7p4- ( V* P (2P) + Pa(P

18.88 P4 (P) -(14.4 7 *6 8 (p)}.+ (19)
7p', - 7 pJ

This is to be compared with the value for the same model without any
reducing factor, that is, with (18) when 13 1, or

16p 2Cp 4pR 16 Pb • 16 2 p (2p) P4 (2p) + P5 (2p). (20)

7r 3p2 A-p p p (P4 .

The curves are given in fig. 2, and show the variation of R/c 2 with the
quantity cJ]\/(gl); in addition to the smaller value of the resistance from
(19) compared with (20), tnere is also a relative decrease in interference
effects.

* ' Proc. Roy. Soc.,' A, vol. 144, p. 519 (1934).
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Ship Wavees 423

5. The wave resistance of ii ship model in a frictionless liquid is the
same whether it is moving bow first or stern first, even when the model
is not symmetrical fore and aft. If, however, we introduce a reducing
factor to represent the effect of fluid friction, it is -lear that we shall
obtain a difference between the two cases, and it is also easy to foresee
the general character of the result. Suppose that the bow is finer than
the stern, and assume that the reducing factor is the same whether going
ahead or astern. Then it is obvious that the resistance will be less when
going bow first than when going stern first; and further, that interference
effects between bow and stern waves will be relatively more marked in the
former case than in the latter.

0.08 -

7rR
16 0 0 P0-

• 'I I I I _

0.3 0.35 0-4 045 05

FIG. 2

WQ shall now work ouo a particular case, a model of great draught
with parabolic ends and with some parallel middle body. The lines of
the horizontal section are given by

y --b (I -- h2/12), 0 < h < 1

=b, -l I), O <h< 0

- (h/2 +lh), -I<h< -- ½. (21)

In this model the change of gradient at the stern is twice that at the
bow.

In order to simplify the calculations, we shall assume that the reducing
factor is constant and equal to unity over the front half of the model,
and has a constant value r, over the rear half; there will be only a small
difference between the results so obtained and those with a more natural
form of reducing factor, because in any case the middle portion of this
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424 T. H. Havelock

. nodel 'does not contribute much to tihe wave-making. WVe shall not
examine the wave profile in this case. Foi the wave resistance we have

R (4 (4 p/7) fo'/(A2 4- B2) cos 0 do, (22)

where 4•bc f iZ(2h l) e-,,°,h sec to
A - iB -- 1-- 1) e-

12 __
-- 2bc C'

-- ' he- 'ieo dh (23)

This leads to the result
R = 16pb2c 2 (1 + 432) 16(1 + 16P32) 41 3rc " 3p2 "+ 15 + !P- P3 (2P)

7r 1.3p 5p4  P
12P 4- LP P38[ ,(•)_8[5(P-3 --f P4 (2P) + - 5 (2P) + LP 4 'P LP5C-11P

2 (1 -- 2,) P4 (P) + 2 (1 -- 4P3) p5 (P) _16(f! 4 -Pp p p 4 p 3-

+ 8P3 (I + 4P) p5 (1P)). (24)p4

This expression may be written as

R = Ro + PR1 + P2R2. (25)

The form (25), with f3 a positive quantity less than unity, applies to the
model when going bow first. It is easily seen that the corresponding
result for motion stern first, assuming the same reduction factor P, is

R = P
2R 0 + ,R1 + R 2 . (26)

Numerical calculations have been made from these expressions for
P = 0.6, and from these curves have been drawn showing the variation
of R/c2 with speed, on a base of c//(gl); these are given in fig. 3.

The curve A in fig. 3 is for motion bow first, mhe curve B for motion
ste n first. The curve C is for (24) with P = 1, that is, it is the resistance
curve for motion in either direction when no allowance is made for
frictional effects. There are few experimental data available for com-
par;son; but in any case it should be noted that, apart from other simpli-
fying assumptions, the preceding calculations are for a model of very
great draught. However, reference should be made to some experimental
curves given by Wigley ;* in fig. 3 of his paper there are three resistance

* 'Trans. Inst. Nay. Arch..' vol. 72, p. 216 (1930).
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curves which correspond to curves A, B and Cof fig. 3 below, and the
mutual relations of the three curves in the two cases have much in common.

6. In the preceding work, the reducii'g factor has been given specially
simple forms in order that the calculations might he made in terms of
functions which have already been tabulated. However, for the wAave
resistance of a model of ordinary form and draught, the calculations are
usually made by numerical and graphical methods for the particular
case; the introduction of a reducing factor of suitable form would not

0. l I I I I F I I I 1

02
C

016 -

0.12-

16pb2c2

0.08

0'04 -

03 035 04 045 0o5 0o55

FIG. 3

add any great complication. The usefulness of such a factor would
depend largely upon whether it proved to be sufficiently independent of
speed and of variation of form of the model.

SUMMARY

The main effect of fluid friction in regard to the production of waves
by a ship may be described as a decreasing efficiency of elements of the
ship's surface with increasing distance from the bow. A reducing factor,
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of a semi-empirical nature, is in t rodne.Cd into 1c heory ot" s 1p \S\h, to
represent this effect. With certain I assAi nptiions, calculations arc maIde
for the wave pro:ile For a simple model, and CuV\cs arC al[]so ,-Uci en these
are compared with available experimn nta[ data. It appcars that, as a
a roLigh estimate for s.ich torms at moderate speeds. the etlicic!,cy of
the stern is of the order of 6(,, (1of that of' the how. (ur\c ; are also
drawn to show the corresponding chanc in the wave resistance. The
introdcLition of the rcducing faIctor leads to different wave resistances for
a model going ahead and going astern, ý hen the model is not symmetrical
fore and aft; this is illustrated by calculations and curves for a particular
case.

Rri~ontd from ' Proceedings tf the R(yal Soci'hy oI wm',do
Series A No. 868 vol. 149 pp. 417-426 .Iprdil I.,b5

HARRISON AND Sots, Lid. Printers, St. Martin's Lane, London, W.C.2
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Wave Resistance: the Mutual Action of Two Bodies

By T. H. HAVELOCK, F.R.S.

(Received March 27, 1936)

1-Methods of calculating wave resistance which depend upon energy
considerations are appropriate for a single body or a single system for
which we require the total resistance. There are, however, certain prob-
lems in which there are two or more bodies and we wish to calculate
tne resistance of each separately, or more generally the resultant force
on each body in any required direction. For instance, the effect of the
walls of a tank upon the resistance of a model might be calculated from
the resistance of one model among a series of models abreast of each
other. Another problem is suggested by experiments made by Barrillon.*
Two or more models were towed in various relative positions and the
resistances measured separately; the results for a model in the waves
produced by other models in advance of it were considered to show
interference effects due to both the transverse and the diverging waves
from the leading models. Without attempting to deal with these actual
problems at present, the following paper contains a method of calcu-
lating wave resistance which seems suitable for the purpose. It depends
upon obtaining the force on a body as the resultant of certain forces on
the sources and sinks to which it is equivalent hydrodynamically. A
general discussion is given first and then a simple case is worked out in
some detail ; this may be described as two equal small spheres at the
same depth, first with one directly behind the other, then with the two
abreast of each other, and finally in any given relative positions.

2-Consider a solid body held at rest in a liquid in steady irrotational
motion. We shall suppose the motion to be due to a uniform stream
together with given sources and sinks in the region outside the body,
and we suppose the effect of the body to be equivalent to a certain dis-
tribution of sources and sinks within the surface of the body; the latter
may be called the internal sources. It is known that the resultant forces
and couples on the body may be calculated from forces on the internal
sources due to attractions or repulsions between the external and internal
sources taken in pairs; the fictitious force between two sources in, in' is
47rpmmn'/r 2 and is an attraction when in and in' are of like sign. Another
way of expressing this theorem is that if in is a typical internal source, the

* 'C.R. Acad. Sci. Paris,' vol. 182, p. 46 (1926).
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force on it may be taken as the vector - 47rpmnq, where q is the resultant
fluid velocity at that point due to all the other sources, in which the remain-
ing internal sources may be included as their actions and reactions do
not affect the final result.

It is true that for a solid of given form an important and difficult part
of the problem is the complete determination of the internal sources so
as to satisfy all the required conditions. However, assuming this has
been done, we can proceed to calculate the resultant forces. Further,
in certain problems results of some value may be obtained by using dis-
tributions of internal sources which satisfy the conditions approximately.

3-Take the origin 0 in the free surface of deep water which .,, stream-
ing with uniform velocity c in the negative direction of Ox, and take Oz
vertically upwards. Let there be a source of strength m in the fluid at
the point (0, 0, -f). The velocity potential of the fluid motion is given*
by d cx M mr K.on 00 I e-K'f-z)+ix-

rm r K p secd2 0 A- dK, (1)
r r2  70 K -- Ko-sec 0 + i[ sece

where the limit is to be taken as the positive quantity ýt tends to zero,
and

r* 2- =xa X + Y+ (z -+.Pf); r2
2  x2 + y2 -I- (Z -f) 2 ;

m =xcos0+ysin 0; Ko=g/c2 .

The second term on the right of (1) is the given source, the third term
represents an equal sink at the image point above the free surface, while
the last term could be interpreted as a certain continuous distribution
of sources lying in the plane z -f= 0. The expression (1) may be
generalized by summation and integration for the velocity potential of
any given distribution of sources in the liquid. We shall assume that
this distribution is such that it represents a solid body in the stream, the
total source strength being therefore zero.

4-Consider in the first place a continuous distribution over a finite
part of the vertical plane y -- 0, the surface density of source strength
being a at a point (h, 0, -f). The velocity potential is

e' cx + A1 r

K - adh dfjsec-Od0 0df)" (2)
- JO K -KK0 sec" 0 + i [t secO

* lavelock, 'Proc. Roy. Soc.,' A, vol. 138, p. 340 (1932).
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Wave Resistance 462

where
rl- (x - h)I + y' + (z +f)z
r2

2 = (x - h)' + y2 + (z -- f) 2

m (x -- h) cos 0 + y sin 0.

Using the theorem given in § 2, we may write down the'total wave resis-
tance for the body which is represented by the given distribution. It is
given by

R = 47o ff a (h',f') u dh' df', (3)

taken over the distribution, u being the x-component of fluid velocity at
the point (h', 0, -f').

Consider the contribution of the various terms in (2) to the value of u
in (3). We may omit the uniform stream c since the total source strength
is zero, ard also any contribution from the internal sources. Further, it
is easily seen that there is no total horizontal force on the internal sources
due to the image system represented in (2) by the term involving r2 .
Thus the only part of u which gives any integrated effect from (3) comes
from the x-derivative of the last term in (2). Thus we obtain the expres-
sion

R = 4KoPiff'dh'df'aAdhdf sec 0 d

X 8 e-K(f+') + ix (h'-h) co-;o
2 -K dK. (4)

0 K - KosecU + i[ sec 0

The integrations in 0 and K may be written as

I "2 0 A eioc (h'- h) cos 0
2J sec 0 dO

0 lK - K-osec 2 0 + itsec 0
Se- h (h'--h) cos 0 e 0) ' K dK. (5)
K -- osec2 0 - ii sec 0e

Regarding K as a complex variable we may transform the integrals by
taking as contour an appropriate quadrant bounded by the positive half
of the real axis and the positive or negative half of the imaginary axis
according to the sign of h' - h. Reducing the expressions and finally
putt.ing [t zero, the integral with respect to K in (5) is equivalent to

-2i CO K 0 sec2 0 sin in (f +.f') -- ii cos in (f +f ') e-11 (h'-) vos 0 in din,
nm2 + K 02 sec 4 0(

fo& h' -h > 0, (6)
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463 T. H. Havelock

and

2if° Ko sec2 0 sinn (f--f')f -4n cos m (f + f')e,,(,,,,_,,, oi dm
c0 nM2 d- K. 2 sec4 0

- 47CKo i see2 Oe-Ka(f+f')"c'" COS {(K (h' - h) sec 0),

for h'--hKO, (7)

the function defined by (6) and (7) being continuous at h' - h = 0.
Writing -- iF (h', f', h, f, 0) for this function, we have

R = 8KOP a' dh'df'Jf adhdfj/F(h', f', h, f, 0) sec 0 dO. (8)

It is obvious from (6) and (7) that the part of F from the integrals in m
will give zero result when integrated twice over the distribution; and
we are left with

R ý-327MKo2PJffa' dh' df 'ff adA df

o sec3 0e-Ko(f+P5'!c'0 cos { K0 (h' - h) sec 0d1 A, (9)

with h' - h < 0, the integrand being zero for h' -- h > 0.
This is the wave resistance expressed in a form which brings out more

clearly than the usual forms the fact that the solution we require is one
in which the regular waves trail aft from each element of the distribution.

It is easily seen that the limitation h' -- h < 0 in (9) is equivalent to
taking one-half the result of the repeated integration over the distribution
without this limitation. Hence we obtain the result

R z 1677iK0
2p 0 (P2 + Q2) sec3 0 dO,

with
P + iQ Jj oe'. `- 0-4f',' c dhdf. (10)

fhis agrees with the general restIt obtained from energy considerations
in the paper already quoted, where the distribution was not necessarily
confined to the plane y =- 0. There is no difficulty in extending the
present method to more general cases, but that is left over until occasion
arises for applying the results to some particular problem.

5-To proceed to the case of two bodies, it is only necessary to suppose
that the distribution of sources is divisible into two parts, each contained
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within z distinct closed surface. For convenience, we shall limit the
discussion to a distribution in the vertical plane y -- 0. We suppose that
the total distribution a of the previous section can be divided into two
distributions 01, •2, each representing a solid body and one being aft
of the other. The resistance for either body is, given by the same general
expression (3), the integration being taken over the corresponding partial
distribution. For instance, for the resistance R1 of the body a,, the
velocity u at any element of a1 will be that due to the rest of a, and to a2,
and the integration is to be taken over a,. The velocity potential is given
by (2) with a = al + a-. It is convenient to regard (2) as made up from
the following parts: the uniform stream c, the given distributions a1 and
02, distributions -a,0 and -- 2 over image positions above the free surface,
and finally a part represented by a certain integral taken over the dis-
tribution al + F-2.

Consider the contributions of these parts to the value of Ri. The
uniform stream gives no resultant effect as we suppose the integrated
source strength of a1 to be zero. We have now a resultant force from the
mutual actions between a1 and r2, given numerically byS0 dh1  hi -_h, (11)

4-cp f dh, Adf1 f02 dh2 df2 {(h1 - h2)2 + (f -f 2)2}f

the sign depending upon whether a, is in advance of 02 or to the rear of
it. It may be noted in passing that this corresponds to the apparent
repulsion between two bodies, one behind the other, in 4 uniform stream
of infinite extent. There is also a similar resultant due to the actions
between -- 2 and a,, given numerically by

t7rp a, Ah df a2 dh2 df2  h1  (12)
4P idh dli •h~df{(h, - h2) 1 + (fA +f 2 )2 } " ()

Finally we have the part due to the last term in (2) for the velocity poten-
tial, and this will be given in the notation of (8) by

8 Kop ff a', dh'1 df'I Jf (al dh1 dfl + a2 dh2 df2 ) J'2 F sec 0 dO, (13)

where F is given by (6) and (7).
The terms in F represented by the integrals in m will give a resultant

effect different from zero wben summed over the partial distribution 01,

arising from the part due to a2 when summed over a,. From the term in
(7) representing the regular waves, the part due to a1 when summed over
a, will give the wave resistance of ox as if existing alone; the part due to
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465 T. H. Havelock

a2 will give no effect over a1 if a 2 is aft of a1, but the full interference effect
of the two systems will be added to R1 if a, is aft of a2.

Summing up this general discussion, we see that the total resistance
of each system consists of various parts: the resistance of each as if exist-
ing alone, mutual actions between the two systems which are equal and
opposite and may be classed as due to local disturbances, and wave inter-
ference acting on that system which is to the rear of the other. It may
be noted again that in this analysis we are assuming the source distri-
butions to be given. It has been shown how the various terms in the
resistances can be calculated when the two systems are in one and the same
vertical plane. A similar analysis could be made for more general cases;
but we shall consider in some detail a simple distribution consisting of two
isolated doublets.

6-Suppose that there are two equal horizontal doublets A, B each of
moment M in the liquid at the points (0, 0, -f) and (-1, 0, -f) respec-
tively; thus A is directly in advance of B. If the points are sufficiently
far apart, the corresponding bodies would be, approximately, spheres each
of radius b given by M = jb3c. However, all we shall assume meantime
is that the doublets are far enough apart to represent two distinct bodies,
one enclosing each doublet, whatever their actual shapes may be.

The velocity potential is given by

CX = cx + OA + OBI (14)
where

Mx Mx + K_0M L sec 0d0 e- (f-Z) '-i (Z cOS O+Y gina )

OA- rir3  r 23 7t se K - Ko sec•0 + it see 0 K do:,

(15)

and #B is a similar expression with x + I instead of x, -he notation being
the same as in (1).

The form which (3) takes for an isolated doublet is

R,2  (16)

where in ao/F X2 we must omit the term in $ due to the doublet at the
point in question. Thus we may calculate the resistances R, and RB
separately. In the process we have to evaluate the expression

-lir i cos 0 dO 0C dK. (17)
A-0 f K -- K0 se 0 + isL sec 0
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By the method already described, this is transformed into

4 f/ cos OdAfKo sec2 0 sin 2mf - mcos 2Ife-,neOm3mdi
0 M 2m-+ o' osec4 0

for x>O, (18)
-4 14 cosOd A Kosec2 Osin2mf- incos2mf emx cos m3 din

,, fi m 2 + K0
2 sec4 0

- 87K 0
3  sec5 0e -o2Kfse•' cos (K0x sec 0) dO,

for x<0, (19)
the two expressions having the same limiting value as x tends to zero.

Writing Ro for the resistance of either doublet if existing alone, and
using these expressions in (16), we get at once the known result

-
6 PKo4 M 2 J sec50 e- s*c sec dO. (20)fO

Considering RA, the contribution from the doublet M at B and the image
doublet -M is easily found to be -R' where

R'= 247rpM2{1 1(12 -6f2) 1 (21)

It may be noted that if we put M ½b3c, the first term in (21) gives

67rpb6 c2 /l1, which is the usual approximate value of the repulsion between
two equal spheres moving in the line of their centres in an infinite liquid.
Finally, for RA, there is the ter-i which comes from (18) and (16); we
denote this by -R", with

R -=cos 0 AO'M Ko Sec2 0 sin 2nf-- in cos 2 mlf e-nI cos 0mW din.
co 0 oj in 2-+ Ko 2 sec 4 0

(22)
If we calculate RB, remembering that A is in advance of B, the forces R'
and R" are reversed, and we have in addition the effect of the second term
in (19). We obtain finally

Rk= Ro- R' - R" (23)Rn = Ro + R' + R" + 32=7po4M2 5'/
R _- R±R'+R+37sec5 0e-.,.f e,' cos (K1 sec 0) dO.

(24)
The sum of RA and RB is the result which would be given by energy

methods for the two parts regarded as one system. In (23) and (24)
we have the separate resistances with the wave-interference part assigned
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to the rear system. In addition we have the terms R' and R", which may
be regarded as a local action and reaction, their magnitudes diminishing
rapidly with increasing distance. It may be noted that with M pro-
portional to the velocity c, R' increases as the square of the velocity; this
may be associated with the fact that, although the regular wave system
diminishes to zero ultimately with increasing velocity, there is a permanent
local surface elevation.

7-Suppose now that the two doublets are abreast of each other at a
distance 2k apart, that is, suppose equal doublets A and B at the points
(0, 0, -f) and (0, 2k, -f) respectively. The velocity potential is

S= cx -+- OA + OB, (25)

with OA given by (15), and OB by a similar expression withy -- 2k'instead
of y.

We have

RA + r' -_ '+'C (26)

evaluated at the point A and omitting from OA the term representing the
doublet at A.

It is clear from the symmetry of the arrangement, that the local terms
give no effect; reducing the remaining terms we obtain the result

RA =- R0 + 167cPK0
4M 2  sec5 0e-.-20iee° cos(2Kk sin 0 sec2 0) A, (27)

with R0 given by (20). s
Taking M = b3C, we may regard this as the resistance of a small

sphere at depth f in a stream and at a distance k from a vertical wall
parallel to the stream; it is of some interest to estimate the influence
of the wall upon the resistance. Ro has been expressed previously in
terms of Bessel functions; it is given by (using the notation of Watson's
Treatise on Bessel Functions)

R( )pg4b e-- 1 +I)K(o , (28)

with oc =Kof = gf/c2.
The integral in (27) is equal to 1 -a 2X/aCL2, where, with 8==-K k,

X sec 0e-a `1"" cos (2 P3 sin 0 sec2 0) dO

fo e-'s-' o ,,cos ( sinh 2u) du = Je-" K0 (Vo•2 + ý2). (29)
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Using these results in (27), we obtain

_e, o 2e(• K(+ (m) 4- 1 + ) ()p 2)

+ C +K %m (30)
+ {(OV. + P2)1/2 - (O2 + p2)3I2f K1 (V2c2 +

with o z gf/c2, P = gk/c2.
Values have been calculated from this, using tables of Bessel functions,

and graphs are shown in fig. 1.
The ordinates are values -"f Rf 3/lrgpb6 , while the abscissae are those of

c/l(gf). The curves are for different values of the ratio k/f; the curve

0-8"

0. -

0-2

0-6 07 08 019 .o 1 1 t-2 1.3

c/V(gf)

FIG. 1.

for k/f= o is the graph of R0 , the resistance in an infinite strcam, and
the other curves show the increase of resistance with increasing nearness
of the wall.

8-It may be remarked that the present method of calculating the
forces gives not only the wave resistance, which is the resultant force in
the line of motion, but can also be used to give the resultant force in any
direction; for instance, in (3) it is only necessary to replace u by the
component velocity in the required direction.

For the problem treated in § 7, the force on A in the direction towards
the wall is given by

Y =4t ,- + 7cp) (31)
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469 T. H. Havelock

Carrying out the calculation as before, we find

( 2k4' tM(0--(h2 +f2)5/2 f

-16KoPM 2 J' sin 0 AdO G Ko sec 0 sin 21nf- m cos 2 mf e:.,,k •i 0 m3 din
0 jo M2 + K- 2 sec 0

- 16-apK0
4M 2  sin 0 sec6 0e- 2 -o~fSCU' cos (2K0k sin 0 sec2 0) dO. (32)

Here again with M = ½b3 c, the first term is the usual approximation for
the attraction between two spheres moving abreast in an infinite liquid
at a distance 2k apart.

9-When one sphere is directly behind the other, the oscillating part of
its resistance is due to the transverse waves in the pattern made by the
leading sphere. When the two spheres are abreast of each other, there
are no similar oscillating terms. We shall now consider the more general
case of any relative positions, when in suitable circumstances we can
distinguish between interference due to transverse waves and diverging
waves.

With the same notation, we take the doublets A and B to be at the
points (0, 0, --. ) and (-1, k, -f) respectively; thus, with l and k positive,
B is a distance I to the rear of A and a distance k to one side. The
velocity potential is

0• :;= cx + OA + OB, (33)

with OA given by (15), and #B a similar expression with x + I instead of
x and y - k instead of y. Each resistance is given by the expression in
(26), evaluated at A or B in the manner already explained, and the calcu-
lation of the various terms follows the same lines.

For the term corresponding to R' in (21) we now obtain

S(212 - 3k2  212 - 3k2 - 12f2:
t(1'2 + k2)-,/-- (12+ kP -4f2y)712." (34)

The remaining terms arc more complicated than in Vie previous simpler
cases; for their contribution to RA we have to evaluate an expression

i cos 0 dO eC-2t Ks3 dK. (35)_ff fi, K -- KO sec2 0 + iFA Sec 0

We first reduce the integration in 0 to the range 0 to 17r. Then the
various integrals in K are tiansformed by contour integration, the form of
the results depending upon the sign of I cos 0 - k sin 0; this involves
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dividing the integration in 0 into the ranges 0 tD o and o to 12n, where
tan o - 1-,'k. Reducing the various expressions we find that the part
corresponding to R" in (22) is now given by

R" = 8KopM2 " cos 0 diO ro0 sec2 0 sin 2nf - m cos 2hwf
R" .0 A/1 2 

+ Ko2 sec4 0

x c-?" (I cog 0! s in3di. (36)

The remaining terms give contributions to both RA and R.. It is found
that the complete results for the two resistances can be put into the form

RA - Ro0- R'--R"

-1- 16,,0 0
4M2  sec O f'" cos {, 0 sec- 0(/cos O-k sin 0)}d0,

(37)
RB = Ro 0+ R' -+ R "

-1- 16-p•K4M2  sec2 c,-j•'•2 cos {, sec2 0 (1 cos 0-i-k sin 0)} dO,

(38)

where R0 is given by (20), R' by (34), R" by (36), and tan a = Iik.
The previous results for A and B in line. and for A and B abreast, are

particular cases of these expressions with -. , and •-- 0 respectively.
The sum of (37) and (38) could have been obtained from expressions

given previously for the total resistance of A and B considered as one
system. Perhaps the most interesting ditferencc between R. and R,
compared with simpler cases, OCCUrs in the last terms in (37) and (38).
It might appear that both A and B experience effects of wave-interference,
in the usual meaning of that term, although A is in advance of B.
However, this is not so. and this can be seen most easily if we suppose
,,o'(I -t- k2 ) to be large and apply the KcLvin method of approximation
to the integrals in question. According to this, the important parts of
the integral come from narrow ranges of 0 in the neighbourhood of the
stationary values of I see 0 + k sec 0 tar, 0, that is, near values of 0
given by

tan 0 - 1 tan 7 ;- \/(tan• -- 8). (39)

Such values only exist if tan2 x -> 8; moreover, even if they do exist, they
do not contribute to the value of the integral unless the values of 0 given
by (39) lie within the range of integration. It is easily seen that they do
not come within the range for the integral in (37); I-ence the resistance of
the leading ,pherc does not exhibit any characteristic interference elTects.
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On the other hand, there are such effects for the other sphere if tan- . - 8,

2- i8 approximately. Thus the interference effects

occur if this sphere lies within the wave pattern left by the leading sphere;
and the two prominent terms in tile evaluation of the integral correspond
respectively to the transverse waves and the diverging waves of' the pattern.

SUMMARY

A new method is given for calculating wave resistance directly from the
source distribution equivalent to the body producing the waves. Thý:
method can be applied to two source systems representing two distinct
bodies in any relative positions, giving the resistance of each separately.
It can also be used to obtain the resultant force in any direction, or the
resultant couples.

Results are obtained for a simple case representing two small spheres in
various relative positions. With the two spheres in the line of motion,
the resistances differ by certain forces of action and reaction and also by
the wave-interference effects, which are assigned entirely to the following
sphere.

Taking the two spheres abreast, the results are interpreted as showing
the effect of a vertical wall upon the resistance of a sphere; the expressions
are given in terms of Bessel functions and curves show the magnitude of
the influence of the wall for various distances and velocities. An expres-
sion is also given for the force towards the wall.

Finally, with the spheres in any relative positions, it is shown that
effects of wave interference occur when the following sphere lies within
the wave pattern produced by the leading sphere, and arise from both
the transverse waves and the divergzing waves.

Relrintledfirom lrcedig.¢ ýtf ithe, RliIdSociety 'V,/ <
SrieS A Y). 88 jul. •,' 7.1 P 7.. 4 ,9u/Y 36
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The Forces on a Circular Cylinder Submerged in a
Uniform Stream

By T. H. HAVELOCK, F.R.S.

(Received 18 August, 1936)

1-Although many investigations have been made on the wave resistance
of submerged bodies, no case has been solved completely in the sense of
taking fully into account the condition of zero normal velocity at the
surface of the body. The simplest case is that of the two-dimensional
motion produced by a long circular cylinder, with its axis horizontal and
perpendicular to the stream, submerged at a certain depth below the
upper free surface. T'-s problem was propoundd many years ago by
Kelvin, and 'it was solied later, as regards a first approximation, by
Lamb; in that solution the cylinder was replaced by a doublet, and the
effect of the disturbance at the surface of the cylinder was neglected.
Applying the method of images, I examined a second approximation,t
and also ý, tLe same method obtained a first approximation for the
vertical force on the cylinder.

Although the problem is not in itself of practical importance, it seems
of sufficient interest to obtain a more complete analytical solution, and
this is given in the present paper. The solution contains an infinite
series, whose coefficients are given by an infinite set of linear equations;
expansions are given for the coefficients in terms of a certain parameter,
and corresponding expressions obtained for both the wave resistance and
the vertical force. Numerical calculations have been made from these
for various velocities and for different ratios of the radius of the cylinder
to the depth of its axis. These confirm the general impression that the
first approximation is a good one over a considerable range. The effect
of the complete expressions appears in an increase in the wave resistance
at lower velocities and a slight decrease at high velocities; this may be
described as due largely to a shifting of the maximum of resistance
towards the lower velocities, an effect which might have been anticipated.

The similar three-dimensional problems of the submerged sphere, or
spheroid, are of more practical interest, as the first approximations which
I have given for these cases have had certain applications in ship resis-

t 'Proc. Roy. Soc.,' A, vol. 115, p. 268 (1926).
: 'Proc. Roy. Soc.,' A, vol. 122, p. 387 (1928).
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527 T. H. Havelock

tance; the corresponding extension of the solutions would require more
complicated analysis than for the two-dimensional case, but it seems
probable that the general deductions on thc range of applicability of the
approximate formulae would be of a similar character.

2-Consider the two-dimensional fluid motion due to a fixed circular
cylinder, of radius a, placed in a uniform stream of great depth, the axis
of the cylinder being at a depth f below the undisturbed surface of the
stream. Take the origin at the centre of the circular section, with Ox
horizontal and Oy vertically upwards, and suppose the stream to be of
velocity c in the negative direction of Ox. We write the velocity potential
of the motion as

b= cx +#. (1)

To obtain a solution which gives regular waves to the rear of the cylinder,
we adopt the hypothesis of a frictional force proportional to the deviation
of the fluid velocity from the uniform flow c, thus introducing a coefficient
t' which is made zero after the various analytical calculations have been

effected. The pressure is then given by'

f == const - gy + •L'0 -- ½q2 . (2)
P

If "1 is the surface elevation and we make the usual approximation for
small surface disturbances, we have

xC -- -(3)

Hence, from (2), the condition to bc satisfied at the free surface is
-#-tK0 -- a 0 (4)

ax

whe-e K0 = g/c2, and . = j'/c.
We may regard 00 as made up of two parts, one part having singu-

larities within the circle r -= a, and the other having singularities in the
region of the plane for which y >f. The first part is the potential of a
system of sources and sinks, of total strength zero, within the circle,
and can clearly be expressed by the real part of a series

o2 A,, z-", (5)

t Lamb, uHydrodynamics," 6th ed., p. 399.

421



The Forces on a Circular Cylinder 528

where z = x + iy, and the coefficients are complex. Now we have
z:- n - ((-- )i). Icn-_ esexdK, y >0. (6)

Hence, in order to satisfy (4), we write 00 in the form

= J= F (K) e iK-,. dK + J G (K) e,;'+K (Y-2f) dK, (7)
0 0

where the real part is to be taken, and

F(K) =I (O t) An K"-/(n -- 1)!. (8)
1

Putting (7) in (4), we obtain

G(K) K +- KO + ioK (9)
K - Ko 4+ F)(

With this value in (7) the surface condition is satisfied. Further, we may
change the sign of i throughout the second term of (7), and we obtain

0 =fOF(Y) e iK dK-"y_0 K+Ko-14L F* (K) e-i'x +,c(y 2 fldK (10)"oo -K -i

where the real part is to be taken, and the asterisk denotes the conjugate
complex quantity. It may be noted that this method of satisfying the
condition at the free surface is quite general, and independent of the
form of the submerged body.

It is convenient for the preseat problem to alter the notation slightly
from (8), and we write

F (K) =- icaaf(K)

f(K)=b+b(Ka)+L (Ka)± + L (a) +

Further, the expression (10) is a function of the complex variable z;
hence we have for the complex potential function w, or 0 + i 4',

w~c~~caff(K KiafKI
w=cz--icae f(K) f *() e-icz-z~f dK, (12)"0o JO -14C0-ill

this being in a form valid in the liquid in the region y > 0, it also being
noted that ultimately I is to be made zero.

3-We have now to determine the function f(K) so as to satisfy the
condition e/uar = 0 for r a. For this we turn the second term in
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529 T. H. Havelock

(12) back to the form (5); it gives, with the form (11) for f(K), the
series

I ca2 (ia)"'- b.- 1 z-". (13)
1

Further, the last term in (12) represents the potential of image sources
and sinks in the region of the plane for which y -">2f, and hence it can be
expanded in the neighbourhood of the circle I z I a in a series of
ascending powers of z. Thus we obtain w in the form

w = const + c. + Ica2 (ia)"-I b_ 1z-" + Z Bn z",
1 1

B, (i)n+l .0 K + KO -- i4t K" e- 2KIf* (K) dK. (14)
BK K- -- tL

With the potential in the form

w = const + I (C.z" + D.z-"), (15)

the condition of zero normal velocity on the circle I z = a is satisfied.
provided

D. a2n" C*n. (16)

Hence, from (14) we obtain the equations

bo  1- a2  0 + Ko + i ' Kf(K) e- 2.1 dK,
.0 K--Ko 0 +i-.L

bn--- a-- 1 * + 1,o + iK Kn"f(K) e' dK. (17)n ! o K -- K0 + i~

These relations, with (11), may be expressed in the form of an integral
equation satisfied by the function f(Ka); it is easily found to be

v0 U +) +~ 1~ tL____ e 21 un /a 9f (u) 11 (2 V7Tv du, (18)

where oa, 11 is the modified Bessel function, and the limit of the
integral is to be taken as the positive quantity, [i approaches zero.

For purposes of calculation, we use (17) as a set of linear equations for
the coefficients b(, bl . . . . We write

jlim 0 0• + I + iii e 2 a..fI, u" du. (19)
q L-O -.0 u4- I + i23
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'Substituting the power series (11) forf(K) on the right of (17), we obtain
the infinite set of equations

bo (I + ql y2) + q•yab, + .q b2 + 14 ... +

2! 3!

(20)

q3"4 bo + q4-bp -b--1 + + q.y b2 + q6Y7 bs ..=-3'5 T 3 ' 2 ! 3 !) 3!3 "'" 0

From the integral expression for q, given in (19), and also the fact
that alf< 1, it can readily be shown that the infinite determinant formed
by the coefficients of b0, bl, ... , on the left of (20) is convergent.

Evaluating the expression (19) and putting

qn ý- r. - is, (21)

we find r , + {2(n -- 1) (n -- 2), 1
Sn+11 ... + - -- e- Ii (e-)

s = 27re-, (22)

where o = 2K0f, and 1i denotes the logarithmic integral.
For any given values of a, f, and c, we have in (20) a set of equations for

the b's with complex numerical coefficients.
Although expansions in terms of other parameters may be more suit-

able for special ranges, it is convenient to assume that the coefficients b
can be expanded in power series of the quantity y, that is Koa. These
expansions will be of the form

bo I + b0 2•2 + b0 4 •y + b08y6 +.

b, = b1 L3 y
3 + b +5 yI * b1 7 y 7  + J. (23)

b2= b 24y4 + b26"y6 + b.8y8  +
... --.... ,...¢.................,.................

Substituting in (21) and collecting the various powers of y, the new
coefficients may be found to any required stage. For the calculations
which follow, it was found sufficient to obtain the results:

b02 = - q,
b04 = qIII
boo = q1 2 3

yq - q

boa = qjI - qjq2 + L q,
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531 T. H. Havelock
5 2 22 1 2 1 2 a

b010= -- ql -• ql q2 - qlq3 -T-q 2 " 3 + -q 4

b13 = - ½q2

b15 = ½qjq2

b17 = ¼-q2qs - V-q12q2

b19 = - ¼q2
3 + ±~q1

3q2 - I q lq 2q3 + 9.,q 3q4
bnl = - 6 q2qs2 + l-q 2q2q3 - .q 1

4q2 + ,-!qlq2
3 - I-qq 3 q4 + A6q 4q5

b24 = - ýq3

b26 = wlqlq3

b2 - -Wq1 q3 + -Aq2q4

b35 = - 11,q 4

b37 = jqlq4
b46 = -- 0q5. (24)

4-Consider now the forces acting on the cylinder per unit length. The
pressure is given by

p/p= const - gy - ½q2. (25)

The term in gy gives the usual buoyancy, equal to the weight of displaced
liquid, as part of the vertical force on the cylinder. Apart from this
term, let X, Y be the resultant horizontal and vertical forces on the
cylinder in the positive directions of Ox, Oy. Then, by the Blasius
formula, we have

X-iY=.pi - dz, (26)

taken round the circle I z j - a.
We note that -X will be the force known as the wave resistance,

while Y is the addition to the upward force of buoyancy arising from the
fluid motion. The value of the integral in (26) is 27ri times the residue
of the integrand; with w given in the form (15), and, using (16), this
gives

X - iY = 2n pI n (n + 1) D, D*,+1 . (27)I a "+2

Using (14), we have the result

X - iY=- 2pc2 ai{lt.2bob*2 + 2M3bb*+
+ n (n + 1) b.,-_lb*,. + .. .(28)

This may be expanded in powers of y, that is of Koa, by substituting from
(23) and (24), the results given there being sufficient to include the term
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The Forces on a Circular Cylinder 532

in y"'. Using the notation cOf (21), and separating out the real and
imaginary parts, we obtain, after some reduction,

- X = 40pc2a (Koa)3 e -2'.° [1 - 2r, (Koa) 2 - (r 2 - 3r1
2 + s2)(Koa)4

-(4r, 3 - r
22 - 2rlr2 + r4 - 4rs- 2 +s 2 ) (K0 a)6

+ {5r14 - 3rlr2
2 - 3r1 2r, + 4 r 2

2 + •r3
2 + +rlr3 + j-r 2r 3 - , r4

- (10r1
2 - 3r, - 3rY2 + -)s 2 - s4) (K0a)8 + ""], (29)

Y = 47rpc 2a (K0a) 3 [-.,-r 2 + rzr2 (K0a)2 +-(r 2r3 -2 3r1
2r2 H- 1.s

2) (K0a)'

+ (2r.3r 2 - jr.3 - rzr2r3 - Y r3r4 - ½r2s2 - 2rxr2s2) (koa)•
3- r 1 4 2 r -,rrrrr

+ {4rzr2
3 

-7 r1
4r 2 - 4.3r2r3 T- Ir2rr - •r 2

2r 4 - krlr3r 4 + • r4 r2

+(5r 1
2r2 - rlrr. ½rgr3 - -2-4 2 + I r 3 - 4 + )S

- r2s') (Koa)8 
+ . .], (30)

with r,,, s given by (22).
The first term in (29) is the expression for the wave resistance of a

circular cylinder which was obtained by Lamb. The first term in (30) is,
after putting in the value of r2 from (22), the first approximation for the
vertical force which I obtained by the method of images in the paper
already quoted.

5-It is of interest to obtain the wave resistance, which should be'equal
to -X, from considerations of energy applied to the regular waves
behind the cylinder. The current function 4 is given by the imaginary
part of the expression (12). Putting y = f + v, we obtain at once the
complete expression for the surface elevation as

S= ia2 Jf(K) e'x-"K dK + ia2 00 K + KO --. i" f* (K) e-9'90 dK, (31)
Jo K - K - I L

where the imaginary part is to be taken,f(K) is given by (11), and it is to
be made zero ultimately. This expression separates into two parts, a
local disturbance -q which decreases with increasing -distance from the
cylinder, and a system of regular waves *2 to the rear, that is, for negative
values of x. The latter part is found, by methods familiar in these
problems, to be given by

"Ia = - 47TKoa2f* (K0 ) -'-.Z, (32)
the imaginary part to be taken.

If h is the amplitude of the regular waves at a great distance behind the
cylinder, the wave resistance R is given by

R -ý jgph'. (33)

426



533 T. H. Havelock

Hence from (32) we have

R-= 47r 2 YpKo2 a 4 f(K 0 )f* (K 0 ) e- 2 
K of. (34)

With

f(K 0 ) o b+ + b, (K0a) + 2 (K.a)
2 -

and with the equations (20), it could presumably be shown that (34) is
the same as the real part, with sign changed, of the expression (28).
However, it has been used here simply to verify the previous expansion;
substituting from (23) and (24) we obtain from (34) the same result as is
given in (29).

6-We may now examine the expressions (29) and (30) numerically.
It is easily seen that if the ratio a f is small, the first term in each case
gives a close approximation at all velocities. Further, the ratio of the
second term to the first in (29) and in (30) is -2rjKc 0

2a2, that is

1 2 {1 + 2JO -- 2• 2e- 1i (ea)}, (35)

with - 2Kof= 2gf/c2 .
The quantity in brackets in (35) approaches the value -1 as c becomc,"

zero and the value + I as c becomes infinite. It has a maximum negative
value of -2.57 at a 4.5 approximately, and a maximum positivc
value of 1.9 at about x 0.6. Hence the effect of the second approxi-
mation in (29) is to increase the wave resistance at low velocities and to
give a rather smaller value at high speeds.

Taking alf= ¼, as a moderate value of this ratio, and calculating thc
resistance from (29), it is found that the value does not differ by more
than about 9"' of the value of the first approximation at any velocity.
As an example of the numerical values in this case, for ot = 6, that is for
c-0.58 -\/(gf), the following are the values of the successive terms in
the expansion in square-brackets in (29):

1 + 0.0746 + 0.0134 -ý- 0.0015 + 0.0001.

Another case which has been worked out in some detail is af -- 1, this
being definitely outside the range of the first approximation for the most
part. Numerical values were calculated for both X and Y for ot 8. 6,
5, 4, 3, 2 .5, 2, and 1. On account of slower convergence of the series at
the higher values of %. an estimate was made of the next term beyond
those sho\%n in (29) and (30). The results are shown in fig. I.

The curves R and Y are the wave resistance and vertical force calculated
from (29) and (30); R1, Yj are the curves given by the first approximations,
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The Forces on a Circular Cylinder 534

that is by the first term in (29) or (30). The unit of force in each case is
7rgpa 2, that is the weight of liquid displaced by the cylinder per unit length.
It should be noted also that, in addition to the vertical force Y, there is the
usual hydrostatic buoyancy. The curves for the wave resistanc, show
clearly the increased values at lower velocities and also the displacement
of the position of maximum resistance, the latter occurring at a lower
speed than the value V/(gf) given by the first approximation.

0"5

0'4

OC<R

0"3
R,

0"2

01

0 06-c/if5 07 0-8 0 10

-01 I I I
FIG. 1.

SUMMARY

A solution is given for the two-dimensional wave motion due to a
circular cylinder in a uniform stream, taking fully into account the con-
dition at the surface of the cylinder. Expressions for the horizontal and
vertical forces on the cylinder are obtained in the form of infinite series
in ascending powers of a certain parameter. Numerical calculations are
made from these and compared with the known first approximations.
The main effect of the additional terms upon the wave resistance is to
increase the calculated value at low velocities and to decrease it slightly
at high velocities.

Reprinted fiom ' Proceedingv of the Royal Society of London'
Series A No. $9u vol. 157 pp 256-534 December 1936
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The Resistance of a Ship among Waves

By T. H. HAVELOCK, F.R.S.

(Received 25 March 1937)

1-The wave resistance of a ship advancing in still water may be calculated
under certain assumptions, which amount to supposing the forced wave
motion to be small so that squares of the fluid velocity may be neglected;
moreover, the ship is supposed to advance with constant velocity in a
horizontal line. It does not appear to have been noticed that we may super-
pose on the solution so obtained free surface waves of small amplitude, and
that the addition to the resistance may be calculated, to a similar degree of
approximation, as the horizontal resultant of the additional fluid pressures
due to the free surface waves; this additional resistance, which may be
negative, depends upon the position of the ship among the free waves.
Various calculations are now made from this point of view. We consider
first transverse following waves moving at the same speed as the iship, and
then a ship moving in the waves left by another ship in advance moving at
the same speed; finally, we examine the more general case of a ship moving
through free transverse waves of any wave-length. All the cases are discussed
with reference to such experimental results as are available.

2-We treat the problem first as one of steady motion with the ship at
rest in a uniform stream of velocity c in the negative direction of Ox; we
take the origin 0 in the undisturbed water surface, and Oz vertically
upwards. The velocity potential is given by

0 = cx+0 1 , (1)

where 0, represents the disturbance due to the ship. This. on the usual
approximations, may be regarded as due to a source distribution over the
longitudinal section of the ship; the source strength per unit area is
(ri/2w) ay/lx, with y = f(x, z) as the equation of the surface of the ship, and
it is to be noted that ay/ax is assumed to be small.

We now take = cx + 01 + 0'

h= h'.X cos(K•'X -.), (2)

where K0 = 9/c2. The additional term represents standing surface waves of
elevation h sin(Kox-/f). We should, of course, require further terms in
order to satisfy exactly the condition at the surface of the ship; but such

2 299
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terms would be of a smaller order of magnitude, and of a similar order to
those which have already been neglected in obtaining an exp-ession for q 1

on the assumption that the angle between tile tangent plane and the zx-plane
is always small. The pressure equation is now

p/p = const. - gz - c -c (3)
ax ax'(3

and the wave resistance is given by

R = 2ffp 'Ydx dz, (4)

taken over the longitudinal section of the ship.
The term in 01 in (3) gives from (4) the expression for the wave resistance

for the ship advancing into still water; we shall denote this by Rr. We give,
fio reference later, the expression for R, in terms of the equivilent surface
distribution a-, namely,

R 167K(p (P2 + Q2) sec30dO,

where P1 + iQl = ffr- eKuZ SC2 6+iKX see o dx dz. (5)

The term in 0' in (3) gives from (4) the additional resistance R' due to the
standing waves; we have

R'= 2pcl'l.OO -ý,dxdz

j a~
= - 2gph fLye"-Sil(KX- -/3) dx d-. (6)

3-Consider a simple form of model, of uniform draft d and length 21,

whose surface for y > 0 is given by

y = b( 1 - z2id 2) (1 - x2,12). (7)

From ((4 we obtain, after carrying out the integrations,

R'- tl3 I +2(1. + 1) e-"ud (sinl 01--AK0 lcOsK~l)c1sfl" (/ )

The factor cos/? in (8) shows how R' varies with the position of the ship
among the waves: for #1 = 1) or/I = n. the surface elevation is anti-sym-
metrical with respeet to the mid-sectioi of the ship. Further, the fiactor

(si, II K01 - K01 'OS A'l) (A'01)3  (9)
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Resistance of a Ship amonyq IVaves 301

gives the variation of R' with the ratio of the length of the model to the
wave-length. It is obvious that the greatest positive values of R' will occur
when there is a crest near the bow and a trough near the stern, and con-
versely for negative values of' R'. Tile stationary values of (9) give the
corresponding values of K0

1 , or 2W1iA; one such value gives A/21 = 0.55
approximately, and for this velocity R' is negative if ft 0 and positive if

ft= IT.

4--For numerical calculations we shall consider a model for which theo-
retical and experimental values of the wave resistance in still water are
known; this is Model 1302 investigated by Wigiey at the National Physical
Laboratory, the results being given in these Proceedings (Wigley 1934).
The form of the model is given by the following:

From z = 0 to z = -:W,

y = bf1-(x+a)2
1 l2 }, y =b, y = b{1-(x-a)21Z}

forx ranging from -1-a to -a, -a to a, a to l+a respectively;
From z - -d to z = -d,

y = (1 - z2/d 2) {1 - (x + a)2/12}, y = b( 1- z2-/d 2),
y - b(1 -z 2/d 2 ) {1 - (x - a) 2/12 1}

for the respective ranges for x of

-1-ato -a, -atoa, atol+a. (10)

The dimensions, all in feet, were a = 0.5, b = 0.484, 1 = 7.5 and d = 2.

Carrying out the integrations of (6) over the longitudinal section of the
model, we obtain

R 8pbc2h1 l 4 1 2 8_11 1

K0l2 12 eiýod ;7d- K2

x {sin K0(1 +a) - K0l Cos K.(1 +a) - sinK0 a} cosfl. (11)

We shall take f1 0 so as to obtain maximum effects as far as the position
of the model relative to the waves is concerned. In the following table values
of R'/c2 h are shown for several different velocities, R' being in lb. with c in

ft. /see. and h in ft. The column Rl/C2 gives the corresponding t teoretical
values for the wave resistance in still water, taken from fig. 6 of Wigley',
paper.

R, has maxima and minima according to the interference of bow and
stern waves; while R' oscillates between positive and negative values in
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302 T. H. Havelock

accordance with the factor in (11) which involves the quantity K0 1. One
method of expressing these results is to find what height h of the imposed
waves would give R' the same numerical value as R1 at each velocity,
regardless of whether R' is positive or negative. This is given in the last
column of the table as h/A, the ratio of amplitude to wave-length such that
R'. is numerically equal to R1. In comparing these figures with values from
observation or ekperiment, it should be noted that usually the height of
a sea wave is measured from trough to crest, and is equal to 2h of these
calculations. The point mntde now is that for quite ordinary values of the
ratio of wave-height to wave-length the additional resistance, positive or
negative, is of the same order as the wave resistance of the model in still
water.

K0 1 c/-//(Yl) R?'/c 2h R,/c2  h/A

8 0.353 0.5 0.042 0.014
7 0.378 -0.264 0.03 0.017
6 0-408 -0-92 0-012 0.01
5 0.447 -0.S8 0-1 0.013
4 0.5 0.62 0.013 0.007
3 0.577 1.05 0.12 0.007
2 0.707 1.13 0.233 0.008

5-An interesting form of the problem is the case of a model in Ihe waves
left by another model at a fixed distance in advance and moving at the same
speed; it is a case for which some experimental results are available.

Instead of (2) we now have

0 = cx +0+0 (12)

where &, represents the disturbance due to the rear model and 02 that due
to the leading model. We may replace the models by source distributions

Sryl, o 2 over their respective longitudinal sections, and the usual first
approximation ih taken for G- in each case, namely a = (c/2n) ay/lax.

The resultant horizontal force on each model has been considered from
this point of view in a previous paper (Havelock 1936), and a general dis-
cussion is given there in §§ 4, 5. The resistance of each model consists of
various terms: the resistance of each as if isolated, mutual actions between
the two models which are equal and opposite and may be assigned to local
disturbances of the fluid motion, and forces due to wave interference
acting on the rear model only. It is easily seen, from approximate calcula-
tions, that the mndtual actions due to local effects diminish rapidly with the
distance between the models, and we shall neglect these terms in what
follows.
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Resistance of a Ship among Waves 303

The resistances R1, R2 of the two models when far apart are given by (5)
with P1 + iQ1 in terms of n1 and P2 + iQ2 in1 terms of o2.

In addition the rear model experiences a resistance 1R12 whih, from (7)
and (13) of the paper just quoted, is given by

R12= 32 7rK5pffo 'dxIdziffO 2 dxadz2

x CKPI+22 ) SeL"-o cos{K0 (x 2 - x1 ) see 0} sec 3 OdO, (13)

the integrations extending over the two distributions. This may be put into
a. form involving the same quantities P1, Q1, P2, Q2 as are required for R,
and R., namely,

R12= 327TK)p] (P1 P9 + Q1 Q.)sec3 OdO. (14)

We now simplify the problem by supposing the two models to be similar
in all respects; then if k is the distance from the bow of the leading model to
the bow of the rear model, we have

P2 + iQ2 =( 1 + iQl) ei+WkrseeO. (15)

This gives R12 = 327TK2P(P2 + Q2) Cos(K0 k sec 0)(6)

Finally, we carry out the integrations for a model of great draft and of
uniform horizontal cross-section given by

y = b(1--X2/12). (17)

The results may be expressed in terms of P functions used in previous
investigations and defined by

P()= (P) -)O l ces 0 sin(p see 0) dO,

P21 1(P) - ( -- 1 )fl+I| cos 2n+i 0 cos(p see 0) dO. (18)

(I am indebted to the Superintendent of The William FroudI Lal)oratory

for graphs of the first nine of this series of functions.) We obtain then for
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the resistance R2 of the leading model and for the resistance R1 + R 12 of the
rear model the expressions

3 2 pb 2c 2 ° f 1 + 2 K 1 2 2
RR - R2 = 1 -+ 12+0K0l2P3(2Kol)-2K•%P 4(2KOl)+P 5 (2Kol)j, (19)

12 = 64pbc 2 [ ,(Kl2{.1,(k,)+ 2P3("o k)+Pa(K0 ',)}

* K01{P4(Kokj) - P4(Ko/0 1,)}

* - P5(Ko k*) - P5 (Kok) + -P5 (Ko k1)], (20)

where k, = k - 21, 12 = k+21.

6-Before making numerical calculations we may refer to experiments
made by Barrillon on models in tandem and other formations (Barrillon
1926). In a classical series of experiments W. Froude examined the inter-
ference between the bow and stern waves of a ship by introducing into the
model varying lengths of parallel middle body between the same bow and
stern. Barrillon made an interesting variation by running two models in
tandem at the same speed and measuring the resistance of eacl. model. The
results were similar in character to those outlined in the previous section;
for instance, the resistance of the rear model was found to be an oscillating
function of its distance from the leading model, in general agreement with
what would be expected from its position relative to the waves left by the
leading model. We noted also that the action between the two models is
made up of a mutual action and reaction due to local effects together with
a wave effect upon the rear model; and the former has been neglected in tile
present calculations. Barrillon found, for his models at a certain speed,
that the action upon the leading model was insensible if the distance apart
exceeded 1 m., while the action upon the rear model was appreciable up to a
distance of 14 m.; and further that, apart from its oscillations, the action
upon the rear model only diminished slowly with the distance.

With a view to making corresponding calculations from (19) and (20) we
notice in particular two measurements. (I am indebted to Professor
Barrillon for these and other details of his investigations.) The velocity of
the two models was 2 m./sec. and the length of the rear model was 2.2 m.
Turning the results into the present notation, with k- = 13.47 m. and
16.19 in. the experimental values of the ratio R1 2/R1 were - 0.224 and - 0.2
respectively; theso two values of k gave consecutive positions of maximum
reduction of resistance of the rear model, the relative reduction being of the
order of 20 %.
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JResistance of a Ship among Waves 305

We now use these measurements solely in order to take a corresponding
velocity and corresponding distances in the expressions (19) and (20I) and
so to calculate the ratio RJ2/Rr4

We have Kol, = gl/c2 = 2-7. For the two values of k, the corresponding
values of K0k are 33.07, 39.74 respectively. With these we obtain from (19)
and (20) the values - 0.24, - 0.3 respectively for the ratio '?2/1?, a relative
reduction of resistance of between `0 and 30 %.

7-We have considered so far only wave motion which is stationary
relative to the ship, and we examine now a ship advancing through free
transverse waves which are moving with the velocity appropriate to their
wave-length.

Suppose first that the waves are moving in the same direction as the ship.
With a fixed origin 0 we now have, instead of (2),

S= ( -ct, y,z)+h IV e- cos K(x - Vt), (21)

where V2 = g/1K, and the additional surface elevation due to the free waves
is h sin t(x - Vt).

The variable part of the pressure is p /oltl, or

-pc 0 + gphe KZ sin K(x - Vt). (22)

To calculate R from (4) and (22), transfer to an origin moving with the
ship. Then the first term in (22) gives the same expression for R1 as in (5),
while for the additional resistance due to the second term we have

R' = - 2gphff f eKZ sin{Kx - K(V - c) t} dxdz. (23)

This is the same as in (6) for relatively stationary waves, except that Ko,

c are replaced by K, V respectively, and that the phase /f has now the
varying value K(V - C) t.

For transverse waves h sin K(x + Vt) moving in the opposit, direction
(21) is replaced by

0 = &(x - ct, y, z) - hVe-cos K(x + Vt), (24)

and it is easily seen that we get the same result as before with the phase #
equal to - K(V + c) t.

The result is that the additional resistance depends only upon the in-
stantaneous position of the ship relative to the waves. This might have been
anticipated from the various approximations which have been made. We
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have assumed the free waves to be small, the corresponding quantities being
of the same order as those of the forced waves due. to the shipii moreover, we
have neglected any direct disturbance of the free waves by tie surface of
the ship for the same reason as for omitting terms of a like order in obtaining
expressions for the forced waves. The additioinal pressures are therefore
simply those due to the free waves, and the additional resistance is the
horizontal resultant of these pressures acting i upon the shilp's surface. Tai dcng
as an example the model described in (1o), the resistance is given by R, + 1',
where R1 is the resistance in still water, and

R1 = 8pbV2h 4± ~ 1±'2 8 1
K212  3\Kd +K 2 d2 3 .J\&(+ K212 ) ,c

x {sin K(I + a) - K1 cos((, + a) -. -si-Ka} cos /1, (25)

where 172 = g/K, /I = K(C + I") t = 21t/T.

In this expression, T is the period of encounter of the ship with the waves.
In experiments on models in artificially produced waves, a critical con-

dition occurs when tte wave-length is about equal to the length of tile model.
We take therefore as a numerical example A= 27TIK- = 2(1 +a), and
V2 = gA1/27 = g(l + a)/l.

Putting in the numerical values for this model, we get from (25)

R' = 89 1hcos(27rt/T), (26)

R' being in lb. with the amplitude h in ft.
In experinments a usual assumption is a wave-height of 6 ft. for a %%ave of

length 400 ft.; this ratio gives for the wave-length 16 ft. tie value h. i 2 ft.
In that case we have

R' = 10.7 cos(2at(/T) lb. (27)

Values of R1 for this model are known. For instance, for model speeds of
7.08, 9-22, 11.04 ft./sec. we have R1 = 4.4), 13, 29 11). respectively; the total
resistance, wave-making and firictional, at these speeds was 14.54, 30. 1,
52.15lb. respectively. We see that, for quite a moderate ratio of wave-height
to wave-length, R' represents an alternating force of relatively large ampli-
tude. It should be noted, however, that this is for the particular case when
the wave-length of the free waves is equal to the length of the model.

8--lt is necessary to emphasize the basis of the present calculations. It is
assumed that the model is maiit-aianed in the same relationl to the un-
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(Ilisi ii rhed Water' 1Itrfl('c !tt1 t Ihat it is (Iliivenl forward( horizontailly at ('onsaI tlIt

speed.
In experiments on modeles in waves, such as those mnade by Kent at The

National Physical Laboratory (Kent 1022), thle CofllditiOIAS are different,,
being naturally designed to rep~roduce to somec extent condlitions for ship)s
at sea. In these, experimients the nvodel is free to pitch, and ob)viously all
important factor is the relation of thie pitc'hing period to tile jonriod of
encounter with the waves. Mloreovei', thc miodel c-an move. fore and aft
wvithin certain limnits ulnder the influence of the waves. Thus Kent, nakes thme
statement: "' When the mtodlelwaý,s towe-(l throuigh a reguilar ser-ie~sof ad~vanini-ig
wvaves, it exp~eriencedI periodic fluctuations in its resistance as it met ea('h1
Succeeding wave. Each fluctuation in resistance was )a~rtiall lv ablsorb~ed bly
the inertia of the model, but a, portion of it was recorded by the resistance
pen. The fluctuations were of Small am-plitude wvhen the waves were of short
length in 'qomparison wvith, the length of'the modlel. lbut. became mnuch larger
when the wave-length wvas increased.'' T~he actual results given were for a
certain mean resistance over the whole e:, periment in eachi case. The pi'ccise
relation between t his inean i'esistance and the horizontal forces acting, oti the
mfodlel at eachi instant would require a, detailedl examination of the t'oiiditions,
of the experiment andl of the recordling apparatus. However that may he.
time p~resent calcuilations Serve to estimate Some of these forces andl indIicalte
how large thle fluictuating p)art of the resistance due to them niay he under
certain condijtions.

A point which arises is the dependence of the amplitude of the filuctulationis
up)on the ratio of the wave-length to the length of the m-todel. This is grivenl,
for the model considlered here, by the factor of (25) Wvhitch inIvolves K1. Taking
the simpler case of that model wvith no p~arallel middle body. that is waithm
a =0, the factor concerned is

(Sinl U - 11 Cos 1) 1"a3, (28).

where u = irLIA, wvith L the total length of the mnodel, and A the wvave-
length.

Ani interesting, result is that there. are certain values of the rat io A IL for
wvhich (28) is zero;, for these, the additional resuiltant, horizontal force (IuC
to thle waves is zero independently of the position of the mnodel among tile
waves. For this par'ticular model, these values are given by thle roots of tile
equation tanu =i u; thle corresponding values of AL atre 0-7, 0-41, 029,.
Intermediate values of the ratio give maximum values for the aniplhitudle of
the fluctuations in resistance.
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SUMMARY

The wave resistance of a ship in still water Pan be calculated to a certain
degree of approximation after making various assumptions. Similar
calculations are now made for a ship among free surface waves of small
height; the additional resistance, which may be negative, is considered as,
to a similar degree of approximation, the horizontal resultant of the
additio,",al pressures due to the free surface waves.

The cases considered are (i) when the waves are stationary relative to the
model, free transverse waves moving at the same speed, and also the case
of a model on the waves left by another model in advance and moving at the
same speed, (ii) a model, not free to pitch, in transverse waves moving with
the speed appropriate to their wave-length.

It is shown that the additional horizontal forces may be of the same order
as the wave resistance in still water even when the ratio of wave-height to
wave-length has only a moderate value.

The various cases are discussed in relation to available experimental
results.
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The lift and niOneit on a flat plate ini a stream
of flnite wvidthi

By T. J1. HAVELOCK, F.R.,S.

(Recei?'ed 8 Febraary 1938)

1. The problem of the lift on a flat plate in a stream between pa rallel rigidl
walls has been solved in an exact form, by using a suitable conformal trans-
formation, by Tomotika (0934), who also gives an expansion for the lift
in the particular case when the m id-point of the plate is midway between the
walls; a similar solution for the moment on the p~late does not seem to have
been given. The method used in the following paper is quite different and
is, perhaps, of sufficient interest to justify further examination of the
problem. The flat plate is treated as the limiting case of an elliptic cylinder,
and the method of solution leads direct ly to expansions for t he iift and for the
moment suitable for any position of the plate subject to the parameters
being within the range necessary for convergence. Moreover, by a simple
modification, expansions for lift and moment are obtained when the stream
is bounded by parallel free surfaces, ttaking the boundary condition in an
approximate form; and a further inodification gives the corresponding
results when one surface is rigid and the other free. A brief examination is
also made of the moment for an elliptic cylinder.

GENERAL EXPRESSIONS

2. Consider the two-dimensional motion due to a cylinder placed in a
uniform stream bounded by plane parallel walls, ineluding circulation
round the cylinder. Let C be the contour of t he cross-section of the cylinder,
and takc the origin 0 so that the parallel walls aie given by y = a, and
y = -b, respectively. To simplify the argument, we assume that a position
can be found for 0 such that a circle can be drawn, with centre 0, entirely
in the liquid and enclosing the contour C.

With uw for the complex potential function, we take

di l ý 1)i!1 A, + dirt

In (1), c is the velocity of the stream, in the negative dire•tion of Ox,
the series is a suitable expansion tor the singularities of the potential

[ 17S]
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The lift, anl momen! on a flat plate 179

function within the cont(ur (C, and the last tern) is to be determined so as
to satisfy the boundary conditions on the walls. These conditions are

div
I=o; x + ia, z = X-ib, (2)

dz

where I denotes the imaginary part.
To satisfy these conditions we replace the series in (1) by

JF(C)eiK2dK, for z = x+ia,

-jF( K)e--dKx, for z = x-ib,

where F(K) A, Kn. (3)
0

We may build up an expression for dw 1/dz by successive images. Taking the
expressions in (3). a single reflexion at a pdane wall changes F(K) into the
conjugate complex F*(K); if the reflexion is at the upper wall (y = a) the
contribution to dwl/dz valid in the liquid is

Jo F*(K) e-iKz-•2 d, (4)

while if the reflexion is at the lower wall (y = -b), the corresponding form is

- (- ,)-' - dK. (5)

Taking successive reflexions at the two walls, the contributions of the
infinite sets of image systems may be sunmined, and we obtain finally

dw i"l+ln!A4

Cw F*(¶K) K - F *( - ') e i:-2b+ dK

Jf0 F( - ') e-i'K-2A-" - F(K')(k:7-2#.d

I -;-Kd dK, (6)

where d = a + b, and F(K) -- -,, K'.

It may easily be verified directly, by using (4) and (5), that (ti) satisfies
the boundary conditions (2).
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180 T. H. Havelock

3. We now calculate the forces on the cylinder from the expression

X-i Y = -pidw 2. (

WVe write (6) in the form

dw i i • AI
(1 =j+Z, + !B " (8)

Tf- ) -"': F*( -K) e--2Kb Kn

w-heri)" F(B,,f-)-,F(K)}' e1 ,(
-Jo ~ I' - A:) ----I...)-- e- ,I . (•n

From (7) and (%), we obtain

X - i Y = - 21np(iAo -t 2'i"+' n ! A,, B (10)

If r is the circulation round the cylinder, we have F = 21_A.; further,
using (9), we easily ob)tain X = 0, and

r = pcI+'27T[f F - -- -(-K ) F*- -K),C dK.

For the moment about the origin we have

M = - .pRfz(dl dz (12)

= 2,"rpRi{cA, i-.Fi"(n+ 1)!A,+1 B.}, (13)

where R denotes the real part.
Using (I)), this may be expressed in the form

P(lŽI F*(K) e-2", F'( -K) F*( - K) C-2-M = 2npRi IC.AI + f ,o -C-20 - d,

7 1o{F'(K) F(- K)-j'(- K)F(K)'..] (14)

To complete the solution of the problem in aniy given cast. we have to

determine the function F(K) so that the boundary condition of zero normal
velocity is satislied over the contour C.
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The lift and moment on a flat plate 181

ELLIPTIC CYLINDER

4. We take tle contour C to be an ellipse, of semi-axes a' and b', with its
major axis making an acute angle 0 with the positive direction of Ox, and
we take the origin at the centre of the ellipse.

In terms of a coniplex variable • ( = - + i-q), we take

z = peio coshl, (15)

and the contour C is giveni by

,$= •0; p cosh 0 = a'; p)sinhl0 = b'. (16)
XVe now write

--c il o• dW
dw pfl io Silill L 4- i "_Ci'b, + pei, Sill 11 r (!dw/. - " i/ 1 (lU'

the second and third terms heing in a stital)le form in the elliptic co-
ordinates: to obtain F(K) in terms of the new coefficients b, we have to
compliare these two terms wvith the series in (6), noting that

dzi'dý = pei sinh C.

For this purpose we pu' the series in (0) into the form in (3) valid for the
upper surface; under the same condition it can be shown that

= V eI pe 0in } f I 1) iv)
Si till C I 0(Apft" + iY,o Jo (#Ite 0 ) e- dK. (IS

Hence, b)y c()mparis(,n, N e obtain

F(,.)=. Ktp ;,) +iY, ,(,,-pe• ,() )

d.' i,'"

_ l,,, inl, L" I , -,, .. .... ,I, (21))

\\', I-)', n(m xillr.c.s til. in the 1(11r11

Y 't , "c) (21)
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by :;tIbstituting in (20) the expansions

KpeOc 0 sinh • = 2 i ( ± i)11- nJ,,(KpJZ') sinh 2.", (22)
1

We obtain, for n > 1,
c 01 ( - i),-1 F*(K)e-2.) _ i,,- 1 F*( - K) e- 2 ', dK

0o e- K
f{-) F( - K) - i'-' F(K)} e-K(l dK"-c -)n-11- e2'd- m.J,(Kp•,•"") K-: (2-3)

j ( i)' F*(K) e-2 m( - in - I*( - K) e-2Kb dK
D, - ill b,l -j -nJi,(Kpe'') K

+f' {( - 0)"- 1 F( - K) - i-' F(K)} e-2Kd dK

f1 - nJ.(Kpe.O) -K (24)

while for a = 1, C1 has the additional term jcpei0 and D1 the additional term
- •cpe'.

The boundary condition on the contour C is that the real part of dw/dý
should be zero for 6 = 0; this gives

D* = -e•,,oC. (25)

Using this in (23) and (24) we obtain an infinite set of equations for the
coefficients b,,; these are, for n > 1,

rcc=f H(K) dK0b = - e-2h-d K'

H(K) = {nq'PF(K) Jn(Kpe-z°) + (- 1 )" nF*(K) Jn(KpeC0 )l e-2Ka

+ {( - 1)4 nqnF( - K) Jn(Kpe--°) + nF*( - K) J,(KpC"0 )} e-2,'

- n[{q;,F*( - K) + (- 1 )" qnF*(K)} J,(Kpe-W)

+ {( - 1)" F( - K) + F(K)} JL(KpeiI)] e-2,d, (26)

with a similar expression for ib1 including an additional term
jcpiO+ Io

-LICpe'0 + 2cpqe' 0 ,
a nd with q = e2 0o.

By using (19), these results may be combined into an integral equation
for the function F(K); it is

F(K) = Jo(Kpci") - ½cp(ei')- qe- i) J1 (Kpe 0 )
27r2

+ f {F(c) G, + F*() G.,2 e- 2'" + {F*( - v) G.3 + F(- ,) G} r-2- dv
SI V-r {F*( - C) Q + F( - t') a. + F(v) Ga ± F*(,) G} C-2d di,

1-' (27)
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The lift and moment on a flat plate 183

"with 0, = £nq" J, (vpe-•e) Jn(Kpe"'),

G2 = Z( - 1 )" nJ.(vpeiO) J4(KpeiO),

G3 = Z'nJ(vpei0 ) J,(Kpel0 ), J (28)

G4 = ( - 1 )fl nq'Jn(vpe-0 ) J"(KpeiO).

FLAT PLATE BETWEEN PARALLEL WALLS

5. We consider the limiting case obtained by making 60 zero, that is,
by putting q = 1 in the previous results. The cylinder reduces to a flat plate
of width 2p, at an angle 0 to the direction of the stream, and with its mid-
point at distances a, b from the upper and lower boundaries, respectively.

We write ' = 27Tkcp sin 0; F(K) = cpsin Of(K). (29)

The equation for f(K) is

f(K) = kJo(Kpew8 ) - iJ1 (Kpei°)

+ fo {f(v) G1 +f*(v) G2} e-2va + {f*( - v) G3 +f( - v) G41 e-2 vb dv
1-e-2vd V

_ ff*(-V) 01 +f(-v) G2 +f(v) G3+f*(v) C4 }e-2 , (30)
1 - e2vd V

G1, G2, G 4 being given by (28) with q = 1.

We approximate to f(K) by successive substitution of approximations
forf(K) in the integrals of (30), repeating the process as far as may be desired.
Our object is to obtain the various quantities ultimately in power series in
p/d, or alteirnatively in p/a or p/b, assuming these ratios to be less than unity.
The expansion for f(K) is most readily obtained by replacing the Bessel-
functions in (30) by their power series as far as necessary so as to give all
terms up to a required order in the final results. We shall develop these
expansions up to terms of order (p/d)4; except for the length of the expres-
sions, the expansions could readily be taken to a higher order. It is sufficient,
for the present purpose, to take as the first approximation

f(v) = k - livpei0 - Jkv 2p 2e2i° + l iv3p3 e3 iO + kv 4p4e4 i0 . (31)

Further, to this order, it is sufficient to replace C1 by
('• •KeW~vpe-io - Ivap3eao

+ K2p 2 12 0(1)2p 2e- 20 ) - pae3(jvpe-i1), (32)

and G2, C3, G4 by similar expressions.
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184 T. H. Havelock

We now obtain the result of putting in the integrals of (30) a typical term
npnein° or ivIP11010 instead off(v); we then apply these results to each of

the terms in (31) and repeat the process until we have obtaine(l all the terms
of the required order. For the integrations with respect to v wInch occur
in the process we use the notation

= f a e - 2 ,' _( 1)71 e - 2rb•
r , 1- •d v'dr (33)

r J, 1 -- e-2vd vidv, (34)

n not being zero in the second case; these integrals may be evaluated in
finite form.

We now give the result of this process; we ootain
f(K) = k--½iKpB1e 1 o _-K2c) 2B 2 e

2 iO + -iK 3pa3 B 3 e0 0 + _-Lp4K B e4 'O + .... (35)

with B1  1 + kpro sin 0 + Ip 2(r1 - 2r, cos 20) )
+ 8kp

3 {r2(4 sin3 0- sin 0) + 4r0 (r1 - 2r, cos 20) sin 0}

- (p
4{r 3 cos 20 - 2r3 cos 40 - 2(r, - 2r, cos 20'1-} ±.

B 2  k - kp 2 (rl-2rl)cos20+kp
3r.sin+ ...+ (36)

B 3 = ++kprosin0+...,
B4 = k+ ..

6. We consider in particular the case in which the circulation is such that
the fluid velocity remains finite at the rear edge of the plate; the condition
for this in an infinite stream is

r = 2ncpsin0, or ,: 1.

Returning to the expression (21) for the elliptic cylinder, the condition
requires that the imaginary part of dwjdl, should be zero for f = n + i.
This gives, after putting 0 0 for the flat. plate,

iF,2r•+_(- 1)" (Cl- C*) = 0. (37)
27T

From (23) we obtain

£( - l)"C0,, = - 2Ipe

T i,- 1 F*(K) f- "" - - - i)"-' F*( - K) e-2Kb d
-- ) - -.- I n'-,- __"PdK_)

+) ( " -.j) ,; K ' , ( )) --0. (3,;)
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The1 lift and moment on a flat plate 185

Hence, writing A 1  JO(KpeiO) + iJ4(KpCei),0m0) (39)
A., Jo(Icpci") - iJa(,pei (),)

this gives

O-Ae 1 F*(K) e-2-" - A 2F*( -K) e-2 -•h2; -l" n= cp i" - -1pd .,0 1 d-K-tt,

" f A{ F( 1) - A. F(Kp- e-2Kd

!, pc:•jf 0 1_ - _ ._ -: i I-,--. A•. (40)

Hence the equation for k, to give the required circulation 2rk'c/ sill 0, is

A if*(K) o-2K(I - A 2f*(- K) e-2kb

k (A1 j( f K) --4. f(d)} e-2Kd

-lp, itF . ' ) 2-. K d" d K, (41)

with A4, A given by (39).

We substitute (35) in (41) and also use the power series for A 1 and A.,:
carrvinug out the integrations and using the same notation as before, we findI

k- = + kpro sill 0 + I. p 2r,(k cos 20 + B1 ) - p2r'(k + Bj) cos 20

- - p'.(k sin 30 + B1 sin 0- B, sin 0)
- • p4r3(k cos 40 + 2B 1 cbs 20 + 2 B., + B.: cos 20)

+ 3p
4r•(k + 2 B 1 + 2BX + B3 ) cos 40 + .... (42)

Finally we substitute from (36) and solve the equation for k; we obtain

k = 1 +alp+ap 2 +a3p 3 +a 4 p 4 +

a1 = ro sill 0,

a., = r2 sin- 0 + r1 COs 2 0 - 2r, )os 20,

a:I = 1'' sin 3 0+ 2r 0 rlsin 0 cos2 0 - I r., sin 30 - 4r 0 r sin 0 cos 20, (43)

, = r4 sin4 0 + 3r2 rl si.1 2 0 c.:0 - I r0r2 sin 0 sin 30

+ 1r-(3 - 6 sin 2 0 + 4 sin' 0) - 1
1

1r:j(2 + 3 cos 20 + o,;s 40)

61.2 r' sin 2 0 cos 20 -3, r't .os- 0 .s 20 + ,r- . 20 + 1r' cos 40.,

7. \Ve Illav now obItai n tiw lift ft.mni (1!) and we express it in terms of
the c(rneslpoIdil,, lift in an inti iite streamn: that is, we write

Y = L: Y,=ý L,. 2n/,'-p sin 0.
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186 T. H. Havelock

Using (3N) in (11) we obtain

L/L,) k + k2pro silO+0 , ± -2r1 lB1 sin2 0-- p3 .(2.kB,, cos, 20 - B2) sin 0

- jp
4r3 (kBa sin 30 - 2B 1 B , sin 0) sin 0 + .... (44)

Substituting from (36) and (43) and collecting the terms we obtain

L/Lo = I +blp+b 2 p2 +b3 p3 +b 4 p•4 ...

b1 = 2r sin 0,

b2 =3r~0 sin 2 0 + r1 - 2r cos 20,

,= 4r sin3 0 + 2) r1(2 sin 0 - sin3 0) - r. sin 0 cos 20 - Sr0 4 sin 0 cos 20,
b4 =5ro4 sin 4 0+ 3r2 r1(3 si- 0 - 2 sin 4 () + r - 3 cos20

0' 4 1 20c 2
-Jror 2(7 sin-2 0-12 sin 4 0) - 1I Sri siii2 Ocos 20- 3r, r, cos 20

3r,2 cos 2 20 + 3r. cos 40.

(45)

The integrals given in (33) and (34) give for the coefficients,

7T
ro = D tana,

(IT
r. = 2(T see- t, a, (46)

2 d)
r3 =-2( 4, see' at(see" a + 2tan"- a),

772 7T4

with a = 7(b-a) 2d.
We may derive limiting cases from (45). If we make b and d infinite, we

have a semi-infinitc stream bounded by an upper Islane wiall: the liimiting
values of the coetiajients are then

1 1 1 :1
ro = • r • ., ; r,, . r .' r - o (47)2 ,1 ' 4a•• 4at "NO •
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The lift and moment on a flat plate 187

With these values we obtain

L/Lo= I + a ]SinO+ - (+38in20)

+siO+sin12pp 4
1

02- 3 ( sin30) - 1 ] (3-13sin20-22sin 4 0)+ ....
+2 a 512 a!

(4 S)

This agrees with the expansion which may be found by the same method
applied directly to this case. If we make a and d infinite, the stream is
bounded by a lower plane wall. In this case the coefficients have the same
numerical values, but ro and r 2 are now negative, and we see that the result
is the same as (48) but with the terms in the odd powers of 2p/a negative.

Another special case is when the mid-point of the plate is midway be-
tween the walls, or a = b = 4d. In this case

ro= 0; r, 772/4d 2 ; r 2 = 0; r = 7T4/8d 4;

r' = 72/24d 2; r3' = 7T4/240d 4, (49)
and we obtain

L/L0 = 1+ -- )( +(7 3sin)20-22sin4 0)+....

(50)

This agrees with the expansion given by Tomotika (1934) for this parti-
cular case.

In general, calculations may be made from (45) and (46), and the variation
in lift examined as the plate is moved across the channel. The foilowing
values illustrate this for one particular case:

0 = 100; 2p/d = 0.2

.a/d 0.3 0.4 0.5 0.6 0.7
L/LO 1.071 1.037 1.017 1.002 0.989

8. We now obtain a similar expansion for the moment of the forves
about the origin. If Mo is the moment in an infinite stream,

M 0 = rTpc,-2 sin 0 cos . (51()

Using (35) in (14), we obtain, after some reduction,

M IMo = B, + 4,pro B, sin 0 + 21.1p2 r, B. ,in2 0

- 4p-r•(kB 2 - , B•) si" 0 - • jAr,43kB:(sin 0- 4 sin3 0) - 2B, B. sin 01

- j pl)r:(4kB4 cos 20 - 2B, B3) sin-2 0

+ p4r.'.(kB 4 - 2B, B 3 +2B2),;in 2-)cos 20 + .... (52)
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188 T. H. Havelock

Substituting from (36) and (43), and collecting the various terms, we
obtain

M/M 0 = 1 +cPp+c2 p2 +cpC3  c4p3 -+- .... (53)

c, = 2r0 sin 0,

C2= 3rgsin 2 O0+ Ir l (1 +4sin 2 0) -- rl,

c3= 4r3 sin3 0 + r0 rj(3 sin 0 + 2 sin 3 0)

- jr 2 (sin 0-- 8 sin 3 0)-- 2r°r(3 sin 0•-4sin 3 0) (54)

C4= 5r04sin 40+ 1-r2r 1 sin 20- 2ror2(sin 2 0 - 3sin 4 0)

+ Ir2(1 + 14sin 2 0- 12sin 4 0)- -r 3 (1 - 8sin4 0)

- 3r• r,(5 sin 2 0 - S si,41 0) - r, r,( 1 + 10 sin2 0- 20 sin4 0)

+ r•2(1 + 6 sin 2 0-- 16 sin4 0) + 4r,( 1 -,t4 sin1 0).

When b and d are made infinite, this reduces to the expression for a senii-
infinite stream with an upper plane boundary, namely

Mo= 1 + ) sinO+.I 3`Y) +(1 osin2o)

+ - ' (sin0+4sin3 )- 5) 1 2( ) (1 - 14sin.0--40sin'0)+ .... (55)

There is also a similar reduction for a lower plane boundary.
With a = b = Id, the mid-point of the plate being midway between the

walls, we have, from (49),

J1/_110 = 1 + (- 1 + 6 sin12 0)
48' a/

,2T3040 (p)4(1 174 sin2 0- 170 sin 4 U) +......(56)

For the general case, we have (54) with the coefficients given by (46).
As a numerical example, we obtain the foliowing values:

O = 10°; 21p'( = 0"2

('d o.3 o04 0.5 0.6 0.7
31 .J 1.059 1.03o 1.010 0.994 0.977

FLAT PLATE BETWVEEN FRIiE SURFACEI:.

T.,. "lbe',se resuilts may easilhv be 1m )dified to ,ire aeipprqximatt z 'xpressilis
rheal tile stre.a in is boxinled by parallel free surfaces. At a free surface tile
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The lift and moment on a flat plate 189

resultant velocity is constant; we shall take die usual approximate form of

this condition which amounts to assuming the deformation of the free

surface to be small and making the tangential component of the fluid

velocity constant.
Thus, instead of (2), we have the boundary conditions

Rý-=c; z=x+ia; z=x-ib. (57)

Followving out the same process as in § 2, the appropriate form is now

dWz in+1 ! A, 4 F* (K) e-iKz-2K -'*( -F* ) eiKz2-K
=C + 0~ (KI- '-K

F( - K) ---iK2Kd - F(K) i..-2Kd ,(

-7 F- -K, (ss)

and it may be verified directly that this fbrm satisfies the boundary con-

ditions (57).
It follows that the expressions for the lift and moment are now

0 F(K) F*(K) e- 2
Ka - F( - K) F*( - K) e- 2•b'

1' = pcF- 21rpJ I e2Kd -dK, (5-))

"0 c 7F'(K)F) - F'( F*( - K) e-2Kb
II=27rpRi IcA, -I ,o I F*(,-2 -2K) -* dK

. ___0 ____- _______ ___-d . (60)
f {-tF(K)F( K- F(- K) JF(K)} -K

It is clear that we may write down the expansions from those in the

previous sections by replacing each coefficient r,, by - r,, and leaving the

coeflicients r,', unaltered in sign.
hlence, insteaid of (45) we have,

L, Lo + +bp+b p2.+b 3 p 3 +b4 p4 + .... (61)

/) = - 2ro sin o,

I, = 3,, Lsin n2- r, - 2r," cos 20.

/):I : 4 ,':,] s i ,1 3 + 2 r o r l ( 2 S i ll 0 _ ,in 1 3 t))

r- '., shi 0 cos 20 +- Sr 1 r"sin 0l cos 20,( (62)

0 u S 3 sit-0 - 2 s1i U) ,, r:, (o.,. 2/i

- r.,(7sin-'O - 12sintO)- I sr~rI si'Oc(,• 20

, 3r, r, cos 20 + 3r- c21OI 20 -t 'i r: (r. ' 4'.
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190 T. H. Havelock

WVith b and d infinite, this gives, for a s8Iui-infinite stream• with an up;lr
free surface,

I(2p)• 1 (2p)2
L/Lo= i -- sAin0- 6- - ) (1- 3sin2 ')

+1 (,)3 ]_I(2p '4
+ 3) -9)(3 sin 0-5 sin3 O)+ - p- (6-4l"n2 U+4tisi, 4 O)+ .... (653)

a 512 1

With a = b= d, we obtain

L'Lo= 1- -- (2 -sin )

+ -•-- (64 -- 97 sin- 0 + 66 sin,4 0) + .... (4)

For numerical comparison, we take the same case as before, and obtain
the following:

0 = 10°; 2p;'d = 0-2

a/d 0-3 0-4 0.5 0.6 0.7
L/Lo 0-924 0.951 0-969 0-983 0-994

Similarly, for the moment, we have

M!Mo= 1+ C P + C 2 p 2 + c 3 p
3 + c 4 p

4 +...

c= -2ro sin 0,

C2 = 3r• sin 2 0 - Ar,(I + 4 sin2 0) - r',

c3 = - 4r3 sin3 0 + ro r1 (3 sin 0 + 2 sin3 t)

+ jr 2(sin 0 - 8 sin0 O) + 2ro r'(3 sin 0 - 4 sin3 0),

C4 = 5rs 4  lsl.,5_-rtj sin2 O- 2-ro r2.(si 2 0 - 3 sin 4 1I)

+ rl)(I + 1 4 Si'-2 t)-- 12 sin' 0) + .r( 1 - S,, sin4 t))

-3r? r,(5 sin"2 Si sin 4 ) + r, r( I + 14) siW'I - 20 ;sin 0)

+ r-2 (I + 6 sine 0- 16 sin 4 0) + ýra( I - 4 sil l0).

With b and( (I infinite, we obtain

/ma 1- 21) sinll 0 (1 I 0 -2Sl- x2-0))+ I op )(7 "i, I-12 sii 102( a 32( a 12,", x

+5• ,l- sin24 51,.inO)
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The lift and moment on a flat plate 191

and with a = b d, we. have

MIMn = 1 _(2) 2 ( 1+3sin2o)
24 /dn\

+ ('-'P (3) + 237 sin20 - 395 sin 0) +.... (6s)

For numerical comparison with previous sections, we take the same
numerical case:

0 = 160; 2p/d = 0.2

a/d 0.3 0.4 0.5 0.6 0-7
AM/Mo 0.938 0.965 0.982 0.998 1.011

PLANE BOUNDARY AND FREE SURFACE

10. Although the problem is not, perhaps, of practical interest, we may
note that the same method can be extended to the case when one boundary,
say the lower, is a rigid plane while the other, upper, boundary is a free
surface; we note, again, that for a free surface the boundary condition is
taken here in an approximate form.
. Considering, as in § 2, the image systems formed by successive reflexions
in the two surfaces, we see that these infinite series of images now consist
of terms of alternate signs; summing these series we obtain

dw =+ in-In A co F*(K) e-iKz-
2 Ka + F*( - K) eixz-2Kb

dZ- =o 1 1 ( + e-2 #r

f ( F( - K) e-iKZ F(K) eks I e-2dK
+ 1+ e-2.ad dK. (69)

It may be verified directly that (69) satisfies the boundary conditions

dw
R-d- =c; z=x+ia,I

dW 1 (70)

14 = 0; z=x-ib.)

The expressions for the lift atnd the -noment are

= .2 F(K) F4(K)C -2" + F( -K) F*( K)e -2Kh
. . ..- -d -, (71)

S2PRicA- F'()F*() l+e "(d d)F*(- K)e- 2Xh

_ __() P(-,-K)- F'(--K)_ '(K))ep-"d
452 + 1 ,-2xd - dK]. (72)
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192 T. H. Havelock

We usC the notation

Jo
* , ( r c- --: • , 2rh

(73)

BY (.-11l'u'isoi with tile expressions ftCr the flat dlate b)ctweel two rigid
Ioiuiidaries. it is easily seen that \we maY write dhown the correspondingt

results Iby rei)Ia.ing the coefliciemits /,, by - and r,' hy -by

Thus we obtain. mnakinig these changes in (45)!

L Lo = + blp+b)p 2±+/ 3 
1 ±P+b41,4 +

b - 2=-2 sin 0,

e = :.j sin 2 L - ., + 2s, cos 20.

b = - 4s: sin 3 0 + 2,osl( 2 sill 0 - sin3 0) + 8, sjfin 0 cos 20 - Ssos'1sin 0 cos 20.

b4 5"S,1 si 4 
t -3s's8(3 si- 2 (-sin4 (j) + I 0 .1 3 cos 20

-8082(7 sin 2 0 - 12 sin 4 Li) + 0,s~s sin 2 0 cos 20 - 3s, s, cos 20

+3,s' 2 Cos" 21, - s3, cons 40.

(74)
Similarly, for the moment,

M, MO= 1+cP+C2 p 2p+c 3 p 3 ++ C4 P ....

cl = - 2so sin (),

-. 3x~si2 Si j 4in(Ii-z

c:• = - 44 sin3 V±+ 0s,(3 sin 0 + 2 sin (I)

- 4/,v1Sin +V0- 3 sin l (t) -- ,- 1 (3 siI 0 - . sinl (I), (70)

= 5, 4  
-I 2, S:ll" -. ,e( , .siti2 it -- :1 sin4

13 )

S i~( I 4- 14 sil lj-- 1- 2 .in 4 eI) - .:i( I - S sill' 0)

*3sjV (.5 sIll VI - 'S sinI 0) -- q. ( I l 1•2.,i 0i - 2ilj ill Vi)
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From (73), the ,oefficients are given by

,= - see •( tai" tn),
2d) 1. (76)

3 ('7)'sec ý tainl (5 see + tan2 ),

= 7T2 i4,d2; v' = 77T4/1()201,4,

with x 7(b-a),'2d.
It may be verified that if wre make 1) and d infinite, or a and d inlinite,

these expressions reduce to the tbormer results for a seini-infinite stream
bounded, respectively, by ani Upl er frie sturface or by a lower rigid pahne.

For the pIarticular case, ai = -- Ad, we obtain

L/Lo= L,-)ý,( t)(i2p) 7T-) + lSsin 2 0)

+• (si 0 14 Si4 13)
1192 di sni

7T4 4
T218 0l+832sii-'O-3712sin 4 I0)+..., (77)

1 7 t 2 S i ll ( 2 0 s n -0

and A, .1 = 1 -._ ( I + 36 Sin12 1)r

r TI J 2 1p z 3 .
-- (_ )(sin 0 + 32 sin:' 0)

7T4 "2 .4

I I + 936 sin 2 L0- 128Osin4 0) +.... (78)

The f'hlowimi numerical vahues may be com)pare(l with those in the
previous sections:

0 = 10; 2p/d = 0"2

U (1 0"3 0.4 0-5 0-6 0"7
L Lu 0'924 0l.942 0.953 0.956 0.960
.11 .11 O.92S 0.943 0.949 0.951 0.948

1it t his case t he relative variation neair t hI middle of the chanmel iý munch
less t hiatt \% lie t lie boundaries art of tilte same kind.
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194 T. H. Havelock

EL•1 P'TI( (CYLI N DIER

11. Tile expiressions fora Hiat plate have been obtainied as limiting ctiases
of those for an elliptic cylinder. \\e shall con.liILr now the general cawse
when the cylinder iA in a stream hwt(tweeni tIane parallel walls, and wve shall
examine the moment of the forces: further, in ordler to siimplify tile calcu-
lations, we assume in this case that there is no t-iiculation.

Referring to § 4, we have to deterniti 1`(1) froul (27) and (2S) with
1, =0.

Tile process of approximlation is Tarried out as b-fore, a.d we rec(Jld the
result uJ) to terins necessary to give tile 111011 ilt to tile Ie uired approxi-
nmation. We obtain

F(K) - •cp( lcp131B " -'- 1 K2 !ip2B.c21-f -tlic:p 3J.ac'i

6- 'K jI 4('4 ± 4ipHI? +...), (74j)

= - /--io + 41 p2r1(2qp,, - q', it) - " ill)

!"1 • r, (.P3,0 _ q ,' i _ (IC 30,, + (12• C ,,,)
-, ,-j'(3{ ( o"+ - (I -t- q2 ) (i" + 3i)

* iiP'(I ) 1 q+ 3q - q (3:+ q2) e"
*+ ,1,I- •p r jt" 4qc:' ""- (1I + 312) (, ill-_+e :1,"") -, 2,1(1 -1-q-2), "

+ 1 PLAN •. , q2-( '",,, + q( .- o"-) ,: " - 2qc-,v-" + q,. 3
i ,ojr _

-J-- 1 j 4 ,'( 3i" -4- q~v' a' _J_~ ($)

B 3 = eill - q( - i•_ .+.

B 5 = e i "-- qc + ....

B. and B. are of order pt and do not wlntrliaitwt to Lhe value of the monlent
up; to te'Ilis ill p/.

Using (79) aid (S0) in (I I), we hlitain, after sone reduction,

MJ rPC 2 p 2 Sill 0.( = I + P2 1,• -1 + r'( - 2 (0, 20)k

+ I' p-1 ' "I. i 3qo) +rI -rq -2-4coss20)+4rr,(I + 3qy--'cos 20)

+ 4r 2 (3 + 3N2 -- Sq cos 20 i 6vos 4.0) 1 2rQ(3 q-- Sq c.t)o "U-- 0 cos 40) + ..

In this vxl)plosi(m. 0 is t lih anogle t he maj(,r a xis Inai kes wit 1i he direction
of the st rea ii. (I. b art. t hlivista .,S (oft hl t i(.,it ref t lit ellips(c from( the two

"%k alls•, and tihe eoeflhieiits Ir arc ,i\% ll ini (46;): NtO lir. Mi',. b' arI, tihe serni-

a xs of the (hlie v .-. m% iac m , v I -- ' b"-' a•d q (vi' -ý b') (i' -b').
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The lift and iontent on a flat plate 195

The moment for a flat plate in a stream between plane walls, and without
circulation, has been obtained, by conformal transformation, by TonIotika
(1933), who also gives an expansion for the case a = b . d; it is

M/MIo = 1 +, )2 (1 +2sin 2l O)

23040 jJ (I 1 - 106 sin 0- 66 sin 4 0) +.... (82)

If in the general result (81) we put q = I and use the values of the coeffi-
cients given in (46) and (49) we obtain again this particular result.

We shall use (S1 ) to illustrate one point, namely the change in the moment
when a flat plate is replaced by an elliptic cylinder whose major axis is of
length equal to the width of the ))late; thus we examine the effect of rounding
the edges of the plate and giving it a finite thickness.

To simplify the calculation, we take the cylinder in the position given by
a = b = id. Then (81) gives

M/ifpc2a'"'sin 0 cos 0 = A -i I l (' )'(2q - cos 20)

7T4 A2 a' 4
+ 2-5 -- t99+ l68q2_(300+ 44q)cos20+ 33 cos40}+...], (83)

23040 (d)

where A = 1 -b' 2/a' 2 , q = (a' + b')/(a'-b').

We begin with a flat plate of width 2a', and then keeping a' constant we
increase b'; to simplify the calculations we have taken the position given
by 0 = 45' and the following table shows the result of the calculation for
various values of the ratio a'id.

a'/d 0 0-1 0.2 0.3 0.4
b, /a,

0 1.0 1.0165 1"0673 1.1561 1.2885
0.05 0.9977 1.0159 1.0714 1.1690 1.3149
0.09 0.9917 1'0113 1.0717 1.1734 1'3361
0.13 0.9830 i.0038 J.0679 1"1799 1.3484
0.2 0.9600 0.(829 1.0535 1"1773 1.3640
0.5 0.7500 0.7780 0"8655 1"0227 1.2664

For an infinite stream (a'/d = 0), this process of increasing the ratio
1'/a' with a' constant gives a moment which steadily decreases to zero when
V = a'. An interesting point which arises from these calculations is that in
a stream of tinite width, %N ith plane walls, the moment rises to a maximum
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before decreasing to zero; with decreasing width of the channel, this maxi-
mum increases in amount and occurs at a higher value of the ratio '//a'.

SUMMARY

Tile paper gives a new treatment of the problem of a flat plate in a stream
bounded by plane parallel walls, including circulation round the plate. The
plate is considered as the limiting case of the elliptic cylinder; an integral
equation is obtained, whose solution by continued approximation leads to
expansions for the lift and moment on the plate. The solution is modified
to give similar results when the stream is bounded by parallel free surfaces,
taking the condition at a free surface in an apl)roximate form; and a further
modification gives the case when one boundary of the stream is a plane wall
and the other is a free surface. Tihe problem of the elliptic cylinder in general
is also considered with reference to the moment of the forces when the
stream is bounded by plane walls and when there is no circulation.
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Note on the sinkage of a ship at low speeds.
Byv T1. 11. HIa velock in Ncwciistle-on-Tyne.

Zusammenfassung. Unin einen Anhalt fin- die Zunaliune des Tiefganges eines Sclijifes
hei gen ogend k leinen (icschwindigkviten zu hahen, ersetzt Verf. den ejutauclienden Teil des
Sclijttes durhelinci liilhellipsoidl, dessen ehene G renzfliiche mit den lHalbacbsciu a und b inl
(Ter HaIlle dei Wasserspiegvls Iiegt. Uiii thescr Ko4rler nimint cr vine I oteiitialstraiiiuig all,
ffir dlie dlie Wasseroberfliiche ehen hleibt. Aiis (lieser wird dlie Ahualime Q des Driickes nach
oben hereclinet und die hunanime h, des Einsinkcns iiiittels tier Gleicliung Q =I a b, g h
bestiinint. D ie so gefundenen jiunirischen Resijitate stimnien init ilenen aus einer enipirischen
Fornel von Hior n for wirkliche Selmiffskiirper dier (irfiefnordming nacli gut fiberein. Weiter
gehit Vc'f, amif eine andere H or it seliv Niilierungsformcd ein, die es erlaubt, aus dcii Einsinken
die Zunahaic des Hceibungswiderstandes eines Modelles, v'ergli~lcii muit dem euler ehenen
Platte, abzuselhfitzen.

1, The general problem of the position of relative equilibriuim of a ship in uniformi
motion is at complicated onle. and the following note dleals only with a simplified form of the
probldem suitable for low speeds. It is generally assmued that ait sufficiently low speeds
the fluiid motior apiproxiimates to the streani-line flowv round the ship, neglecting tli(- distur-
bance of the surface of the water; the sinkage is theni dute to the (lef'ect of v'erticalh pressure
Caulsed by the fluid mnotion and should tit proportional to the square of tile, speed. TIhere do
not secmii to hmave been tiny calculations madel to te*t. whether these assumptions lead to results
of thet right order of nrngniEMCud. Stich calculations miighol be carried out numnirically for
ordinary ship forms, but it is suffivcint for thes presenit puhrpose to take a sinmple form. We
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a1M5IlmlI the s.Ialhilelg.'l flail 44 till' Ship to III- qdipIij idlul. Till'-"l~ii If tl-cl i 31.4-si33l(ldi~

dc133 t of, vv3itiva~l and5II3 ~33 114.11.4, \\'4. lllt~liji a (3'i't1miI 3'ijlui\ lfit 'inka-f-,'

The~lI( il1.lill 1 iti 'sm liltnst liý 1 4.S ue V iiI a jiIYAox i uit 1)1 iruni la 3 ii; III-014)I' #I ) vsi l~4 ate till-

1i44i1 l itd 4.1".0Iiiss ils 14-4st~j1il liii I.,v a ll approximate1 fn'wiis t4 43il3a1i i\\ n til iiiiliiI'l. a~t 1(Ni

I I14-w( I'( ilt., and13 withi Itillil exper'illliltI (lt aldaa.

2. A *oidid. wvlu~s4 stirfatll' is -. ivo-ii IiV

lI lv)vI IgI th11.11ugh aI it ilfiliit" 6lijii with ve4IlwitYV paral (.1' to) the axi~s (Ox. The3 vo-l33itY
p4.1 6At'ltL of 14' thefltid' 3I13311441i is' giiver by

4- +. 11 1,.2z + 13 , 2

ill which (xr. yj, Z) are givt1)l ill terilli' of' ()lt113)g3411 CSrl-lnatl's 11. 1- 3) hv

- 3 + 2fIl 1~ I 11 I

* I.2~ . (3).

Ili theuse coordlinates thwe. llipsoid (1) is gS ivII bY ;4' 0I all(] We lia\Iie also

"3 ~ ~ _ (1- + (1~;,~ .
2 

+) f2 I)(I

1F, E beting1) elliptic integrals with p31anafinters gi'iofl h\V

Si i 'I.' Ia2 C.~ ' il (1

The~ flui'l p~ressur~e is gi vein I.)
of3/ 1I-o)' 1 2

i r< )(-+ j -- -. 9q=P T
3 

11 (1 ()-.................(q

If (1, lit, it) are the dIirectifln-ensinl's of thev norimal at all.\ polint of till-I elipsoid] thei r('IjiriI4(

totall (lefert of resolvedl pressure (Q is givenl b.\

till' initegral lit-ill" taki'n over the half, Surfuive of thll ellipso~id vll,4 tillnI( sone 53(4,3 theo.i/.jilaiie.
Ising \vvi.'l-kniwn piper433tites of the clim-irljlattls 11 ,r las givenl, foll e'Niililll(, ill LU 111 1's

I IvNd'dY 11vna1inis, 1). 1I),it cal11l~t be III sl\Ii flat, oil till,- llipIsoid 0J ( we. have

o(/ V 2' b` 'c " (a2 + i )I I ` - v
c) x 2 (w-- b") (aC'

+ oil . 1 +1  
It2 .1 + ~ +. 3"(0 +- + I

nits ~ ~ ~ ~ (3 I t4 1 / dudv

4 it")2 I, c' -- b" I IIt+ d W 4i~ I (it -4-(h +~~g ~4p pb2~

1) 113 44tiri itvi-n. 'I'lgg. der I~'Leife der Sh'iv'tuh~~iialu.343 , 5 24.
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2en e we at v I o c k noti- on the sinkagn- of , ship :Q low s i s l. 2 !e Nr Much.

Hecnce we obitainl

- _ (, '' '-- , -I--- -+ Y-.-,f) (), ) -I 2) a, 12 •+ + 
1  +(a b, ) H

(2u 2-, (& 1) (a! -~CV) 111 ((12 -+ '1) ('11 1. ) (at'* +. j,) (v -, )1
_ (i" ,.) (,' /,) ]' 12

"((12 + ,') (1)2 + -11) (at' + 1,) (,' + T,)

Carrying out the integrations, and writing

0 -,!l'ab/h . . . . ..iI),

we obtain,, for a > b > v.

g h 2 + ,, ( 1 "V a (a`+ a ') 6
2j2 I + 2~ (a +' h &` c1)

a/ ,o -2 .,- a,,){ (+ ±,) ,,' •'} + (1,, .. Q-(-;~ i) (' c2'(2)

2 C2 b ('1 c2)'11 -- (1 (b - c')'. .

(2 ,,)' (a1
2  C')312 (bl c

2)' lg (1a
2  c) '"2 + c (1,' ..2)11..

3. We require also the corresponding expression for all ellipsoid with a > c > 6. This
may be deduced directly from (12); or, alternatively, we may proceed as in, the previous
section but replacing e 4 S in (7) by w (S, given hy

j I (i" •.)( ,") P"~ ,a, d, 1}
mdS - T I C V _c2) (b2. .)(a1 (,1 ) ((1 +.) ((.2 + I) (c_ .+)j ' p (1....(13).

After carrying out the integratioi ;, we interchange b and c so that we may express thle
result by means of (11).

We obtain, for a > c > 6

y-h ( 0 2 + A, be' c , (a' +it b c"
ct,2 2(2 (1") ((t ±61) ((l2 -e') 4 . , a 2 (uatb (+ b (I)

C! be 2  
2 )(.2 ..112

(2 - (0)•(,,,_. C2
):,11

2 (_ b2 ) ,,- arctL n , )(I, ,+ '.2 J. .
In this case, instead of (1) and (5), .ve have

",0 (,a _- c2) (u` - b.),)

sinn -- ((,W' -- c) u12 b2)}k112, sin l ("l - b')'''/a

.1. The prolate spheroid may be considered separately, or way hie deduceld from the
two previous cases. Taking limiting values, both (12) and (14) reduce to the expression for
this case.

For a > b; b = c, we obtain

L' +,, a2 -- , ,' K,, j it , + 2 h)
U, , - ,,o 2 '2 ,,,,) (it + t,' a, 2 (it + ,-)'. ...... (1,)

and in this we have

(1o 0- +a 1 ~ - e e0 -- I1 - V~ia' . . . . . . . (17).

5. To apply thoiss results to the problemn under consideration we imagine a ship for
which tihe immersed prwtion is ellipsoidal, the x y-plane being the water surface and tire sides of
tile ship ahove Waier being vertical. O)wing to tile defet of buoyalncy, which has hlieer
denoted by Q, the ship will sink in the water. This will, of course, alter the fluid motion;
but for approxinato conmparison with experimental results, we dfinie the equivalent sinkiage
h so that Q is equil to the weight of a volume of water of height h and cf' cross section
equal to the section of tile ship biy the water surface; that ik, h is delinied by (11).
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11, the 11 , 1 wt I II I an d dc raft off tic shIip aro 1I.I 1) Ownitv~v h 1, :2 (
BI -- , 2 .1) - : fr 1; i , -.- . :2 1) wr tico I v xjoc inii ý 112),1 1 n I Gi Iu~ l I -1c'4;P t iN t T I f,

I1 (of25

2 .0 V113 .0231
3 A N;l2 .03 1 IS
I1 A I7~ G : 1'.397

l icenceasucn'4 slinkig 4l~e -1, sip ii esat, II~w siwedik has Ive4*l) ailak~f1 d Ifeu lioha rn
Nv~lto has giv ell all eoiricjikA fior'itula 41rivelIa ~all :cvrage Iroici avacilalIV dIatac for niacny
liffereilt forcus of, codl. Ilis. expl-vE5Hotc for till 'minka-f is. ill the presetit n)otationi

Whlere b, It, 1) are leii I tl, Iieamc and dlraft r(5p4(etivelY. Imni 1P is the prismativ cm4fticftnIt of
tlhe form: the formula is valid, as anl average,. for suiitable ranges (if these, paraniiitccs.

It Sl1ilild lw nlotedl that this formuiila is for actual nicasured sinkai_,v, and isj prlnblkilly

derivedI fromi velocities rather highter than those for which the( pirved'iiig simllel valo4Iilititill
is valid: mioreover, thle elliPsoidi is not one (or tie ship fernis included inl the daLi. Hocwever
we ncav use it to test the ordler of magnitude off the result-S. If we apjilY (1,S) to anl
ellip~soidial formc with 1,111 = and BID/1) 2, we obtain h = 0.2I t)'4s3 "!gt this voi iltiaix's NWIt Ii
the value 0.0231 7V2 /g for this case' given iii Tabl 1.'

HIor n ) has suggested uising the sinkage at low sp'eils to estimuate thei' ilelerase~l
fri ctionald irag fori a mmod el comp a red with a fl at plate ; hiis forinmulIa for the I 4rco i t agi Inc *rease

ill the resistance R? is
1(N)J Rile=~() 2M h/I 2. . .. . . . . . . .. . . . . . . . 1)

For the prolate spheroid with Li/Bý 8, thme valute of h in Table I gives, accordinmg to the
formula (191), an increase of 4A~ per cent in thoe resistancee.

A t sb erg 2) has recently' determined tile resistance of a submerged prolaite .4pheroid
experimientally ; Ile gives two values for the ilicrease. niamely 5.2 per' vent awil :17 per cenit,
the smaller alebeing obtained after applying certain correction-,. A it shEr g also
investigatedl certain othier surfaces of revoilutio~n. for which the velocity po~teintial is givenl by
aI source distribution along the axis. lie gives numerical valtiis of the ordiniates of tile
surface and of thme theoretical distribution of veloeitY along tile contour; from these, it is
possible to evaluate numerically the integral we )I 1ve (lenoted 1iY Q inl the preceding sectionls.
Taking, for examplde, the valuies given by A Ili , s b e rg for his model It' 12.57-, we obtatin
approximcately Q -- 0.02984 a T (area of section). 'I his gives anl equivalent sinkage of 0.0.284 ?-r/
and, accordin~g to (19), ani 'increase of resistance ,! about .5.7 per centt; the~ va&lues deduced loy
A inits berg from his experimiental results are 7.3 and 4.9 per cent, the latter beinig tile
4-orretetvil value.

It is well-known that in models of this type the nmeasuredl distribution of pressure over
the surface only differs appreciably from the theoretical value near tIhe rear end of tlf, nmlodel.
Hlenei the effect of this divergence up~on thne resolved vertical ptressure will only be it small
correction; taking, for exaimile, model 1R 1257 and using A ni ts be vrg's measured valuies of
the presure instead of the theoretic~al values, at rough approxinmation gives at factor of MUM~2
instead of 0.02M4.

7. S um In a r y. The sinkage of at mtodel at sufficiently low speeds is assinmnet to ble duet(
to stream line fluid, motion round the submerged part of the model, neglecting ithe disturbancee
of the water surface. Taking ail ellipsoidal form for the submerged part, exact expressions
are found for the total defect of vertical pressure and hence for a ce'rtain eq~uivalent sinkage.
The resuilts are compared numerically with available dlata and are' found to lie of the right
order of magnitude. Further, reference is maide to 11 o r i 's appllroxilmate fornmula comiinectimig
the sinkage with the increase of resistance oif the imodel 'oimpjaredl with thalt (f at flat plate.

11 Amiii te rg. .labrlt. 'her 54Et.EIE~hc.1 ~tsitcpl .r liti. :114, 193'., S IT".
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From 1he PigrLOSOPEEIC&L NAGAMrNE, Ser. 7, vol. xxix. p. 407,
April 1940.

WIaves• producc~d by lHer lollittyd of i Nh ip.

By T. H. HAVELOC1K, F.R.S.

1. Till: first part of, the following i pap'r deals with the surl-fie waves
pro(IdulcI by all ellilpt j.\vlic ( lc. ir at tilt pdate. sill Ilnerge(l in m\ater
and performing s1mli I liil t, 01, I)r tationul s(.ill(atin rl.;s The seMcow
part Cl)Itains a short discu.ssion( 1d tile energy dli-si patel ill wave 114 iP' IIl
b a a rolling su hip, to Othclr with ' 11 estinatt, (i' the IllaitlittI(le •I " h i hi
Otfect (obtai(I'(l t'r1 tile preceding results.

Submerg'Ied Elliptic Cyli,iur.
2. The method adopted is to rclelace the oscillating body by Some

suitablC distribution of sourees and sinks or (o' doubllets. AltiLough
the analysis could be exten(led to three-dielfliol- pwobldems, we limit

1O(sihleratinl at present to twh-limensi(mil motion il a. frietionless

liquid. We begin with the s(4.1tio(l 1or al horizolnifal doublet wlhiih was
obtained for all oscillating eirular cylinder (H lavelock. 1J117). Tale
the ohigin 0 ill tile free sUlt'aile o)' deep water, Ox horizontal and U!1
vertically ulpwards. Let there be a horizointal doublet of, (os(illatitng
miOlent M clis (71 at thi, point (o, ---f) in tile liauid. Tme velocity potential
€ is given ny

Mx fK----c- ij'oI- -

with )l---x 2+(y4-f) 2 . The real part of the expression is to Ie takeii,
and, further, the limiting value wiheni the positive quantity ft tends to
zero ; this latter p)roc',s ensures that, at great distances ti'om the o(rgin,
the motion will reduce to waves travelling outwear(ls oil either side(. We
may write (1) in the form

NIX ~ 'r CK M K( f -Y).i)5 j KX._- M.__ + LI-t• Mxiat + KI f"t d-K-~intXl, (2)

rr2 r, 0  K-K-o- i/t ,

with r 2 - x2 + (f--) 2 and 1= = G'a//y, K 0 =a 2 /y.

The integral in (2) may be tr aimsfornIed by taking K to he a eomihiex
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variabld andlitgi~tn rolifiiisititalile cmiftmiirs a1econflin' a" X Is positivc
ne lv~ati'(C. We\c obt;6in. takiiiui th( r-cal 11al1t and miakii-2 It Zero.

lb (os at1 cos (atT2) Tm-U ",4 -

72K M (-os aTt KO COS K(f-,-!I) I;K Sill K(j '-q) i T~xdK (3)

the uppecr or lower sign.s- to he t aken accoirdinL ;I-,, sr is- poisit ive or iwtvative.
TIhe cmirrespni i 110i liti (cy Iitol -q7 is givell h\

(~i~ ~ -IL (Cat 7i- K011) - -;inl at

4 ý Sio2 2 (F"K (4)

TFI Ie first tiermi re presents t e I IV rVgrIlIhn Ivi rK\ý eS I Ic & i t iir t wo termIIs

give a loeal oscillamtion wholse niagniitudne (lil]il iiiishs \ith Increa!(~sinii,
di stance from tile Centro of, (istrll-ancev.

Similar exp ressions may v hi olbtained fo r a siurce of oscillat inill mag-
niituide or for a dloubllet with its axis in any direct (ili* It Iinay Ihe renwiaked
that fo r I dolibl et at it given point. ill the liquid. so far as the re(gitlzu-
waves are concernied the direction of tile axis affec-ts onily the phaise Oif
thne waves andl not their ampllitude.

3. Consider the motion produced by an elliptic cylinder moving throughi
ain infinite liquid. If the motion of the c-ylinder is one( of translatiion,
it is wvell known that the fluid motion is that due to at certain dist ribuntioni
of doublets along the line joining tile foc)(i of thle elliptic seetiofl ol tile
cylinder a sim-ilar proposition may' also lbe readily proved when thne
motion iý oine of rotation.

In particuilar, let the cylinder be moving -with velocity V parallel
to the minor axis of the section :let S. 8' be the foci of' thne sectioni andi
h thle distance of' it jont, onl SS' fr-omi the centre C.U The moment per
unit length of the (doublet distribution is

a'((12e2 -j1)*'7(n --b)........ . .. ..... ()

in the usual notation, the axes of thle doublets b~eing pnerpendlicular to S8'.
If the cylinder is rot-ating roundl C with ang~ular velocity to. thle moment

per unit length along SS' is

w(a-ib)hi(a2 e2 -hl2 )1,',, 2-(a -b) .............. (6)

the axes being perp~endlicular to SS'.
(1onubinlilig (5) and (6I) with a suitable value of V. we may obtain the

(list ribuitionl when thle eylinder is rotating about tiny point onl the major
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4. Suppose that the cylinderCI is wholly immnersedl ill li(jiiid with tile
a xis oI' the cylinder horizontal andl at ,, depth f below t lhe free suirlhcc
()I the liqulid, andl let. tihe c~limiler be makinig simall ro tat iomiil oscillat ionis

ab~ouit its axis. Let tile a.ngle 0 bet w(een thle imajor axis oh the sectioni andi
the vertical be given iby

0-ý--0 0 sill at .... (7)
where 00 is small.

For a first approxiinat ion we neglect thle effect of tilie free Silrfimcc.
The aiigiilar velocity vf tilte c~ ,i V lder is (70', cos ati, 1ii( 1 thle% elocityv poutenit iia I

is that (hite to a certa in (list riblutiolI of dloublets a long the instantaiiet ui"

jpo~tioii of' tile ma~jor axis. We :shall make at further appruoximiatioii Ii'01
small oscilIlat ionis and assumle that this d istribittioii is a long tile Iinca i
posit ion of' the mlajoi a axis, that is. tilie vertical t hroungh thle cenitre (P1 tilie
ellilpse. Thu.s we coinsideir tilie motion to be (11W to a1 (list riliut ionloI

horizonltal doublets of, oscillating Imagnitude a long tilie linie betweenl the

foci of the ellipse inl its mleanl p osit ion. Fr'ont (6)., the iiiomneit 1per'i unt

length at a dlistaneC h from thle. centre of'the ellipse is

27T(at-b)
the limits for h being ±ae.

We, replace It inl (3) bY this expression. write f+h for f, and integrate
with respect to It ; we obtain then the velocity potential fo0r the giveni
(list ribution when the condition at the free surfiace is satisfied Similad V,
from (4) we may ob~tain c'omplete exl)Iessimils for the, corresponiuliig
surface elevation. This conisists3 ot a local oscillation whose aimpllitudel
dimirniishes rapidly with (distance from tile cylinder, together wit h regular
waves travellinig outt onl either side. W~e shall examine here onlY tile
amp~litude of these regular waves ; from (4) and (S) the amplitude A of'
these waves, that is, the coefficient of sin (at -K 0X) for piositive values of a-,
is given by

A K ()0
8

0 a- h(ak2'-h,2)*e r(f+ h)dh

0 ,)o 0~, e2 (a `2 &iOf sin2 OCo0S oe-,o Co ed0. (9)

This ma ,y be exp ressed in termis of' the modhified Bessel functionI,()
a~nd we obtain

A 7r6 0i(a4-jb)i {KO~el 0 (K 0 ')- 2'1 (Kae)1cf. . 1)

11I' K,(11 is Smal,11. thalt, ýI if' thle wa~ve-lengthil is Ilarge compan'red with ti lie
linevar dimlenisionls of* thle cylinder, the first termi inl the expannsion of* (10i)
gi%-es,, as an apIproximlat ion,

A=- 17r(a --4)(o )IK3O "f~j~ 
.  . . . . . .
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Coiisidtet. a ce'I li Itei of' give vCVeil ihit (i diliniwki~ =w. u it ht inn yiiig IievaoIlthI
Ab Natuia liv. fbi' the vi('itelar cv litidel. (1) (1) tile distiiiliatiiy is Z('ii.()
It is 4l iitt,'tSt to witot that. swi'Ilie ajprfixiiiitiithi (11) the iiiadiiiitii

nave anti hi nle ("inus Or b A- U s its vluie King t imie neat] v tie the
vaime tiir tile limniting case or thle fiat plaite (1) 0).

Suppose that tile cylinder' bhas its 1118jill i1.d!' vcritic'~d. and is uiiakiii,
Iiineair l1(itT/Aiz1tal I tisýciliat~ioiiS ill whiCh tilie (Ii-] ,laCCIiieit, is dI sinl at. HI'clit
troi'i (4) and (5) the anipT)itude ot the iregular waves, is

2 7TK 0 W

z--b (12)

Ii KOWC is sillall, this gives, approxiiiiatelv,

Finiall y, ('niblitliig (10l) and (12) with (1 -(10(. we obtaint the alipyiilitide
]'or an(It ellti(,c(yliindl 1r wvith its nnikifr axis verttcal hi its iitean pahkoit ,ft
an1( niakitg snial I anigulair oscilhiat iots giveun by 0-0>s-'iliifit abou t t thle
tipperC end of' its matjor axis ; iii this- case wve (ilitajin

A 7T (a-b) 5KP<0̀ 1(l + b) I (K0(i() - 2(a+-- b + ( 1,c 2) 1 (KOM )}C-'7 K.f. ( I

For K0(IC 81ui011, tile firA terni iii the expainsioni is the sainme as (13) w~ithI

In all I liese (a ses tihe expre:s5~iie: take sin 1 fier formn is iii tilie linikinii g
ease of, Ole fiat plate. for' wbhtichi we% made b zero ; Ikutt it sin l~ bt iile noi ted

that, tilie hklea 'solu t ioni thlen impl iies ininfuite fluid velocwity at tihe udges
(of the 1plate. lInt artticulatri, coitsider a plate ofr height 2(s. unakhii i sinai11

a)sui ltiouisabout its ipper'edge, the eeiitt'of thle I date huhing nat a(lptIi f.

If iqpa is sma ii, the fRmt tem hin the exl~snliot of (14) gives

Aý7K'`1O-~ ................ (15)

IThis, wat urany iis eqjuivalent to i'ephiaeiig tlit oscililatinug plate lby a tsiigle
tloutliet, at its (Pint". [f, ini Midhhlt iOnij is Sit1,11i, We- maly tike WM N),
ais a first a pproxinuImttion for thle anpi lit itle ori thec regul ar'~a i~ A
situ ilar app1roxi~ntitioii ~ould4 be maide Fo r ai cylinder of any c'ross-sectionl,
uisin ith le (corrtesp onin g ittert in coefliieiet to l'Iinvar t iiit iot an i tile Inican
horizontal velocity of the cyl inder.

Rolhnyg Shi p.
Ti he expriiessions giveU ll in lie lii'it'ithi section are Lit p illi~iX iut itils

t ulita ide for Nw ltilk' sill ninetgreul bootiiies ;it is not lietnii.i ileI. ini genteiai,
to apiply theml to tilie oscillat iiits (i1' floatinig llodiv.ý,. The ;ippro xiiuiat ionl
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411 Prof. rU. H. Havelock f1% the

Usedl .14r the doilflIet, (1istribuit ion lose: accuracy Nvith di 4 iniii in depii 1 ' th
of1 tiil4ileigecit 41 the )(4 Imv ;ii liu t )vr, whet th 114 a~ ofit 4 thle 1 i 4 I
cuits the free surface someC of the expfressionis fo~r thle slittacc e (1t~io mtilt
t ake ~Infinite values. It maY be no 1(ted, hiowever, that suelt1 itifil it i(s.

01 iCera liv occur inl the local part (41 tilie distuirbance. t 1w ( expession 41 i It
the a mp litudle oflithe regular waves at a (litwv Sue I n tM bouly rinabiihti g
thlite.

Fortji lt-& rolling A1iipI the period1( isSuch(1 thIl tihe wave- ici g-ilI of t lie
correspond1(1inig waves is Iairge compared Iwit li the dr~iughit (IIthe ship. Thi jts
it we conisider( the anialtogous p~robllem of1 then I itlUng fMlitv whhitsli ilj Ijl

ed ge ill the surface, the qjiia t it.\ KI((/t OF the 1 t'~ViMIt 415Sc~ti(l Iiis stwll id
ill 1111A 4tcases a)ibot 0-1t~I. Illti the.e (i'(itl-C11stiileeS. ttealtilg tile 1114 0' iil

astwo4-d(lcltisj4ialw . we propo4Ic to tttgii't thle shipij s aI i sinigle t45(iliitug,
41111uhiet, alt it Ie pthI .~l is smalaI(4l c llipmet with ti tle w~i XC-leul'ig I
thuis. iii aii (4). Nve ti ke- 2-K(N faM n s at Ist iiIpputXiIII iIt it otI I "r t Ie ;tI I IkpIit i1le
oft the wave", At a (IIista imc fitomi thle shi I. Furithler. :(s we eatilititcxeNIi-t.

uim~t Wint ani est hiuate (4 thle on1Iei of timagtituide from4u thiis aissiunptiolou
we shall1 reg:iard I lie ship :sits pankitui. of lenthiil 1, anid dratit 1). osc5illatlifi
allmllit the wat er-li tie throughi all aiade 00 441(tle e et i ertieal

lisiig, the result, giveli at tilie (111 (4f § -4 a1titi writing, T ton. the compillete

eIWOl (4d WhI ipi ths gh~ for4 the height If the regular waves

h- 47r 51 )30.D

It A =til h le il d itht a l~t the wauve-hieit, as thle tettii is comoniiloty iu-;ct
is mieasuredi from11 troughi to crest and~ is t% icle the atii I Plit title-.

6~. Before a t ilving tI~is :esiiit. wýe may reviewv huiell vaIlvulat hns wI ilt
lutve been miade from ti a (ilerelill point ot 1 view.

T1'le par~t platyed by witv p'eo 1141 ag~tioUl ill causintg iesist iluice ttI rolllinig
was i n t i"4IgizuC(I W Fixidek (1S72) antd was advolatit1d by hin, ill
alsriesý of1 p~iper's ¾tliile Slhtowed t hat tile etleigy prop1 agaited ol 4tiariits

ill tilie moteionI t orr11 espond)41Ii( s to( a resist intg coupl)4e laoolloteio.a to thet
-ugila I el(iity oft r 'I I tug, at1( udAso thlat tile eilergy acetually dv(issip ated

ill roliling, ort a largt "art oFt it. cd((lll lbe ac(tluittefI for1 by waves 441
ext ienivel smtallI heighlt ,ili oiie eas.e, Fori exaiuiIle. his ealeulat mlbt gaive
a lie~iglit 41 1 M iiies ha mmvs 3211 1t , hn~ig. 11vi satem et W WI4 has I 'Cli
ilipliefI by ot 411tcr it Siselitit I. ii4 it mayi h le worth while relleati ig

tilie aIrgumenvit ill a 51 lleWhimt dlifferenit foruil from that ill whiceh it is usitatliv

Sulppotse tile shijl tol he ro~llingL aboiuit a1 lori7,Ilultali axis througiihi its
ettteof gravity~. atill1 tAvl tl( etuiat iof 0ti (I~tllt i4m1 ili its, sitliile4ls f(tiii aIs

W , NO- iWnl) 4)..... .. ...... .. .... 17
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"Wrcf I. is- 16 lit imiitf' ofi Si iiiti. W the w~e;g.lt, In the flictacnti rk height,

ilui Nf) l:.e rucfi z ili i id .
Thet ex;i 1111iolin of (1I-,) givc dape hl)ffsi(i ilslhjIjtlols N~jidl a (htfljiigiL

ttti1hficifi It N 21. and1 tile rate iii t'issipatioii ii cuuergvy is Nil". 81111111).
1i41w thalt fll dihiipaitioii is small andl iussil'a aill lfulipei l uutioii
til 0 sill ýTl/ htithilifit aptiiuiXiuuately for al suff1icient tifllC'. wit~i

M\t i this ita.Iuuu tl-4in ltht avefate late 4f dissiplati of eutergv
2f),q~)21 W h~

lIn lthe i1.u;11 fiutatilnfi l. tile f-oling, oiship). (10( is the ii utrellileit ofniilingt
a I righ 4) tl tf -\\ infg IIC hene (I hi. liThus thel averagre rate ofdiissipaht lol

of' encim, v i- 2\Vwu~i002 1. \Nu(' ith Froidel, that whilcl the Ship
is rit ii it. ft 'lfiait straight -crestedI waves a re sent oult (ii (It eiter suid tilie
I urCun it I I( f itt iI ( tra-ii ibeI AinIIg a I )Iw Xioxmnat ('ly eq ualI to thI e leng ,th 1 of () the
shiip t hii,11.1 let A lie thle ampi~ litudle (I1 thle waves, A thle xN iae--lelgtft ii
1,' liii p it(I itli A f~l I` 2 7-. Ifi eachI train illexrgrv is prop agatedl out -

Wdf"ii1d ;!I halt, tile \%ave veloiity V. that is. at an average rate iyjpA\LAA
(ilVli ('a Iýide I. 1-lentij equlat ing the averagte fate of dbssi1 )lti uf of enlleiy

to lthe av r a ge rate of piropagat ion of eniergy outwii rts inl the(- waves
on luittl ,ides. we have

2WnuW0
2,! 1'- 'pA'VA,

or

W??iQO 02. qpokAL4 . . . .. . . . . . .. .. . . (Is~-)

lhii.I is. ill effect tlit( equation given by l'ioud~e andul ied by latter writers,
thle leftt-hand1( side of (OM) beiNg tile loss ofint fegy inl (M Sie g ;Wf tlit (itiir

side of Frmide's equation was, however, twic that given iin (18). o\u iig
alt!atftnlt to n-eglect of the (lifforeijee between group velocity and
Wit\, Vt'Veitcity. Tfie Staltfement given here, besides incluil'I! tilis correc-

tionf, s,,io\i-s tile various assunilitltns and bruigs, the argumeiat ifnto( line,
with tilie usual methlod of a pprotximnat ing to1 tilt d~ampntg ecethejient in
iswbotniofitts. (damphed oscillationis whlei the damping is sulfcieidtly smiallI.
Frud r~tet'co gnlizedl thaft his soliit imi Wuls nijt hi anyi sense~t rigroroi ls aif i
hope( ithat li it wouLld 1we supltqemfefnted by stofme dliret t'st ifiittv, ewnf if withi
no( gfreakttr exactntess. of thle wave-making iroperty o)fia shiip wh en roilifng.,
it is also of' interest thait lie prlf'lhist' t,) attempjt (direcit til)5elvatiiI of* tnle

wa ves prodiuted bly the roiling of mfodlels of' simlple f ia-il. fhowever,
hwt hifig further seem'ns to have bween donte on this 1iiltiknl~r spect o4 the
pndulrm since that time. Other writei-s hav-,e utsed Froude's expfressions
t; cst inmiatt the ae heighlt, andl it aj qiears to but dcl"Iltedl that wave
wmittoin accounts 1(o! a larfge part (it the (lissiliation of energy ifi rolling.
t hat due, to fluid friction or edd --matking being relatively Small apiart,
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413 Waves produced by the Rolling of a Ship.

from exceptional resistance duo to bilge keels; it has been remarked,
for instance, that no reasonable values of head resistance and skin friction
coefficient account for more than one-third of the actual decrnment
obtained by experiment, and in one case such a calculation gave only
one-seventeenth of it (Baker, 1914). Nevertheless, no attempt appears
to have been made to compute the wave resistance to rolling from the
characteristics of the ship.

7. We shall now compare wave heights calculated from (16) with
various cases to which Froude's energy method has been applied.

In the ease examined in Froude's first paper already quoted, the data
are T=:8 sec. ; 00=5.65'. The draught of the ship was not stated, but
we may assume D==15 ft. With these values, (16) gives h-.2i inch.
Froude's estimate from energy dissipation was a wave height of 11 inch.
Other writers who have used the same formula assume that that part of the
resisting couple which is proportional to the angular velocity of rolling
may be attributed to the loss of energy in surface-waves. Thus
Sir W. White (1895), for the rolling of H.M.S.' Revenge' without bilge
keels, deduced a wave height of about J ) inch. In this case Tý 15.5 sec.;
00=13' ; D=27 ft. ; and these give from (16) a wave height of just over
1 inch.

L. Spears (1898), from the rolling of U.S.S. 'Oregon,' deduced a wave
height of 0.62 inch. Here T=15.2 sec. ; o00=120 ; D=23 ft. ; and (16)
gives a wave height of 0.67 inch.

It should be remarked that in all these cases Froude's formula was used;
according to the argument given in § 6 and expressed. in equation (18),
these estimates of wave height should be increased by a factor <2.
A final exa-nple is taken from a recent paper by G. S. Baker (1939)
on the roll ag of ships under way. We take the data for model R 8(a),
for rolling at zero speed ahead, given in Tables 1 and 3 of the paper;
in the notation already used

W=101,150 ton; m=4.4 ft.; T=11.52 see.;

A=680 ft. ; L=400 ft.; D-=-23.2 ft. ; a--0.22.

In this case we shall use equation (18) to see what height of waves M ould
suffice to account for the whole of the dissipation of energy, neglecting
for the moment any due to friction or eddy making. With the given
values we find from (18), h=2A=2.65 inch. Again, using the values
of D and T in (16), we find h- =U58 inch.

It should be noted that (16) was derived by regarding the ship as a thin
plank. The formula could be modified in an empirical manner to take
into account the displaced volume and the inertia coefficient of the ship;
this might be represented by multiplying (16) by a factor whose probable
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Waves produced by the Rolling of a Ship. 414

value would lie between 1 and 2, but the modification is not worth while
at this stage.

Both the energy method and the present calculation are no more than
first approximations, and therefore we may not attach any great
accuracy to the estimates by either method ; nevertheless, it is interesting
that both methods give results of the same order of magnitude. On the
theoretical side the problem should be treated as three-dimensional,
and also the boundary conditions at the surface of the ship satisfied
more closely; in addition, the actual motion of the ship and its axis
of rotation are important factors in a more detailed investigation. On
the other hand, it would be desirable to have experiments on models
of suitable form designed to provide better estimates of frictional and
eddy-making resistance to rolling, and so to afford more reliable knowledge
of the amount left to be accounted for by wave propagation.

Summary.

Expressions are obtained for the surface disturbance produced by a
cylinder, of elliptic cross-section, submerged in water and making small
os-oillations. A simple form of these results is used as a first approxi-
mation for the height of the waves, supposed two-dimeiisional, sent out
on either side by a rolling ship. Numerical calculations are made
for cases for which a similar estimate has been made by an energy method
due to W. Froude ; the results by the two methods are of the same order
of magnitude.
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The pressure of water waves upon a fixed obstacle

By T. H. HAVELOCK, F.R.S.

(Received 29 March 1940)

The diffraction of plane water waves by a stationary obstacle with vertical
sides is examined, in particular the variation of amplitude along the sides
and the average steady pressure due to the wave motion. Results similar
to those in other diffractiou problems are obtained for an infinite plane and
for cylinders of circular or parabolic section, and approximations are made
for sections of ship form. The examination was made in view of possible
applications in the problem of a ship advancing through a train of waves,
and the results are discussed in relation to the average additional resistance
in such circuistances. It appears that the mean pressure obtained on
diffraction theory from the second order terms can only account, in general,
for a small proportion of the observed effect; the motions of the ship,
and in particular its oscillations, are essential factors in the problem.

1. The problem to be considered is the resultant fluid pressurE; upon an
obstacle held in position in a train of plane waves advancing over the surface
of the water. In a previous paper (1937) I considered the additional
resistance on a ship moving through waves, the work being restricted to the

first order effect, a purely periodic force which may have an amplitude
comparable with the resistance to the ship in still water; further, for the
type of ship considered, the usual approximations were made and these
included neglecting the effect of reflected or scattered waves as being of the

Vol. 175. A. (i8 July 1940)
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410 T.'1 f. Havel~ck

second order. One purpose of the present work is to examine that assunij-
tion; the approximate method is extended in a certain ease to give the
variation in amplitude of tile surface oscillation along the side of the ship.

The view has been put forward recently that the mean extra resistance
to a ship advancing through waves is due to the reflexion of the waves
the sides of the ship, being in fact analogous to the pressure of radiation:

kit has been stated, for instance, that the resultant amplitude at the bow is
about one-third greater, and that at the stern one-third less, than the
amplitude of the incident waves, and empirical fornulae for the pressure
have been constructed on that basis. The problem requires, however.
a consideration of second order terms which does not appear to have been
"made for water waves even in simple eases. We consider total reflexion.
normal or oblique, by a plane wall, and diffraction by a cylinder of circular
or parabolic section, together with approximations for a seetiof of ship
form: the results are discussed in relation to the ship problem. /

/

DIFFRACTION OF WATER WAVES /

"2. Consider a fixed cylindrical obsta, e iin the water, the &ides vertical
and extending down to an infinite depth; let C.be the contodlr of any hori-
zontal cross-section. We suppose I)lane waves of amplitude It Io be travelling
in the negative direction of Ox; the origin 0 is in the free surfaee and 0:
is vertically upwards. The velocity potential of the fluid/motion is of the
forin

r/ - V i(qt At) 4Z i + i -- '(e ,/). (K)

The pressure condition at the free surfiaee is satisfied, to the usual first oider
terms, by aT2 = .,. Further, we have

+ ý2 +K2Vý' (2)

and •/•av = 0 on the contour C. The potential may be expressed in teealns
of a source distribution over the surface of the cylinder, but that `Z, in
general, merely a restotement of t he problem. We are concerned meantime
with an approximate solution when the contour C is of ship form': that is,
we assume C to be a contour of small I readth compared with its length.
We take Ox in the direction of the length and to be an axis of symmetry
of the contour. The approximation is the same as that used in determining
the waves produced by a moving ship. We take the source strength at any
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The pre-.'.,urc of water uwave.s, upon a fixed ob,,iacle 411

point to be determined by the horizontal fluid velocity in the primary
motion and by the gradient of the surface at the point. We then replace the
obstacle by a plane distribution of sources over the vertical section by the
zx-plane. The primary fluid motion in the present case is that of the plane
waves. Thus, if (b, 0, -f) is a point on the vertical section, and if ay/1(
is the gradient at the corresponding point on the contour, the required
distribution of sources over the vertical section is of strength per unit area
given by

iKgh ay
- - -e " (3)

Consider now a point source m cos rt in the liquid at the point (0, 0, -f).
The velocity potential was obtained by Lamb (1922) and we use his result
with a slight change Qf notation. The surface elevation ý is given by

S= •/t with z = 0; we have

2io-m. . j rte•t~2(r

-
2 K0 vsinfv + K cosfv .-'r coski it d?7t (4)
7T). J K

2 + V 2

where r2 
= x2 + y 2, K = o'-2/j, H(2 = Jo- ilo, and the real part of the expres-

sion is to be taken.
Let there be a vertical line source extending from the origin downwards,

the source strength per unit length at depth f being me-Kt. We substitute
this value for m in (4) and integrate with respect tof from 0 to o. For the
last term in (4) this integration gives

ZK j r0 e~CIO. csh u 9-K '0 K K 0(ur-)d,
r JO Jo K ±V

2  7T jo,, I K2 + V2

foo P--"t df. (5)
= - (r2 + f )i

Hence the terms in (4) which represent the local oscillations disappear
from the integrated result for this particular vertical source distribution;
and we obtain the simple result

S=•fneiO"H0()(Kcr) _ im[...ei,-, co ,du, (6)
g -" J Jo

representing circular waves diverging fi'om the origin. Returning to (3)
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412 T. H. Havelock

we see that the source distribution is made up of vertical line sources of this
type, and we obtain for the complete surface elevation

= ihe -ift+K.C I iiKheiO*1 H M .,); ;'-,elK dK. (7)"" Jo -c'

In (7), the first term represents the incident waves; further, r 2 = (x - 6)2 + y 2,
and the integration extends over the axial length of the form. It should be
noted that this result is comparatively simple because we have taken the
obstacle to be of infinite draft; for a ship of finite draft there would be terms
representing a local surface elevation in addition to the diverging waves
from each element. Further, the result is only an approximation and
assumes, in fact, that the additional surface elevation is relatively small.

3. We shall apply (7) to one case only, so as to estimate the magnitude
of the effect due to the scattering of waves by a narrow ship of great draft
and of form 3imilar to those for which previous calculations of wave
resistance have been made.

The model is of symmetrical form with straight sides, of total length 21,
beam 2b, and with a parallel iniddle body of length 2a; the bow and stern
are equal wedges of axiad length i-a and of semi-angle a, where
tan a = b/(l- a). We take the origin at the centre of the axis, with the
positive direction of Ox from stern to bow. Thus we have

ayy =- a, for -l<6<-a

=0p, for -a<g<a

=-a, for a<-<l. (8)

From (7), the surface elevation at any point (x, y) is given byIa
ihei~fi+KX - Xl~.ihc"Tt H(2)tAr Ki

=ileir•+•' 2 - d•h + " iKha H(o2(Kr)e gd6. (9)
"(- I 

a

We shall use this only for the elevation along the axis y = 0, as in the
corresponding calculation of wave profiles for a ship. We note that in these
expressions the quantity r is essentially positive. As an example, for a point
in the bow wedge, that is for a < x < 1, we have

=eir ihi~frx liKhaf H(2){K(x ) ~~d

+ "ith H(o){K(.r - f) e dg+ -gi Khj H~o {(K -x)I ei4 d6. (10)
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These expressior.s may be evaluated in terms of two integrals which may
be ,ihown to have the following values:

lIj() __

H '1)(1) e-i"' d= pe -iJ{HtH(p) + i2l)( )(p)} +--0 7T

J lh")(11)ei'flua - pei", H(2)j(p)- (HM(P), " . (12)

We shall write (11) -is L(p) + 2/7r, and (12) as M(p) - 2/17. We also put

P- = 2K1; =2K(1+a); P3 = K(l-a); P4= 2-K. (13)

We select five points at "'hich to make the calculations, the bow, stern,
shoulders and amidships; and, in the notation indicated, we have

() ia- {L(1) - L(p.,) -- L(p 3 ) -

-(a)= ihei(,Tt+Ka)l - txaL(p ,)-L(P4 ) - .M1(p1)3)

•(o) - ihe"'[1 - lt.rL(,lJ) - L( 'P4) - MU(-p 1) + MJ( p4 )f, (14)

- a)- iei(7 -!axL(P3) + +Ip -211p) 4--]1 = ih ~r-1'

[_ 1t~~~ - 12M(P.1 ) + J(p.I ) -7

We apply these results to Model No. 1144 of the National Physical
Laboratory. This was a m,)del of the given form used by Wigley (1930)
in coml)aring calculated am' observed wave profiles along the sides of the
model when advancing thio igh still water. For the present purpose we
supp)ose the model held at rc.At while regular plane waves of amplitude h
and wave-length 27rrK are movingt ipast it. The dimensions of the model were

I = S ft.; a = 2.19 ft.: b =- 075ft. (15)

We calculate only one cast-, namn'y. when the wave-lengthl is equal to the
total length of the model. Thus. iin the notation of (1 3) we have

P= 6-'2; P2 = 40; P3 = 228: 1 172. (1)

\Ve have also a 0.129. Using tables of Bessel functions, ý may b)e calcu-
latedl from (14). We are not concerned with the phase of the total oscillation

:c:, .11 l ,int., but only with its amuplit•ide. We lnd thlie ratio of the amplitude
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414 T. H. Havelock

to tlhat of the icieidCt waves at t lie points r = 1, t, (I, -(I. -I ti, be 1.5.

1-08, 1.09, 0.99 and 0-.95 respectively.
The alteration in aniplitude at bow and stern would be greater for a fuiller

imodel, andl especially for a bluff-ended form. Nevertheless, these approxi-
mate ealculations confirm the view that for a fine model tie modification
caused by the reflexion of the in,-cident waves may be treated as a second
order correction. It should also be noted that these results are for a model
of infinite'draft: it may be presumed that the effect would be much smaller
for one whose draft is small compared with the wave-length.

4. For a vertical obstacle of infinite dIraft, we may readily transfer
results from other diffraction problems. The effect of a cylinder of elliptic
section would be of special interest, but the analytical solution does not
lend itself to computation when the wave-length is of the same order as
the length of the axis. It is, however, worth while examining briefly two
other cases from the present point of view.

Let the cylinder be circular, its water plane section being the circle r = a.
For plane waves of amplitude h moving in the negative direction of Ox,
the complete solution is given by

0 = (gh/o') eit÷lKz JO(Kr) + 2 ; "J,,(Kr) cos nO

-(yh/o-) ei-K:bH()(Kr) + 2 ilb nOI (17
1 INK') cosn0_(7

where oa - =gK, aid b,,- J•(Ka)/-H1'(Ka).

Putting r = a in the expression for the surface elevation, and reducing by
means of relations for the Bessel functions, we obtain on the cylinder

-. - (I=1 (c0 + 2 P C , cos , n 0?
7TKa

•vwhere C. =, - 1/H(,)'(Ka).

Computation from this expression, which involves tabulation of Jd2 + "-2,
can be carried out without much difficulty except when Ka is large. A detailed
study might De of interest, but for the present purpose the following results
suffice to show the variation of amplitude round the cylinder. The numbers

in table 1 give the ratio of the amnplitude at each point to the amplitude of

the incident waves; 0 = 0" correslponds to the bow and 0 = 180 to the
stern.
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TABLE 1

00 450 900 1350 1S00

0.5 1"44 1.28 0.97 0"91 1.00
1.0 1.71 1-62 11) 0-68 0.82
310 1.92 1.75 1.35 0.82 0.62
5.0 1.96 l-S* 1.36 0.64 0.48

5. For the parabolic cylinder we may use the expressions given by Lamb
(1906) for the diffraction of sound waves, making the necessary modifica-
tions for water waves. In this case we take the plane waves to be moving
in the positive direction of Ox; the water-plane sectioi of the cylinder
is given by

K2y 2 = 4q/4 + 4Kq2x. (19)

In the parabolic co-ordinates defined by K(x + iy) = ( + iy) 2, the section

of the cylinder is given by q = q0.
The velocity potential of the motion is

0 = (gh/o') e i-K)+K-1 + Cf-"'- dt , (20)

where the constant C is given by

2iqo 41 + Cf e-2 e dtd - Ce- 2 ",,i = 0. (21)

For the surface elevation on the cylinder, we have

- ihe i(O-KX) 1 + cfe -VuP dt}. (22)

It follows that the amplitude of the oscillation is constant round the
boundary. From (21) and (22) we find that this amplitude is h/p, where p
is given by

p2  1 + 2iq-{(• -c) sin 2y2 - s) cos 2q1}± nq1{(J + (I _S) (23)= ~. 0• (0 .( )oq } kf 21 -2 ( . - ) " ( , - ) ( 2 3 )

in which r and s deitote Fresnel integrals of argument 2uo7T-1.

From (19) we have 2q2 = K'a, where a is tho radius of curvature of the
parabola at its vertex. Table 2 gives the ratio of the amplitu(de of the
Oscillation ti that of the incident waves, calculated friom (23) for certain
values of Kau:

'T'AmK. 2

KU 0-05 O.1 1.0 :3.0 5.
anip./,i. 1".28 1'40 1".65 I'86 1' 93
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These may be compared with the corresponding values at 0 f or the
circular cylinder. When Ka is small, we obtain from (23) the approximate
value 1 + (lrKa/2)* for the ratio of the amplitude to that of the incident waves.
We may, possibly, use this to give an upper limit for the resultant amplitude
at the bow of a ship if we regard the front half of the ship as a parabola witlt
its vertex at the bow. For instance, consider the model examined in § 3.
Instead of a wedge-shaped bow, suppose it is rounded off into a parabola
with its vertex at the bow and joining on to the parallel middle body at
a. distance of 5.81 ft. from the bow, the beam at that point being 1.5 ft.
With these data, and taking the same wave-length of 16 ft., we find that
Ka = 0.019. From the approximate formula, this gives a relative amplitude
at the bow of 1.17. Comparing with the previous calculations, this seems
a reasonable estimate, in spite of the various assumptions; the ratio would,
of course, be greater for smaller wave-lengths.

THE PRESSURE OF WATER WAVES

6. For the resultant pressure upon the obstacle, the first order effect
is a purely periodic force with zero mean value; this was the effect considered
in the previous paper (1937) and applied to a ship among waves. To obtain a
steady mean force different from zero we have to proceed to second order
terms; although much work was done at one time on the pressure of vibra-
tions, water waves do not seem to have been considered in this connexion.

We begin vith plane waves, and the only general result we need is that
given by Rayleigh (i915), that the usual first order expression for the
velocity potential is also correct to the second ordr-, the next term being
of the third order; this was shown to be the case both for progressive waves
and for stationary oscillations. There are, however, second order terms in
the surface elevation.

Consider plane waves incident directly upon the plane x = 0 as 0, fixed
boundary. We take

0 = (2gh/l') eKz cos•Kx sin at, (24)

S= 2h cos Kx cos at + 2Kh2 cc3 2IKX cos2 ot, (25)

with U2 = gK. We have !/ar = 0 at x = 0; for the pressure we have

p F(I)-gpz:+p ` .x az' (24;)

It may be verified that, with

p - qpghcos 2or1 - tIpz + ".jphelf cos K.r os oTt - :fqpqh 2: smg :in,, (27)
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the wressure conditions at z= , given by (25), are satisfied to the second
order, iamcly p = 0 and

(1 X ox i'zoz (

To the first order, (24) and (25) rep)resent plane waves of amplitude h
reflected at the plane X = 0. \Ve may now evaloate the additional pressure

upon this plane per unit width. We put x = 0 in (27) and integrate with
respect to z friom - -c to ý. The first order term is the periodic force
(2gph -) cos ol; for the additional quadratic terms we obtain

- .gp--+ 2gphý cos ot - gph2 sin2 0t, (28)

the second term in (28) coming from the expansion of eK. We put in the
value of C from (25), noting that we oniy need this to the first order; and we
obtain for the additional steady force P per unit width of the plane, taking
mean values,

P = -qph-, (29)

where h is the amplitude of the incident waves.
It may be remarked that instead of using the fact that the second order

term in the expansion of ý) is zero, it would have sufficed for the present
purpose to assume 0 to be purely periodic, an assumption made by Larmor

(i92o) in the corresponding calculation for sound waves. It is well known
that waves of finite amplitude possess linear niomentum in the direction
of propagation; the average amount, to second order terms, is Irph2 V per
wave length, V being the wave velocity. On the other hand, if we calculate
the rate of transfer of linear momentum across a vertical plane, we obtain
an average rate of Igph 2 ; this gives in one period one-half the average
momentum in one wave-length. The average pressure P given by (29) may

be regarded as due to the reversal of this flow of momentum. We notice
also that P is equal to one-half the average density of energy in the standing

oscillations, and this may again be connected with the fact that the group
velocity for water waves is one-half the wave velocity. For plane waves of
amplitude h incident upon the plane x = 0 at an angle a to the plane, we
may take

(2gh,'(i) ('" cos (Kx sin 1) sin ((Y1 - K.11 c(,s 1),
l (30)

2h = (K.0cos -(.r sinl ) COS (01t- ,COS2), (30)

\Ve obtain now. instead of (28), the quadratic terms for the additional
pressnre as

A /,f2+ "2+,lh- cos (nrt - Ky cos 2)

-/f)h/'-,'os2 2a (','tl - K'y.os 2) -isin2-'(o7t- K,/ eos 2)}. (31)
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Taking mean values, this gives
P=1 2 i2 X

P--gph sin 2 •. (32)

7. We proceed similarly for any fixed cylinder of infinite draft with
vertical sides; it is not necessary to examine the second order terms for the
surface elevation, and we assume that the velocity potential is correct up
to that order, or at least that any second order term is purely periodic.

Consider the solution fbr the circular cylinder which was given in § 4.
We write it as

= (gho'o) c-(L cos urt - 1 sin at),"l (33)

h (Lsinoat+Mcoso't), f

where L, 31 are functions of r, 0 which may be obtained frc~o (17).
At any point on the cylinder we have

p = F(t) - ypz - gphe-z(L sin ýrt + M cos at)

- (p/2a2 ) e•2 KKa 2 (L cos o1 -- M sin ort) + (L' cos ct - 31' sin at)}., (34)

with r = a, and the accent denoting P/.0.
We integrate with respect to z from - oc to ý and expand to second order

terms; then for the resultant force we multiply by a cos OdO and integrate
round the circle.

It is readily seen that the first order term in the additional force is a
periodic effect. of amount

4yfph Jl'(ba) sin 0t + Y,' cos (rt

1: Jg'2(Ka)+ Y1 2(,.) -(35)

From the quadratic ternis we get, after taking mean values, the steady
additional force

1 12

1? 4p~ 1 ~ 2 +32 -,(L' ±M) cos OdO, (36)

2i

where L + 01 = - i (h',- - 2 1)b, cos 0!), (37)
1

and 1),,=i H,"-)'(Ka).

We have

4(L .1P),cosod0 .1 (b,,b,*,, +

(L'2+ M'1) cos (idO 1 b (l*,O + 1
0 (I f K2AI'*
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where the asterisk denotes the conjugate complex. Putting in the value
of b. and using properties of the Bessel functions, these expressions may be
reduced to a simple form; we obtain finally

R = 4gph2a0 (i n(n+ 1)t2 1 (39)W2 K3a3 =ll 2  g(J12+ Y/2)(J2+ y 12)'

the argument of the Bessel functions being Ka.
The series in (39) occurs also in an expression given by Nicholson (I912)

in a similar problem for electromagnetic waves. Some values had been

calculated before this reference was known, and with Nicholson's values

for the series we have the results in table 3.

TABLE 3
Ka 0"5 1.0 2.0 3"0 5"0
R/§gph2a 0"429 0.998 0"940 0.950 0.965

It was shown by Nichc4son that when Ka is large, the series approximates
to the value iTr2KVaa; hence when the wave-length is small compared with
the diameter of the cylinder, we have approximately

P = Igph2a. (40)

This agrees with the limiting value if we assume total reflexion over the front
half of the cylinder and a complete shadow over the rear half, and apply
to each element the expression (32) for total oblique reflexion from a plane;

for we then have

P f jgp~a cos3 OdO = Igph2a. (41)

Although this limiting value is obtained theoretically as an extreme case
for short waves, it is interesting to note from the preceding table that it is
practically attained for comparatively long waves of wave-length even
larger than the diameter. This consideration suggests using the method to
give an upper limit for cylinders whose section is more like that of a ship.

8. Consider a cylinder with vertical sides, the horizontal section being of

ship form and symmetrical about Ox. We assume total reflexion by the
sides of the ship from the bow back to where the sides become parallel to
Ox, and we assume a complete shadow aft of that point.

For the model of§ 3, in which the bow is a wedge of semi-angle a, we obtain
for the total resistance

IR = IgphOB sins ot, (42)
where B = 2b = beam.
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In general, for any form of the front portion of the model, we have

y=gph2 'sin o d! =, rgp h"-Bsi12• a,(43)

In (43), a is the angle the tangent to the form makes with Ox, and the bar
denotes the mean value of sin 2 a with respect to the beam of the ship.

Suppose, for instance, that the section of the model is the ellipse
x2/a2 + y 2/b2 = 1. It is easily shown that in this case

b2sib ( --b2 tan-' V(a2 -b") (sinan- = aSb_ 1 .(44)

This would be a full form of model. If we take a = 8b, as an average ratio of
length to beam, we find from (44) that the mean value of sin2 a is 0.17.
The mean value is less for modelb with moderate bow angle; probably an
average value would be about 0. 1, with still smaller values for models with
fine lines.

In a recent paper Kreitner (i939) has put forward the proposition that
the extra resistance to a ship among waves is nothing else than the radiation
pressure of the ocean waves. The semi-empirical formula given by Kreitner
for this force upon a ship at rest in a train of waves is

R = gph 2 B sin a, (45)

in the present notation, in which h is the amplitude of the incident waves;
the last factor is a mean value for the angle of entrance not clearly defined.
The derivation of this formula is not clear, but it appears to be based upon
an estimate of the difference of resultant amplitude at bow and stern, and
upon taking the mean value of the hydrostatic pressure due to the surface
elevation. This latter assumption is incorrect; and further, we found in (43),
that the last factor should be the mean value of sin2 a taken across the beam.
Numerically, for usual ship forms, these differences result in (43) giving
about one-fifth of the value from (45).

For a certain model, a ship with full lines, the relevant data are
B = 69.2 ft., L = 530 ft., h = 21 ft. If we assumed the fore half of the ship
to be an ellipse and used (44), we should have 0.175 as the mean value of
sin"-a; but this is certainly too large and we take a smaller value, say 0.12.
With these values, (43) gives a force of 0.6 ton. This is, moreover, an upper
limit and also assumes the ship to have vertical sides and to be of great
draft. The recorded extra resistance for this ship is given as about 2.8 tons;
but this was for a model advancing through the waves.

The steady pressures we have been considering will certainly be increased
if the ship is itself in steady motion through the waves, but the problem
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then becomes comilicated and, in practice, many other factors must be
taken into accouit. The wave resistance of the ship, as calculated for
uniform motion through still water, is probably altered; moreover, the
motion of the ship, and in particular its pitching and other oscillations,
must have an important influence. It may well be that intera.tions between
first order effects which in themselves are purely periodic may, through
phase differences, give rise to steady additional resistances.

The calculations which have been made here refer to a model held at
rest in a train of waves. The only reference to experiments of this nature
appears to be in a paper by Kent and Cutland (1935). The model was
No. 1255 of the National Physical Laboratory, and the dimensions were:
length = 16 ft., beam = 1.92 ft., draft = 0.52 ft. For this model the mean
value of sin 2 0C was probably not more than 0.1. If we suppose the wave
amplitude, that is half the wave height, to be 2 in. for waves, say, 5 ft. in
length, then (43) gives as an upper limit a force of 0.17 lb. The experimental
results were not published, no doubt because this particular experiment
was only incidental to the main investigation; but it may be taken that the
calculated value obtained here is of the order of one-half the measured
value for waves of the given height and length. Here, again, although the
model is said to be at rest, it has necessarily a certain small amount of
freedom for oscillatory motion. While such motion might be expected to
diminish the magnitude of the pressures we have been considering, it may
also bring other effects into operation. Further experiments of this nature,
with more detailed medsurements, would be of great interest.

The immediate object of the present work was to examime, iii cases
amenable to calculation, the magnitude of the mean force obtainable on
the analogy of radiation pressure. The general conclusion is that while such
a force exists as a contributory cause, it is insufficient to account for the
extra resistance observed in a ship advancing through waves; in those
circumstances the total effect is prmobably the result of several factors of
approximately equal importance.
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The Drifting Force on a Ship among Waves.

By T. H. HAVELOCK, F.R.S.

1. WHEN a ship is advancing through a train of waves it experiences
an average steady resistance greater than that at the same speed in
smooth water. There are no doubt several factors operative in producing
this result ; one, for instance, may be described as wave pressure duc
to the reflexion or scattering of the ocean waves by the surface of the
ship (Kreitner, 1939). This must certainly be taken into account in a
complete theory, but investigation of it involves second-order terms in
the hydrodynamical equations and a satisfactory solution of the problem
would be difficult. Certain calculations which I have given recently
(1940) seem to show that this cause is not likely to account for more
than a smalr fraction of the observed results. Experiment shows that
the effect is most prominent when the period of encounter of the ship
with the waves is near the natural periods of the ship's oscillations;
whether directly or indirectly, the phenomenon is clearly associated with
the heaving and pitching motions of the ship. In the paper already
quoted (1940) it was suggested that it may well be that interactions
between first-order effects which in themselves are purely periodic may,
through phase differences, give rise to steady additional resistances.
The object of the present note is to give some tentative calculhtions
amplifying and illustrating this suggestion. For this purpose we fall
back on the approximate theory which neglects the disturbing effect of
the ship's surface upon the wave motion. In suitable cases we may
perhaps regard the necessary additions for the reflected waves to be
small corrections, as, foL' instance, for a long narrow ship (1937). This
assumption was the basis of the theory developed by W. Froude in his
work on the rolling of a ship among waves, in which case the wave-
length is assumed large compared with t1c beam of the ship. It was
also used explicitly by Kriloff in his well-known analysis of the heaving
and pitching of a ship among waves. This latter work dealt only with
the oscillations of the ship, and not with the extra resistance to motion
which is now under consideration. It is true that the problem involves,
in some form at least, second-order terms, and any partial selprate
examination of such terms is unsatisfactory; the following cealulatiions
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are therefore subject to correction by a more complete analysis, but
they may serve to bring out a new point of view.

2. It is interesting to recall the development of the similar problem
in rolling. Some years ago Suyehiro (1924), experimenting with a small
model, announced the discovery of a drifting force sideways upon a ship
when rolling in waves. This interesting result does not seem to have
been studied by other workers, and either confirmed or disproved. The
effect is small and probably needs suitable conditions of forced rolling
in resonance with the natural period of roll. Suyehiro himself ascribed
the force to reflexion of the waves by the side of the ship and supported
this view by observation of the motion of the fluid particles near the ship.
No calculation was made of the reflexion or scattering of the waves by
the ship, and this is a problem which still awaits solution. Here, again,
no doubt this form of wave pressure contributes to the result, but there
is no reason to suppose it adequate in itself ; moreover, the experiments
showed a close association of the drifting force with the rolling of the
ship. Recently an alternative theory has been put forward by Watanab6
(1938). Starting from the Kriloff equations, Watanab6 deduced an
expression for the drifting force involving the angle of roll and the phase
lag between the roll and the actuating moment; applied to Suyehiro's
model, this expression gave a force of rather more than half the observed
value.

In the following sections we derive similar expressions for the drifting
force due to heaving and pitching when the ship is head-on to the waves;
we assume throughout the usual theory of irrotational waves of small
height.

3. Take the origin 0 in the undisturbed surface of the water, Ox
horizontal and perpendicular to the wave crests and in the direction of
the ship from stern to bow, Oy horizontal and Oz vertically upwards.
We shall suppose first that the ship has no forward motion or, more
precisely, we may suppose it constrained so that it is free to make small
vertical oscillations and free aiso to make small rotational oscillations
about a horizontal axis parallel to Oy through some point G. We consider
plane waves of small amplitude h and of wave-length 2n/ic moving in the
negative direction of Ox. To the first order the velocity potential is
given by

0-(gA/a)e4 sin (oltxx),.. ...... (1)

with oC =gK, and the pressure by

PfPo-gPz+gp- 6 . . . . . . (2)
co oe + )......... (3)

p0 being the pressure at the free surface.j
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A complete solution would include an addition to (1) necessary to
satisfy the boundary condition at the surface of the ship in its actual
motion and also the condition of constant pressure over the free surface
of the water. We are, meantime, neglecting this additional term, and
assuming the conditions such that for a first approximation we may
calculate the resultant forcas from the pressure given by (3). The
resultant horizontal force backwards is given by

F=ffpldS. ................ (4)

taken over the immersed surface of the ship in any position, (1, m, n)
being the direction-cosines of the outward drawn normal at any point.
This may be transformed into a volume integral taken throughout the
immersed volume V of the ship, and using (3) we have

F= yf f dV

-gpKhfff e" sin (at+Kx)dV...... ... (5)

Let So, V0 be the immersed surface and volume, respectively, when the
ship is in its equilibrium position in smooth water. If the ship is held in
this position in the waves, the corresponding force F. calculated from (5)
is a purely periodic force with mean value zero (1937). Suppose now the
ship to be in a slightly displaced position S due to heaving and pitching.
The additional horizontal force is given by (5) integrated throughout the
volume between So and S. If 8v is the distance from any point of So
normally outwards to S, we have dV =--v dS0 . Let the pitch be measured
by a small angle 0 of rotation round an axis through a point G on Oz
at a height c above 0, taking 0 to be positive with the bow up; and let
the heave be given by a small vertical displacement C upwards. Then,
to the first order in C and 0, we have

Sv=n~d I{nx-t(z-c))O.... .. .. ...... 6
Hence the horizontal force backwards in the new position is given by

F=F0 -gpKhC ff e"s sin (ert+Kx)ndS.

-gpw, jf e', sin (ot+Kx){nx-l(x-c)}dS,, . (7)

where the integrals are taken over the equilibrium position of the ship's
surface.

Calculations may be made directly from this expression, but we put
it into another form to show that it leads to an average steady force
backwards.

Let B be the extra buoyancy for the ship in its equilibrium position
due to the wave motion, that is, the additional force upwards arising from
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the term pao/at in (2). Similarly, let P be the additional moment of
this pressure about the axis through G in the direction of 0 increasing.
Then we have

B=-gp1hff e's cos (at+KxlndS0. . . . . . .. . .. . . . . (8)

P=gph ff ez Cos (at+KX){I(Z-C)-nx)dSo. . (9)

Hence we may write (7) as
F=F-- -iK-P

The usual approximate equations for the motion of the ship are obtained
by taking into account also the hydrostatic buoyancy and moment arising
from the term gpz in (3). With M, I as effective mass and moment of
inertia, respectively, and assuming a simple law of damping in each case,
the equations are

M±+Nt+gpAt=B ... ....... (11•

IO+N'O+gpmV0o=P ........... (12)

A being the area of the water plane section and m the metacentric height
for pitching.

When calculated from (8) and (9), B and P are of the form

B=Bo sin (at+ot); P=Po sin (at+oc'), .... .. (13)
BO, PO, o, m'depending upon the wave-length and the form of the ship.

To obtain from (10) quadratic terms giving a mean value different
from zero, we need consider only the forced oscillations in t and 0. These
are given by

C=kB0 sin ..... .(14

O=k'Po sin (t+'.... . (14)

k, k' being the usual magnification factors, and P3, f' the corresponding
phase lags, obtained by solving (11) and (12) for the forced oscillations.
Using (13) and (14) in (10) and taking mean values of the quadratic
terms, we obtain for the mean backward force

R =---ckB0 s Sin P + Jk'Po 2 sin P... ..... ... (15)

an expression which is essentially positive.
With Co and 00 the amplitude of the forced heaving and pitching,

respectively, and Bo, Po the amplitudes of the buoyancy and pitching
moment as in (13), we have from (15)

R- =JBoCo sin P+ JKPo0o sin f' ...... .(16)
4. We have only used equations (11) and (12) to show that the average

steady force is a resistance. In attempting comparison" with experi.
mental results one cannot rely upon calculations from these equations,
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except for general descriptive purposes. Among other reasons, there is
a lack of precise information about the damping of natural heaving and
pitching. A common statement is that the damping in both cases is
large, the natural oscillations in uniform waves diminishing rapidly and
the motion reducing to the forced oscillations. On the other hand, this
is difficult to reconcile with certain experimental results when the period
of encounter with the waves is near a natural period; in such cases the
amplitude of the resultant oscillation has a slow periodic variation from
a minimum to a maximum in a manner suggesting the superposition of
natural and forced oscillations of nearly equal period. The only published
estimate from experimental results appears to be that given by Horn
(1936), who states that the damping of heaving and pitching is of the
same order of magnitude ; his estimate gives a logarithmic decrement of
about 1.4, an extremely large value compared, for instance, with the
damping of rolling.

We have assumed the Whip to have no forward motion, but, so far as
the present approximation goes, we may suppose it moving with uniform
speed; the onl- difference is that the quantity a in (13) is such that
2wr/a is the perid of encounter of the ship with the waves.

We may make a rough estimate of the order of magnitude of the extra
resistance given by (16). For a cargo boat of 400 ft. in waves of 500 ft.
in wave-length and of height 6 ft., the amplitude P0 of the pitching
moment may be about 80,000 ft.-tons while the amplitude B0 of the
buoyancy might be. say, 300 tons. Hence from (16) we should have

R= 1.9t, sin P+502 00 sing'. .. ...... .. (17)

If the period of encounter is not near a natural period we might assume
a total heave of 4 ft. and a pitch of 30 ; whehce

R=-3.8 sin P+ 13 sin-fl' ..... ..... .. (18)

A value of 150 for the phase lags P, f' would not be unreasonable. This
would give R=4-4 tons, of which three-quarters would be associated
with pitching and one-quarter with heaving.

5. For a more detailed analysis, we consider a simple form of wall-
sided model of uniform draft d, with a rectangular middle body of length
2a and beam 2b, and with entrance and run each of length 1 and of
parabolic form. Thus with 0 at the centre of the parallel middle body,
the equation of the contour from x---a to x=-l+a is

y.. . .b..--(x--a)... . . ....... (19)

at all depths, from z-=-d to z:-0: and there is a similar equation for
the run at the stern from xý.-(I+a) to x- -a.
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The model is symmetrical fore and aft, and for simplicity we assume
G, the position of the axis of rotation, to be at 0 ; thus we take c- 0 in
(9). The integrations in (8) and (9) over the sides and keel of this model
are readily carried out, and we obtain eventually

B=&8-b'e-l{sin (P+Pl)--p cos (p+pi)--sin Pu} cos at. (20)

KP
2

S8gPb {(p÷p--3) sin (p+pj)-(p1 -[-3p) cos (p+pj)
K

2p
2

-+- 3 sin p--pl cos p 1}e-f- ( -e-q-qe-) (sin (1Pl-p)

-- p cos (p- 1 - )--stn rj}1 sin at, (21)

where p =zýK, p 1 Ka, qýKd.
In (21) under usual conditions, the second part is small compared with

the part which is factored by e-O; if this latter factor be also neglected,
the expression is simply the conventional pitching moment obtained
from the hydrostatic pressure due to the wave elevation integrated over
the water-plahe section of the ship. This form of model is not quite
suitable for the approximations on which the calculations have been
made, but there are no experimental results available for siml)le
symmetrical models of small beam.

From experiments, carried out at the National Physical Laboratory,
on a model of a single-screw cargo ship, Kent and Cutland (1941) have
obtained some very interesting results. We give the relevant data for
the ship: length 400 ft., beam 55 ft., draught 24 ft., and displacement
11,332 tons. The natural pitching and heaving periods are given as
6.2 and 7.42 sec. respectively. Measurements were made of pitch and
heave, of resistance and of other quantities, under various conditions in
waves of 175 ft., 350 ft., and 490 ft. In the shortest waves it is probable
that a considerable part of the increased resistance arises from the
reflexion of the waves by the ship. Applying an expression which I
gave recently (1940) for this resistance, Kent and Cutland show that it
accounts for rather more than half the measured resistance for a ship
moored in the waves. That expression gave a limiting value for a ship
of great draught held at rest, as,'uming total reflexion by the front
portion of the ship. It seems reasonable, therefore, to suppose that the
force arising from reflexion would be much smaller for a ship of usual
form floating on the water, and eslpcially so for the large wave-lengths.
Moreover, in the short waves the pitch and heave are slight and are
irregular in period : in the medium waves the periods are approximately
equal to the period of encounter between ship and wave, but the amplitude
changes from a mninimuui to a maximum in regular cycles : in the long
waves the pitch and heave are approximately uniform. In the present
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calculations the amplitudes in (16) are those of the forced oscillations of

heave and pitch ; hence we attempt only a comparison with the results

of Kent and Cutland for the 490 ft. wave-length, when presumably the

motions are purely forced vibrations. Another reason for limiting
comparison to waves of length greater than the ship is that the expressions
for the buoyancy and pitching moment are probably better approxima-

tions than for shorter waves. Without attempting any close approxima-

tion to the form of the ship, we shall simply use the expressions (20) and

(21) with

a=140ft.; l=60ft.; d=20 ft.;

b=-27.5 ft. ; h=2.5 ft. ; A_27r/K-490 ft., (22)

these dimensions giving a ship of about the same displacement, and
waves of 490 ft. in length and 5 ft. in height.

With these values (20) and (21) give

B---345 cos at ; P -83880 sin at, . ... (23)

in tons, and ft. -tons respectively.
The numerical factors in (23) are the values of B0 and P0 in (16). The

amplitudes ýo and 00 we shall take from the observed results, assuming
that these refer to forced vibrations in the period of encounter. The
remaining factors are the phase differences, and these are more uncertain.
It may be noted that the effect which is under discussion arises from the
damping and the phase lag produced thereby ; if there is no phase lag
there is no force. On the simple theory expressed in equations (11)
and (12) the phase factor, sin P or sin 8', has its maximum value of unity
at resonance and diminishes on either side of this period, the diminution
being more rapid the less the damping. The importance of the phase

of the ship's motion in relation to that of the waves from a practical
point of view is well known, but there are not many precise measurements
suitable for the present purpose. The problem was attacked in an early
paper by Kent (1922), and the recent paper by Kent and Cutland (1941)
gives further detailed observations. They give a diagram showing
positions of wave crest and trough along the ship at maximum pitch

with the bow down, and from this one should be able to deduce the value
of T' for use in (16). However, it must be remembered that the model
was not a simple symmetrical form, with the axis of pitch at the centre

of the water-plane section ; in fact, the position of this axis probably
varied during the motion. It is also clear that the motion is not ade-
quately covered by the theory of equations (11) and (12). For the
authors state: " In general, as the ship's pitching period was not
isochronous owing to the changing resistance to pitch, successive pitches
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showed a pc ;ildic iwiioeineidt of the wave crest position. lbacku ards and
forwards aonzfth lie ull.'' Tlie diagram given in the paper shows the
mnean positions,. !i ntais diagram, it, sceins thatk we 11ay assumec there
xx as no ineasiii-ai~le phase lag for the ship mnoored, with zero speed, in
490$ 1f-t. wav-es. Henice, fromi (16), the corresponding mean force is
nlegligible, and this agrees with the oh scrvations. For the same wave-
l('nit Ii when thie ship had a speed (d 8 kiiots, a rough estimate of' thle
phase laig froml the diagrami is about 12-5. and we take that value lor,
Pi' in (10i). As thte tree p~eriods of heave anid pitch are nearly- equal. and
the damlpinig probahl W of' the samie order, we ta~ke the same value for 8
in (M i). From) th1e mleasuremients given in the paper for 5 ft. waves, we
haove 4_ -2--k ft.. 00-1 0. With these values in (10) we get the extra
resistanice ior the ship in tons ; expressing the result for the model,
if) ft. long, we obtain from (16) a mnean; re,-,stanicc of' 0-63 lb). The
mieasutredi value -was 0.37 lb.

It is no~t \x )rthi xhile p)ursuing these tentative calculations iurthier 4A

present. but at least it seemns that one c-an obtain results of' the right,
(qdert' oh agnitudle ; in tact, the calculated results are generally too higrh.
eslpeciallY at the peak values ul A.-er resonance condition,,, bhut that might;
haNve been~ anticipated. On the theoretical side,' the various limitations
andl assump}tions have already been sufficýientl 'y indicated in the course
of' the work. On the experimental side, there is a lack of' suitable dlata
obtained under conditions, sufficiently approximating to the, sinipl-fiea-
lions which have t 1, Made before aiiy caleulations are p)ossible.

6. In the present work, with the ship a(-ototewvsbein
and ui'tsiin haj11y1(ve been considered toget her ;for)i if* the angumient is valid
f o' one kind of' displaeem'ent it, should also apply to the ksthier. Moreover,
the ltiattiral p~eriod(s of' heave aiil pitchl are usually nearly equal andl so
resonance effects frthe Fo0rce( vibrations overlap. Reference has b~een
m1ade to \\at"lanae~s wor-k on the (lriihi ig lorce when rolling, that is,
when 1Ie shc1ipj is broadside-on to the :-ve in that wvork, as ini Su vehirto's.4
thei effect of' heaving wxas entirely nleglected. The vxlpreýSsionl (16i) giv-en
here for the( (Iriftinig I'Orce in heaving and] pit'h iig iial' also be uisedl 1f 1
heavingu an1d ro'im Avhg x'en the wvaves are br'oadside t~n. withI the quanititic-ý
in (10 ,) ha~vingi- the appruop~riate values 1`6r those Condhitions. Howev~er,
thle natural p er'iods of heave and~ roldl sm~ially di ffer conusidvrab ly, and(
therefore the resojian('e effec'ts are sep~aratedl. The data for 8uyehiro 's
mode10 are no0t su1fficient f'or these ealcotlat ions t~o oe mnade, otherwise one
migiit, eoiiipare the d('itiuig forces due to heaving and r'olling it would
be of' interest it* experititents could be devised to test whether those
sepal1rate~ effects, are ohservable, anid to ha\ve e:'peri'ienerts miade under
coniditionls Sulitable l(,61' -(' m)IlJ'ar5on with I' l H
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S;i tm,ma ry.

The pi'4ledhm cllsider(,d is the driftiii• fo.rce on a "hip1 whelln hella-ol

to a regular train of( waves. A satisfacitr'v tI Ie rv wo•iuhi liivit Vfin ilu•he.

alliong oth.,r fa1ctors, the effect of reh'exiin of, tile waves IIy ti e iIrface
of the ship; ill the present note this is Iiegtchted ill iorder t iiiake

ten itative catcul atioins ti'omiii aiilother pohint of view which ji sssi ,iat es the
effect directly with the oscillatiouns of thie s:-hil. A st<adv Ia vel'rane
driftingt force is ob)tained depeinding, utll~ iV iithe phase differtence's heutweln
tile, heaving and. pitching motioins allnd the periodic alrees cod u le,
due tio thi wave mirotion. Al exami•altio•l is mode of exlueriiflntal a

results aind, although avraila•tl e data are not sniita, lhe lr detaihled (-()!i
parjson, it. aýIppeers thi at the cat ci tlat iolls (rive drifthii, fti 'ti's I Ithe ri'id t
order of t •" itude.
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The Damping of the Heaving and Pitching Motion of a Ship.

By T. H. HAVELOCK, F.RS.

1. IN a recent paper (1940) I discussed the damping of the rolling of a
ship in still water due to the radiation of energy in the wave motion set
up by the rolling. The following note is a similar examination of heaving
and pitching oscillations ; an attempt is made to estimate the dissipation
of energy in wave motion and comparison is made with such experimental
results as are available.

The problem may be stated first in relation to heaving motion. Con-
sider a body of mass M floating freely in water, and suppose it is acted
on by a periodic force E cos pf and is making small vertical oscillations ;
let C be the vertical displacement upwards from the equilibrium position.
The equation of motion, for a frictionless liquid, is

M'-=--X--Mg+E cos pt, .. ..... (1)

where X is the vertical resultant of the fluid pressures on the immersed
surface. For an exact solution we should have to determine the velocity
potential of the fluid motion so as to satisfy the boundary condition at
the moving surface of the solid and the condition of constant pressure
over the free surface of the liquid. Failing such a solution *e procoed
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by approximations. One part of the force X-Mg is the additional
hydrostatic buoyancy. gpSý upwards, assuming the solid to have vertical
sides near the water-line and S to be the area of the water plane section.
Suppose now that the motion of the body is a forced vibration of frequency
p and that the energy radiated is relatively small ; then, as ii, similar
problems, for instance the scattering of sound waves by a movable
obstacle, it is assumed that the rest of the resultant fluid pressure may
be expressed as the sum of two terms, one proportional to t and the other
to . The factor of the first term represents the so-called added mass,
while the second corresponds to the loss of energy by propagation of
waves outwards. In these circumstances, equation (1) is reduced to the
form

M'%+Ný+gpSK=E cos pt ......... .. (2)

where M' is the total effective mass.

2. Various empirical formulae have been devised for the effective mass
of a ship for heaving motion, and for flexural vibrati.zns. Reference may
be made in particular to Lewis (1929) for ship forms, and to Browne,
Moullin and Perkins (1930) for the added mass of prisms floating in
water. The basic assumption in these studies is to neglect the wave
disturbance and to suppose the fluid motion to be that due to a certain
solid moving in an infinite liquid, the solid being made up of the immersed
part of the floating body and its refleNion in the free surface of the
water. The experiments of Browne, Moullin and Perkins showed that
this leads to a reasonable value of the added mass, the calculated values
being rather higher than those deduced from the experiments.

It is the second term of equation (2), namely N4, with which the present
paper is specially concerned. Instead of calculating the fluid pressures,
an alternative method is to work out the mean rate of propagation of
energy outwards in the wave motion, and equating this to the mean
valae of Nt 2 we obtain a value for N for the given frequency. This
procedure is permissible under the assumed conditions under which the
motion is a forced simple harmonic vibration and the radiated energy
is small. To obtain the corresponding logarithmic decrement for the
damped natural vibrations, these may be taken as approximately of
period 27r/a,, with

a2M' /-gpS . . . . . . . . . (3)

Then the logarithmic decrement is given 1*y ,rN/aM', with N having its
value for the frequency a. Theioe is very little work, theoretical or
experimental, to which reference can be made. Browne, Moullin and
Perkins (1930) measured the damping for prisms vibrating in air and when
immersed in water; they conclude "The damping added by the water
is negligible compared with the damping due to the supports, a result
which might not have been expected." But. in those experiments the
prisms were not floating freely and the frequency was of the order of
13 per second ; it can readily be estimated that the energy in the wave
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motion would then be very small. Howev6r, the experiments show that
damping by fluid friction and eddies was also negligible. Reference
may be made specially to work by Schuler (1936) with a vibrating prism
of rectangular section, in which direct measurement was made of the
amplitude of the waves. The logarithmic decrement was also measured,
and it was concluded from the dimensional form of the results that the
damping was due to wave motion, viscous and other damping being
negligible in comparison. Schuler gives no theoretical calculation of the
damping, and unfortunately the data necessary for making a comparison
with theory are not recorded, such as the effective mass and restoring
force and the free or forced nature of the vibrations.

Coming to the ship problem, as far as published work is concerned
there is practically no accurate information about the damping of
natural heaving. It is usually stated to be very large, any natural
vibrations dying out very quickly. The only numerical estimate appears
to be that given by Horn (1936) and said to be an average result derived
from a large number of models ; his estimate gives a logarithmic decre-
ment for natural heaving of about 1.45. This is very large, and would
mean that the amplitude is reduced by about one-half in each swing.
It is also stated that the decrement for natural pitching oscillations is
of the same order of magnitude.

3. We now examine the waves produced by m oscillating body, and
we adopt the method of replac-ing it by some suitable distribution of
alternating sources.

We consider first two-dimensioi.al fluid motion, and we take the origin
0 in the free surface, Ox horizontal, and Oz vertically upwards. If
there is a source of strength m cos pt per unit length at a depth f, that
is at the point (0, -f), the velocity potential is given by

.... l metvtlog. +2me!tj -- c icdK, (4)
1) K -Ko+ ilt

where p2 ==gKo, r-x2+(7-1-(+f) , r 2 
2 =x 2-+(z-f)2 ; and we take the

limiting value of the real part of the expression as t is made zero.
This leads to a surface elevation given by

•2wp K cos fKo sin
00co (ptKX) - sin Sil KZ edk, (5)

where the upper or lower signs are taken according as x is positive or
negative.

The first term in (5) gives the regular waves propagated outwards on
either side ; if A is the amplitude of these waves and E the mean rate
of propagation of energy outwards per unit length, we have, taking
account of both sides of the oiigin,

E=gppA2/2K,,-I=27r'm4ppe 2. .. ... (6)

By summation, or integration, we can obtain the corresponding expression
for any given distribution of periodic sources in the liquid.
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4. Consider a long prism, of rectangular cross-section and of' breadth
2b. immersed in water to a depth f and made to perform small vertical
oscillations a sin pt. For an approximate solution we suppose the
motion to be two-dimensional and to be thatdue to a uniform distribution
of sources, of density (pa/27r) cos pt, over the immersed base of the prisnl
at its mean depth f. The regular waves on the side x>0 are given,
from (5), by

• (pla/&):'- fb cos {pt-K,,(X-h)}dh

-2ae sin (Kob) cos (pt-Kox) ... ...... (7)

Hence, for the mean rate of radiation of energy per unit length of the
prism, we have

--=(2gppa2Ko)e~o sin" (%c•,).............. (8)

If the wave-length 2
7TiK 0 is large compared with the breadth of" the prism,

we have the simpler forms

S=2Koabe-of .. ... .......... (9)

E=2gppjK0a2be-' 2 Kf. ..... ........ (10)

In the experiments by Schuler (1936) a rectangular prism was used
and the amplitude of the waves and other quantities measured directly.
Schuler obtained the expression (7) by an indirect energy method sug-
gested by Prandt], and it was contrasted with the source theory of the
effect ; however, we have seen that it follows from assuming a uniform
distribution of sources over the base of the prism. The interesting point
is that the experimental results agree reasonably well with the expression
(7) for periods such that the wave-length 2

vf/K0 is greater than the breadth
2b of the prism.

5. We now apply these results to the heaving of a ship iin still water.
\Ve may. as In similar cases, treat the motion as two-dimensional in the
iirst instance, an approximation which may be supported by the experi-
ments of Browne. Moullin and Perk-ins. These authors also give an
approximate formula for the added mass of a ship of normal form in
vertical hear-ing motion ; this is given as 0.9 5pb2l. where p is the density
of water. 2b the maximum beam and I the total length of the ship.

We take an example from recent work by Kent and Cutland (1941).
carried out on models at the National Physical Laboratory. The data
For the corresponding ship are: length 400 ft., beain 55 ft., draught
24 ft., displaeement 11,332 tons. natural heaving period 7.42 see. From
the formula just given the added mass comes out as 9200 tons ; thus
the total effective mass M1' in equation (2) is about 20,000 tons. It is
of interest to check this result in 'a different way'. [f 27r/a is the period
when damping is neglected, we have the relation given in (3) The
change in period due to damping is relatively small, so we may use the
recorded period ' further, estimating the water plane area 8 am 17,600
sq. ft., we obtain 11fr0 (3) a vaitic 0r M, (it' about 20.000 tois.
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Suppose now that the heaving motion is given by 4=a sin at. The
wave-length for a period of 7.42 sec. is about five times the beam of the
ship. It is thus permissible to take a simple distribution, namely a
uniform line source, od strength m cos at per unit length, extending over
the length L of the ship at some suitable mean depth f. We take the
value of m to correspond to the rate of alteration in displaced volume
of the ship, which is St or Saa cos at. Hence we take

m=Soa/2wrL.. ..... (11)
We put this value of m in (6) and, using

½No'a3=EL, .......... (12)

we obtain N=(paS2/L)e-f.. ... (13)

For the corresponding logarithmic decrement we have
77N _ rpS 2 -'/

8= nlý = 7TS - 2./

-- - -M ',L . . .. ..... . . . .. (14)

Putting in the values already given for this case and taking f=20 ft.
as a mean depth, (14) gives the value 8=1.4. The agreement with
Horn's estimate is, of course, merely a coincidence. Clearly, this large
value of 8 goes beyond the assumption on which N has been calculated,
namely that the damping is small enough to allow approximately simple
harmonic waves to be established. Nevertheless the calculation is
sufficient to show that wave motion is quite adequate to account for the
large damping which has been observed in practice.

6. There does not seem to have been any experimental work on cases
of three-dimensional fluid motion. We shall examine the corresponding
theory, as it will allow of more detailed calculation for other source dis-
tributions and also of application to pitching. Consider a point source
of alternating strength m cos pt at a depth f below the surface, that is,
with the source at the point (0, 0, -f). In this case the surface elevation
is given by

_ 2 ipm m, 2 KOf f K sin Kf-Ko 0OS Kf ec(VI1IhdtdIT -7r0f 2K _OOvud

-i=-OeHo((.)},.... $ ....... (15)

where rS=x2 +yg, p 2 =gKo, H0
2 =-J 0---iYo, and the real part of the

expression is to be taken. There is a corresponding expression for the
velocity potential. The first two terms in (15) represent local standing
oscillations of the surface, and the third term the symmetrical circular
waves propagated outwards. For the present purpose we only require
the wave motion at a great distance, and the first term in the asymptotic
expansion of the Bessel functions is b'fficient; hence, for thig part of
the velocity potential and surface elevation, we obtain

(_2VKO L 2V 4 e"%"'sin Pt+!-Kr(
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" VICO--- - 2-! iE e-yo°• °Cs p t+ - K0 • (17)
The rate of transmission of energy outwards is obtained from the rate

of work of the fluid pressure over the surface of a vertical cylinder of
radius r, that is, from

-- _ p•-2•,d. .............. (18)

Using (6ti), we obtain for E, the mean rate of transmission of energy
outwards,

E 4 7r2pK opme - 2Ko. .. ........ (19)

This result may be generalized to cover any given distribution over a
surface S in the liquid. Let m cos pt be the source strength per unit area
at a point (x'. y'/ z') on this surface ; we have to substitute for r in (15)
the quantity

(r" 2- 2rx' cos 0-- 2ry' sin o +"-' 2 +y' 2 )i, (20)

and then integrate over the distribution.
It is readily seen that we only need the approximation for r large,

namely
q5•-..• - " , 1,° . sinl l p/ + - K - or) + -Q Cos pt4 - - K r ý , (21)

where Pi-7- iQ w~x'. y', zDae+. sdS. (22)

From these expressions. we obtain for the mean rate of outflow of
energy

E-- 27TPKOpJ, (P2 +-Q1) dO. ......... (23)

7. Consider a circular cylinder, of rapius 1, immersed with its axis
vertical to a depth f and making forced vertical oscillations given by
a sin pf. As in the two-dimensional problem, if 27rg/p 2 is larger than the
diameter of the cylinder, we may assume t lie wave motion to be due to
an alternating source tit cos pt at, a ,lepth f. 'with 4rrbv-rbapa. Hence.
from (19). we have

E-z T _ b:-j 5  .......... (24)

Assuming that thii may be used to "valuate N for the natural damped
vibrations when the cylinder is floating freely., we obtain

N= ý- b'o e-................ (25)

Frmn the ustial hydrostatic theory. 7` -" flf. Withutit at tempting to
evaluate the elffctive mass in this case, we write M'7= (I -ýs)M (1 +ju pbf.
Hence. with those values, the logarithmic decrement is

ITN iT2b1c- L
41= ,Nl = (l2/L)..-.........(26)

For insuanee. with f -4b amid neglecting u we should have 8 0.04.
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,. We may now affemipt to apply these restiltb to t he pitching motion
of a ship. For a long narrow ship the appropriate source distribution
could be taken over the longitudinal vertical section of the ship as in
the theory of wave resistance for such forms. On the other hand, the
keel of the ship may play a large part in wave production in pitching.
As a suitable example for calculation, we choose a rectangular form with
vertical sides. of length 21 and beam 2b. and floating immersed to a
depth f; such a form will clearly exaggerate the wave-making effects
of bow and stern. We suppose the form to have an angular pitching
oscillation given by O=00 sin pt. We neglect the effect of the vertical
ends and consider only the flat, base. With the present procedure, we
take the source strength at each point such that 4iam cos pt is equal to
the normal velocity, that is. equal to x'0 in the notation of (22). Hence.
from (22). we have in this case

po C~ ýVe-Kl K0j't,. I y j10 l
P+iQ = =-n . dx'j .x'e-•f i•o(.',oS6+:/ iIO)(y, .. . . . . . (27)

I ../)00 sin (K0 .5 sin 0)•,¢a sin 0 cos- (K0 COS )-Kl COS0 v1 (K0l COS 0))C '.

(28)
From (23) this gives

E=-PP-0 0• e -2f si'n o (o-t sin ) sin (,0/ cosO)-K ol cos0 cos (K 01 cos 9)) do.
,TKO Si n:' cos-' 0

S. . . 2 )

For the pitching of a ship, as for heaVing. Kob is a moderately sinal
quantity ; (29) then reduces to a simpler form. which might have I)eeni
derived directly )' N assoming a lint, diitriltition of soitrees and sinks.
We have then

E,:, -'t- Sin (,cs C '0) K,, OS 0 COs (K 0)yI ,s d

. (34)

For pitcling oscillations of a ship. the tirsal equiation for nlat ural
pitching in still water is

10-B-NrO~fpVr ............. .(31)

where I is the total efltotive moment of inertia of the ship. V the displaced
volun" ;, and 9n the longitudinal metaeentrie height. As, before. w%,
estimate N by equating the mean vaahie of NiP, to the value of' E given i*y
(30), with p equal to the natural frequency a. There do not seem to lW
any direct determinations or ealckilations for the added mimomneit 41l
inortia. We shall therefore derive the effective• %vahl, of T f i-tl'o thl.
relation

0 21 = 9PVni,(39)
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with 27 1•a the natural period of pitching when damping is neglected.
With this relation. the logarithmic decrement is given by

-, N 'r(YN
, - . . . . .. . (33)

'cr qpVm.'
(Colleeting these results, and expressing the integrand in (30) in terms

of Bessel functions. we find

, (K 01 eb03 -)

tot ()3......4)

To o~u ain a numerical result we take a case from an early paper by
Kent (1922). The relevant data for the ship are : length 400 ft., beam
52 ft.. draught 22 ft., displacement 10.000 tons, longitudinal metacentric
height 458 ft., natural pitching period 6.11 see.

In (34) we take the distribution of the same length as the ship, that is
1=200 ft. ; we assume a mean beam of 40 ft.. and we take f-20 ft.
These values suffice for a rough approximation. The integral in (34)
was computed from tables of Bessel functions , and we obtain finally
the result 6-= 1.-6. The same general remarks apply to the limitations
3f this calculation as in the case of heaving motion ; however, it is
interesting that the decrement 8 comes out at about the same value in
the two cases.

9. Sutmmary. -Using expressions for the wave inotion due to alternating
souices in a liquid, application is made to the heaving and pitching
motions of a ship, and, in particular, to estimating the damping from the
rate of propagation ot tnergy outwards in the wave motion. This
method of approximation assumes the damping to be small, and the results
obtained are too hLrge. for much importance to be attributed to the
actual numerical values. Nevertheless. it may- ie concluded that the
wave motion gives rise to large dmoping for both heaving and pitching.
and thai the decrements are probably comparable with thi)e ohtained
experimentally.
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THE APPROXIMATE CALCULATION OF WAVE
RESISTANCE AT HIGH SPEED

By T. H. HAVELOCK, F.R.S.

SYNopsis.- The main purpose of the paper is to explore the possibility of
applying the present theory of wave resistance to models whose lines are not
given by mathematical equations. A brief survey of the wave theory is given and
this leads to a sub-division of the ship and the corresponding source distribu-
tion ; the determination of the latter is based on sectional areas and local pris-
matic coefficients. For low speeds a large number of divisions is necessary for
reasonable approximation and the calculations become too laborious, but results
have been obtained for speeds higher than a Froude number /(v/gL) of about 0.4.
These approximations are applied first to experimental models with mathematical
lines, and the results compared with those calculated from the usual integrals
and with the measured re.sistances. Finally the method is applied to two models
with non-mathematical lines, the necessary data being obtained from the plans
and the results compared with measured resistances.

Introduction
1. [N recent years the comparison of calculated and measured wave

"resistance has been the subject of much research and considerable
success has been achieved ; but the work has necessarily been limited
to relatively simple forms of model whose lines can be expressed by
mathematical equations. The chief desideratum at the present stage would
seem to be an extension of this comparison to a wider range of types and
to more normal forms of model ; this would, no doubt, disclose defic-
iencies in the present theory of wave resistance but would provide a
basis for further development and improvement. These considerations
suggest an examination of the application of the present theory to models
with non-mathematical lines, with a view to seeing whether the diffi-
culties of the calculations can be avoided by approximations giving
reasonable accuracy and consistency, even if only over some limited
range of speed. The present paper is the record of an attempt to make
such calculations ; whether the particular method prove useful or not,
it is hoped that the general statement will stimulate interest in the problem
and lead to further investigation, both experimental and mathematical.

From one point of view the problem is quite simple. If we assume the
well-known integral expressions for wave resistance (4, 6), the matter is one
of approximate integration over the ship's surface. The main difficulty arises
from the double computation ; intermediate integrals have to be evaluated
not only for a sufficient number of stations on the ship but also for a sufficient
numiber of values of a parameter so that the final resistance intepral may be
computed. The labour involved has prevented any direct calculation on these
lines. It is proposed here to examine the problem differently by returning to
first principles of the theory of wave resistance, beginning with the simplest
possible expressions and trying to find how far it is necessary to go before we
g'.t results of sufficient accuracy.

2. We consider a ship moving steadily through the water, and we neglect
meantime any effects due to fluid friction. The motion of the water must
satisfy the laws of fluid dynamics, together with the necessary conditions at the
surface of the ship and at the free surface of the water. Although the problem
can be stated thus precisely, and formulated in mathematical terms, it has
not been possible to obtain an exact solution for even the simplest form of
floating body ; we have therefore to approximate to a solution by successive

500
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steps. The first step is to neglect the wave rnotion and consider the fluid
motion produced by the ship assuming the water surface to remain plane;
the next step is to obtain the wave disturbance produced by this fluid motion
while ignoring the presence of the ship. A third step would then be to evaluate
the influence of the ship on the waves so calculated, and so on b3 successive
steps. Meantime the theory has not in fact proceeded further than the first
two steps.

Equimalent Source Distribution

3. The first step in the process may be expressed in another form. Consider
a double ship formed of the immersed volume of the ship and its inverted
reflection in the water plane, and suppose this complete solid entirely immersed
in water and moving forward wvith uniform velocity v. Over the fore part of
the ship the water is moving forwards and outwards, and over the after part
it flows in to follow the motion of the ship. This fluid motion ca'n be repre-
sented completely by a definite continuous distribution of sources and sinks
over the surface of the ship at each instant and rnoving with the ship. Let r
be the source strength per unit area at any point of the ship's surface, ,7 being
positive over the fore part and negative over the after part for a normal form.
(The notation used in this paper is that if In is the strength of a point source,
47-m is the volume of liquid flowing out in unit time). It is clear that, since
the total volume of water is unaltered, the integrated \alue of a over the w\hole
surface is zero, or the sum of the positive sources is equal to the sum of the
negative sources. On the other hand, if x is the distance of any point from
some transverse reference plane, say the mid-ship scetion, the integrated value
of ax taken over the whole surface is a definite amount and is the moment M of
the distribution. A simple expression for 11 can be derived from general
principles without knowing the actual distribution. It can be shown that

M = (I -- k) Vv/4- . . (1)
In this expression V is the volume of the body, and k is the inertia coefficient
for longitudinal mot;-1 • that is, vpk V is the added mass due to the motion
of the water.

If v, is the component of the velocity v normally outwards at any point
of the ship's surface, it is convenient to write the corresponding source distri-
bution in the form a - (I - k1)r,i4-. In general, k' varies from point to
point, but for an ellipso:d it is constant and equal to k. The added mass for
longitudinal motion is not very important in ship problems and there are few
estimates of its value. It is of inteiest to note that W. Froudc investigatcd
this effect in his well-known experiments on H.M.S. Gre'hound. He made
two sets of experiments, one with retarded motion and the other with accelera-
tion ; the former gave a coefficient of about 20o/% and the latter of about ,7'/
and on experimental grounds Froude attached more value to the larger esti-
mate. Whatever may be the interpretation of experimental results, we are
concerned here with the theoretical coefficient for non-viscous fluid motion ;
and there is reason to regard the lower value as more appropriate for normal
ship forms. Although this correction should be noted for future examination,
we may meantime regard it as relatively small, at least for the so-called narrow
models to which the wave theory has so far been limited. The usual approxi-
mation amounts, in fact, to neglecting the inertia coefficient k for longitudinal
motion ; and, in what follows, we take the source strength per unit area to
be given by a -= t,,!/4-. We can easily verify the total moment M of the distri-
bution in this case. Imagine a horizontal cylinder of smill cross section cutting
the midship section in an area dS, and cutting out an area dS, at a point P,
on the fore part of the ship's surface and an area dS2 at a point P, on the after
part. Then we have

a, dSi - r,: dS1/4,4% = rdS/4,-2
*2 dS2 = rdS/4. (2)

Hence

M frP1PtdS/47 -V/4-n. (3)
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the integral being taken over the midship section, and V being the immersed
volume.

To sum up, with this approximation, the source distribution on the ship's
surface is specified as follows : the total source strength on any portion of
the surface is given by v/4n times the area of the projection of that portion
on to the midship section, with an obvious rule for determining the sign of the
projected area.

Formulw for Wave Resistance

4. We give now expressions which wvill be used for the calculation of wave
resistance ; for general formuke for any distribution of sources reference
may be made to Roy. Soc. Proc. A. 138, p. 339 (1932). We take the origin 0
on the centre line of the form and 'n the water plane, Ox in the direction of
motion, Oz vertically downwards, and Oy horizontally at right angles to the
other two axes. We shall be concerned here with sources only in the longi-
tudinal zx-plane. If we have any distribution of which a typical source is
of strength m, at the point (x,, o, z,), the corresponding wave resistance is
given by

R =16-k2," (I" -12 J2 ) cosh2 u d1 ti (4)

where
I = m:e- kzr cosh 2u sin (kx, cosh u) (5)

J = m re -kz, cosh 2u cos (kx, cosh it)

where k = g/V2 and the summation extends over the given system of sources.

If we make the assumptions for a narrow ship, outlined in the previous sections
from a somewhat different point of view, it can easily be verified that these
expressions lead to the usual integrals for the wave resistance. We have the
same form for R with

1= �.Jj (dyiAd) sin (kx cosh ?I)e-kz coSh 2 u IXy

I Jj_ (dy/,ix) cos (Lxe cosh ?I)e -k z caoh2 I .it . (z

The integrals are taken over the longitudinal section of the ship, and (`ylJ'x)
is taken from the equation of the surface of the ship.

First Approximations
5. After this preliminary survey we proceed to the immediate problem,

namely dividiiig the ship into a finite number of sub-divisions. Although of
no practical value, Nxe begin with the most extreme simplification to illustrate
the point of view of the present study. We haxe seen that the total moment
of the source distribution is [',i47" where V is the immersed volume and V the
speed. We now suppose this moment to be concenarat,xi at a point as a source
and sink doublet with its axis in the direction of motion. The loigitudinal
location of this doublet is immaterial so far as the resistaiice formula is con-
cerned and we may suppose it to be in the midship section. For its depth
we use here, and throughout the work, the principle that for a lirst approxi-
mation we replace any system of souices by a source of the total strcLigth placed
at the centi oid of the system Since the source strength on anN clement of
the ship's surface is proportional to the projection of that element on the mid-
ship section, it follows at once that the depth of the centroid of the distribution
is the depth h of the centroid of tile midship section. Thus the liist approxi-
mation is a horizontal doublet of moment Vvi4-. at a depth h. Putting these
values into the expression for the wave resistance of a doublet, which may
be dc.liced from (4). (5), we obtain

R ý- (g;-, 7.) V' Ij1, C ,h cosh-. k coslhi u du (7)
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This integral can be expressed in terms of Besscl functions, and its value obtained
readily from tables of these functions.

It is clear that this extreme simplilication can only be an ideal limit for very
high speeds, and it is no use comparing it with experimental results. It is,
however, of interest as the limit towards which the uS.ual complete theoretical
expressions should tend. Consider, for instance, the simplest type of experi-
mental model with parabolic lines, the surface being specilied by

y b (I -- Z2/d 2) (I -- x 2/!2 ) (8)
Calculations, meantime unpublished, from the complete integrals (4) and (6)
have been made recently for very high speeds by Mr. W. C. S. Wiglcy, Nxho
has placed his results at my disposal. Taking the Froude numberf]- z,,.' (gL),
the highest value for which calculations wvere made was f -v 1.77. With length
= L = 2/ 16 ft., beam 21 =- ,5 ft., draught -- d - 1 ft., at this value
of f the complete formula gives a wave resistance of 31.8 lb. Calculating from
(7) with V= 1OJ cub. ft., h := 3 ft., we obtain a resistance of about'40 lb. The
comparison is not so far out as might have been anticipated, and to that extent
it may be taken as confirming the argument by which the simple formula was
obtained.

6. The next simplest dissection of the ship is to divide it into two by the
midship section. We consider the fore and aft parts separately, replacing
each part by a single source at the centroid of the distribution in each case.
For the positive sources on the fore part of the ship we have seen that if M is
the area. of the midship section the total source strength is Alv/4-. From the
argument in the previous sections it is readily seen that the moment of the
distribution with reference to the midship section is V, z: 47, where V, is the
volume of the fore parl ; hence the centroid is at a distance V, V. orp,1/, ahead
of the midship section, where /1 is the length of the fore part and p, its prismatic
coefficient. Similarly the controid of the negative sources on tile after part
is at a distance p2.. astern of the midship section, \where 1.z is the length of the
after part and P2 its prismatic coefficient. Thus w\e have a pair of sources,
positive and negative, each of numerical strength APt 4-, at the depth h of the
centroid of the midship section, and at a distance pL apart, where L is the
length of the ship and p its prismatic coefficient. Applying the formulke (4),
(5) to this combination, we obtain for the wvave resistance

R~ ~ ~~~[ =--p : A2:oe_ 2kh-cosh'-1u
R = (4gp,:)kM40 e sin 2 (1- kpL cosh i) cosh~u du (9)

This is an interesting expression from a theoretical point of view, as it brings
in factors which are admittedly of the first importance in wave resistance : the
area of the midship section and the depth of its centroid. or roughly the depth
of the centre of buoyancy of the ship, the length of the form and its prismatic
coefficient. But it w•ill clcarly exaggerate, in general, the interference between
bow and stern systems ; end it is too simplified tbr practical purposes, except
possibly for special types of iodel oxer a limited range of speed.

General Sub-diihison of the Ship

7. The total moment of the ship is distributed in a continuous source
distribution over the surface of the Thip : distributed in length, in depth, and
in beam. The last of these is neglected in the usual theory and v'e lea\e it on
one side meantime, noting the possibilit:.' of including it in furtijer developments.
Of the other two, the distribution in length is specially important. We now
divide the ship by taking transxcrse sectioni at imy required number of stations ;
for simplicity at first \\c consider complcte sections, lea\ing subdi\ision in
depth till later. Let S1, S2 be the areas of any t\mo transe\rse sections, say
in the fore part of the ship \%ith S. > S.. The total source strength on the
ship's surface betmeen these stations is

(.3,-- SO) r4--, (10)

The ship being synimet.ical \\ith respect to the vertical longitudinal section.
the centroid of the distribution lies on this median plane. Its depth is the
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depth of the centroid of the area between the corresponding traces of the sec-
tions on the body plan of the ship. The longitudinal location of the centroid
may be specified by a kind of local prismatic coefficient for the increase in
volume in relation to the increase in cross-sectional area. It is readily seen,
from the argument in the previous sections, that if ý is the distance of the
centroid ahead of the station S 2, x,. the distance between the stations and V12
the volume between them, we have

x = (V 12 - S 1x 12)/(S 2 - SO . . . . . . (11)
The same construction holds if we take horizontal sections in addition, and

subdivide in depth as vell as in length. We replace each subdivision so formed
by a single source at a certain point ; the strength of the source and its location
are easily derived from the usual data for the ship, for example the curves of
sectional areas and volumes, the body plan and principal dimensions. We may
exhibit this information in the form of a diagram representing the longitudinal
section of the ship divided into compartments ; in each compartment is placed
a number for the strength of the source at a given point in that compartment.
The diagram gives quantitative information about the wave-making quality
of the ship, and may be useful even if we do not carry out the subsequent calcu-
lation for the wave resistance. It may be noted that we have tacitly assumed
a normal form of ship, with the sources all positive on the fore part and all
negative on the after part. For a balbous bow, for instance, we should have
a superposed source and sink combination which could be calculated by the
same procedure. Of course, if we pursue this process far enough to arrive
at very small subdivisions, we are back at the original problem of approximate
evaluation of the complete theoretical integrals ; in particular, the precise
location of the elementary source within its compartment would lose signi-
ficance. It remains to be seen whether, with the particular method described
above, a relatively small number of subdivisions will give any accuracy in calcu-
lation. It is obvious in advance that high speeds will give conditions most
suitable for comparison ; roughly speaking, the deciding factor is the relation
between the distance between stations and the predominant wave length, and as
we come down to lower speeds it will be necessary to increase the number
of stations.

Comparison with Experimental Models
8. Before applying the method to models witb non-mathematical lines, we

test it by comparison with experimental models of simple form. We take
first the parabolic form, the equation of whose surface has been given in (8).
Extensive calculations have been made for this form from the usual complete
integrals and tables of the various integrals have been given by Wigley in a
recent paper.* We shall take, at first, complete transverse sections at
x = 0, --' .l, -: J1. The sections are all similar and their centroids, and there-
fore those of their differences, are all at the same depth •d. The sectional area
is given by S Ml (I --_ X2 12). Using the formulze (10) and (11), we obtain
sources of strengths, omitting the common factor vMj47,

1 7

at x - , A1 ' (12)

respectively. The model being symmetrical fore and aft, and neglecting vis-
cosity, there are corresponding negative sources at similar negative values of x.
Referring to (4) and (5), the cosine terms cancel out, and we are left with

R -(g/-%)kM . .2 cosh 2 1 fh1, (13)
it')

I, 2e - Akdcosh~u: "25 sin ('333 kl cosh u)

.3125 sin (.633 klcosh u) -+- 4375 sin (,881 klcosh u) . . (14)

°"(,dcula•,--imd . ,', 'ur',t wa'vre i t oofa S,1 i o , ,,ri .i d Ain ,br- ,tallv the Priqinatie (Oeffili-
tonlt It g titrawice twi g \ armi in,.penod ýdt , C. S. \iglev, M.A.' INA Vol. 84, p. S2,
1942.
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Calculations have been made for the standard model with length - 16 ft.,
beam, = 1.5 ft., draught - I ft. We nowe that k -- g/'1,2 -- I/f 2 L, wherc f is
Froude's number. The integral was evaluated by direct quadrature, and
no attempt was made to attain any high degree of accuracy in the numerical
values as the work is regarded mainly as an exploration of possibilities ; if
necessary, more systematic methods of computation could be devised, but
meantime it is hoped there are no errors serious enough to invalidate the general
deductions.

For a givm value off, the sines in (14) were calculated for values of u in-
creasing by 0.2, or in some cases by 0.1 ; it was not found necessary to go beyond
u = 4, because of the decrease in the exponential factor. The integrand in (13)
was then calculated for these values and graphed as a function of u, so that
additional values could be inserted where needed ; finally the value of the
integral was obtained by the usual rules for the area under the graph. In
Table 1, the wave resistance in lb. calculated in this wvay from (13).and (14) is
denoted by R,, ; the corresponding values R, have been obtained from the
tables given by Wigley, using the complete theoretical integrais and omitting
any correction for viscosity.

TABLE I

f .265 "303 '341 .404 "522 '607 884

R,, 1.93 3-48 2.44 8'0 20"7 23.7 27"1

R 1 1.08 3.25 2"43 7'9 20.4 23"6 26.1

The agreement in the range .341 to .607 is surprisingly good ; the differences,
it should be stated, are well within the limits of possible error in the present
numerical computations. At lower speeds it was expected that the subdivision
would be too coarse-grained, and the approximation gives unreliable resuits
due to accidental coincidences between the various sine terms. One way of
expressing it is that replacing the model by a small number of finite sources
introduces interference effects between these sources taken in pairs and these
become important at the lower speeds ; whereas in the aictual model with
its continuous lines these are smoothed out. To obtain the same result by
calculation we should have to increase the subdivision in length. Suppose
we take, in addition, a horizontal section at half-draught, thien. considering
any transverse section, 11/16 of the area is above and 516 is bcieov this lecl
further the centroid of the upper portion is at a depth 21d,88, and that of the
lower portion is at a depth 27d!40 below the water plane. Hence all that is
necessary, for this model, is to replace the exponential factor in (14) by

I -- -I kd cosh"u -- 7 Ukd cosh~ai

Various calculations have been made in this way, and also with different trans-
verse sections. In general it may be said that numerical values are increased
by greater subdivision in depth and diminished by additional transverse sections ;
increasing both enables one to increase the range of speed for which effective
agreement can be obtained.

9. We ha\e now to examine the extent to which the approximation reflects
changes in form and whether it is sufficiently sensitive in that respect. In
the paper already quoted, Wigley compares calculated and experimental \alucs
for a set of models defined by two parameters, the general equation of the
forms being

y = b (I - z2'&d-) (I - x 2/12) (1 --- a 2Xj,'l" -* a4x1/'iP) . (15)
It is a simple matter to obtain general formule for the sectional areas and

their differences for any scheme of subdivision, and for the positions of the
respective centroids in accordance wiih (10) and (I1), and they need not be
reproduced here. We shall take three particular cases, for two of which experi-
mental results are also given in the paper quoted.

505



THE APPROXIMATE CALCULATION OF WAVE RESISTANCE AT HIGH SPEED 53

Model 1,970 B. This is specified by
a2 = .4375 ; a4= - -4375

21 = 1.6 ft. ; 2b- 1.5 ft. ; d-- 1 ft.
For comparison with the previous case we take the same subdivision : no
horizontal section, and transverse sections at x = o, ± +1, ± Jl. The approxi-
mate source distribution could be shown on a diagram of the longitudinal
section of the model ; it is given here in Table 2, with the divisions not drawn
to scale.

TABLE 2

These numbers, when multiplied by vM/47r, give the source strengths. The
depth of the sources is id, while the longitudinal distances from the midship
section are found to be x/l = ± -349, ± -638, ± .879.

Comparison may be made with the distribution for the previous model
with a2 = a4 = o. Since we have not taken any horizontal section, the dif-
ferences correspond to those on the curves of sectional area-or, rather, to
the differences in the gradients of those curves. Using these coefficients for
the sine series we calculate R from (13). Using the same notation as in Table 1,
the comparison between calculated values from the complete integrals and
from the approximation is shown in Table 3.

TABLE 3

f "303 .341 .404 -522 .607 *884

Ra 5"82 4-23 8-67 21-74 24-9 28-4

R; 5'34 4-31 8-83 21"7 24-6 27-9

Model 1970 C. In this case
a2 = -8125 ; a 4 = - 1-3125

21= 16ft. ; 2b-= 1-5 ft. ; d= 1 ft.
With the same subdivision, we find the distribution shown in Table 4.

TABLE 4

- -456 -- 385 - '159 "159 "385 "456

For the horizontal location of the sources, we obtain.
x/l == ± .377, ± -639, ± -870.

For comparison with experimental results, the calculated values have been
expressed in terms of CC, = R { 25 -41/8 *v}1, where 8 is the displacement and v the
velocity. The results are shown in Fig. 1, in which the two curves have been
reproduced from Wigley's paper. One curve is for the residuary resistance,
obtained in the usual way by deducting from the total measured resistance the
part aue to skin friction calculated from Froude's coefficients ; the other
curve is for the wave resistance calculated from the theoretical integrals, without
viscosity correction. The results obtained by the present approximation are
shown by a cross for each of the speqds for which calculations were made.
Model 2038 C. This model is specified by

a, = -0-5 a; = 0;
21-= 16ft; 2b-= 1-75 ft. ; d-= 0-5 ft.

In "addition to the variations.in the parameters, we have larger beam and only
half the draught. Taking the same sections we obtain the scheme in Table 5.
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The sources are at depth jd, and the longitudinal positions are x/ - 327,
.627, - - 869. Making calculations with this plan it was found that the

values at the lower speeds tended to be too large. This is probably due to
the large source strength in the middle compartments compared with the
previous cases, and possibly to the shallower draught. It was decided to
take additional transverse sections so as to divide each middle compartment
into two of equal strength ; this can be calculated from the general formuhe
(10) and (11). Thus the scheme finally adopted is - 314, - -342, - .172,
- -172, .172, .172, .342, .314, with the longitudinal positions given by
xl1 = ± .227, ± .418, * .627, ± .869. The depth is the same as before.
The consequence is that we have now four sine terms to evaluate. The results
are shown in Fig. i, the curves being reproduced from Wigley's paper and
the values from the present approximation denoted by crosses.

TABLE 5

-314 -342 -344 .344 22 "314

TABLE 6
10 9 8 5 2 1 0

-- 362 -- .136 110 183 163 262

-- 247 "145 "126 '266

The agreement shown in Fig. I between the two sets of calculated values is
reascnably good. The four cases which have been examined, taken together,
give some idea of the scope of the approximation and of the measure in which
it responds to changes in the form of the model. It is not the present puj pose
to compare calculated results with experimental, but the latter have been
included in Fig. I for the last two cases. It should be noted that \iscosity
effects have been neglected, but these are comparatively small at the speeds
under consideration ; moreover, the residuary resistance has not been corrected
by any allowance for form effect upon the frictional resistances, or similar
refinements. It is generally considered that the main difference between
calculated and experimental values of wave resistance at these speeds is due to
sinkage and trim of the model. From the point of view of the present work,
this would be reflected mainly in an increase in the effecti\e area of the mid-
ship section ; and it can be seen from the formulae that the values are very
sensitive to changes in this factor.

Models wvith Non-matheinatical Lines

10. We proceed now to apply the method to models with lines not given by
mathematical equations, for which the wa',e resistance has not hitherto been
calculated. For obvious reasons, in view of the range of speeds under con-
sideration, it is not possible to deal with recent models. Data ha\e. however,
been obtained for two models : these include complete plans and dimensions,
together with the record of actual measurements of resistance. (I am indebted
to Mr. J. L. Kent, Superintendent of the William Froude Laboratory, for per-
mission to use this material, and to Mr. W. C. S. Wi•kv for much valuable help.)
Alodel A. The body plan and other data for this model are shown in Fig. 2.

It is obvious that the problem is more complicated than for the simple
model, symmetrical fore and aft and w\ith similar transxerse sections through-
out. After some preliminary calculations it was decided to take the follo%\ing
subdivision : one horizontal section throughout at half draught . in the upper
half, transverse sections at stations 1, 2, 5, 8 and 9 , and in the lo\kcr half,
transverse sections at stations 2, 5,'and 8. The various sectional areas and
the dcpths of their centroids, and the corresponding volumes v. crc obtained
from the plans. From the sectional areas in the upper and lov\er halves, ,Ne
obtain the source diagram shown in Table 6.
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The midship section area is 0.4306 sq. ft., so the source strengths are the
numbers in Table 4 multiplied by '4306z/47, with v in ft./sec. For the depths of
the sources, those in the upper row range between .094 ft. and 1.43 ft., while in
the lower row they range from .3 ft. to .32 ft. Instead of using all these depths,
giving separate exponential factors for the terms in the formulZv, we shall use
a mean depth for each row. It is obvious from the construction that the mean
depth in each case is the depth of the centroid of the corresponding half of the
midship section ; these depths are .107 ft. and .302 ft. respectively. For the
horizontal positions of the sources we carry out the calculations required
by (I I); with x measured forward from the midship section, we obtain, with
x in ft.,

x (upper) 6- 218, - 4.869, - 2.806, 2.782, 4.804, 6-!57
x (lower) - 516, - 2.635, 2.778, 5.586.

Since the model is not symmetrical fore and aft, we have to consider both
sine and cosine series in (5). The expressions for I and J can now be written
down ; each of them contains ten terms, but we simplify them further for
approximate computation. We group the terms in pairs for corresponding com-
partments fore and aft of the midship section. For instance, in the upper
row we have the pairs.

• 183 sin (2-782 q) + .!10 sin (2-806 q) in I,
and

. 183 cos (2.782 q) -- -I 10 cos (2-806 q) in J,
where we have written q for (g 'j,2) cosh if. We replace these by .293 sin (2-794 q)
and .073 cos (2.794 q) respectively, the difference so made being unimportant.
Making a similar change for all the pairs of terms, we find that the cosine
terms are small compared with the sine terms ; further, their contrib,,tions to
the resistance integral are pr-oportional to their squares, and we pf )pose to
neglect the cosine terms. It has, however, been verified by approximate calcu-
lation at one or two speeds that the cosine terms would not add more than
about one per cent. to the resistance. Finally, we are left with

= :'293 sin (2-794 q) ! -299 sin (4-83 q)
+ -624 sin (6.187 q):

- '302p .2 7 1 sin (2-706 q)- .513 sin (5-373 q) (16)
where p --: (g'v2) cosh 2 i, q - (g/v2) cosh u.

With (16) and (4), the wave resistance has been calculated for six speeds
ranging fron f -= -352 to f - .749. The results are shown in the dotted curve
of Fig. 4 as values of R/h'-', where 2h -= beam. The experimental curve has
been obtained in the usual way, the residuary resistance being the actual measured
resistance less the skin friction calculated from the wetted surface at rest and
the appropriate Froude coeflicient. The difference between experimental and
calculatc.A values is much the same as for the prc\ious cases. The falling off in
calculated \alue at \,ery high speeds is rather more than usual ; this may be due
in part to the approximation, but most of it could be accounted for by the
effect of sinkage and trim.

fodrl, B. The body plan and other data are shown in Fig. 3. This model
has the same displacement, length and beam as Model A, but has greater
draught.

With the same sections as before, the corresponding source distribution
is shown in Table 7.

TABLE 7
10 9 8 5 2 1 0

-326 -203 .075 .239 ,177 180

-177 -219 -181 -214
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The midship section are is 0.4671 sq. ft., and the depths of the centroids
of the upper and lower portions are 0.113 ft. and 0.334 ft. respectively. For the
horizontal distances, in ft. we obtain

x (upper) -- 611, - 489, - 3-09, 2.71, 4.763, 6.11
x (lower) - 46, - 353, 2-42, 5-355

Comparing with the scheme for Model A, we see that there is a greater
degree of dissymmetry between the positive and negative distributions ; this
makes the calculations more troublesome, as we cannot neglect the cosine
terms altogether. Grouping the terms in pairs as before, we neglect the cosine
terms for the lower row of sources as unimportant, and we obtain

- e- "13p 314 sin (29 q) -38 sin (4.826 q) -: .515 sin (6.11 q)I

+ e- " 4 sin (2.975 q) - 391 sin (4-978 q),

J - e-" '113p -1l64 cos (2"9 q) - "027 cos (4.826 q)
S•137 cos (6"11 q) I . (17)

The resistances have been calculated from (17) and (4) it was found that
in this case the cosine terms add about six per cent. to the final values. The
calculated and experimental curves are shown in Fig. 4 ; the calculated values
are in general rather higher than might have been anticipated. For both these
models, the calculated values at the lower speeds could probably be impro ed
by a more suitable subdivision and more detailed computation.

General Remarks

11. A few notes may be added on matters left over for further investigation.
Beam. In addition to subdivision in length and depth, we might also take

longitudinal sections; for instance, suppose we take a section through the
median vertical plane. Then instead of a distribution of sources in one plane,
we have a space distribution which could be specified and located by the
same methods ; and expressions for the wave resistance could be obtained from
the general (ormule. The effect might be examined theoretically in some simple
case ; but it is only likely to be of importance at low speeds where several
other factors also affect the results.

Viscous Effects. One effect of viscosity is that the frictional belt round
the ship makes the run and stern less effective in wave-making. This can be
represented, somewhat empirically, by a reduction factor fo, the after part of the
ship. This reduction factor, if obtained from comparison between calculated
and measured resistances, will include other effects of viscosity than that just
nntioned ; in fact, it will also probably include in some cases effects for
non-viscous flow which have been left out of account meantime for instance,
what might be called a screening effect of the bo% for models with oroad beam.
However that 4nay be, any empirical factor could be uscd in the present scheme
by making the necessary reduction in the numerical magnitudes of the negative
sources for the after part ; this would mean including the cosine series in the
formuke ; otherwise the calculations v•ould be the same. At sufficiently
low speeds, if we assume that-for one reason or another the stern contri-
butes little to the wave-making, then the same number of sections as were
necessary for the whole length of the ship might, if concentrated over the effective
length of the bow, give a sufficiently line subdivision for appro\imate calcUlation.

Lwcaion of Sections. Probably the best method of locating the transverse
sections would be one which was to some extent related to the type of model .
there are some indications to that effect in the present work. For coracnience
in a first survey the sections have been taken at fixed stations, both thd strengths
of the sources and their positions varying from model to model. Another
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plan would be to take sections giving equal differences of sectional area, and
this would lighten the numerical work to some extent. On the other hand, it
would be possible to locate the sections so that the sources were for the most part
in fixed positions relative to the length of the model, and such a scheme would
have the great advantage of allowing of tabulation of the sine and cosine terms
in advance. Obviously any scheme which permits tabulation and systematic
procedure in the computation would not only give greater accuracy in the
calculations but would make it possible to extend their range of application.

As a general conclusion from the present work it may be said that, although
the method needs further testing and systematizing, it indicates a possibility
of calculating wave resistance from the plans of the model, at least for high
speeds ; and that the results so obtained would agree fairly well with those
that could be calculated from the usual integrals if the lines of the mcdel were
given by mathematical equations. If this should prove to be the case, it would
be possible to have a greater variety of form in experimental models, so pro-
viding more material for comparison between theory and experiment and
giving ultimately a better basis for application of the calculations in practice.

Fig. I-see next page.

6 7 8 9 9ý LIWL. JO _ I 3 3 45

Fig. 2-Model A. 13.57' x 1.28' x 0-434'.
Displt. 2ý94 lb. M.S. coefft. 0775. Prism. coefft. 07!1.

67 8 9 94 LWL 'z _ 2 3 4 5

FiRg. 3-Mod: B. 13.57' x 1[28' x 0.455'.
Dispit. 239'4 lb, M.S. coeft. 0"8C2. Prism. coeft. 0"656.
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NOTES ON THE THEORY OF HEAVING AND PITCHING

By Professor T. H. HAVELOCK, M.A., D.Sc., F.R.S., Honorary Member.*

Summary length, thus. c .cept for special types of form or mass
"Ihe main points la the paper are (i) a calculation of the distribution, we may take K2 as approximately equal

damping of heaving and pitching due to the waves produced to k2. Hence in (2), we have I = W k2/g and m - k2/d,
by the motion of the ship, (ii) an examination of the extra and the result is the same approximate period 2 7r V(d/g)
resistance caused by t!:- reflection of a regular trgin of waves for pitching as for heaving.
by the ship's 3urf' :e, (iii) a suggested theory which gives an For mean uniform draught ranging from 20 ft. to
extra resistance more closely associated with the heaving and 30 ft., this means a period of from 5 sec. to 6 sec. The
pitching motiors.

No attempt is made to formulate a complete theory; the natural periods for usual types of cargo ship generally
work is based, in the main, on the usual approximate first- range from 6 sec. to 7 sec. The difference arises from
order equations of motion and the hydrodynamical theory is two causes, damping and the inertia of the water. Even
that of potential fluid motion under gravity and neglecting with large damping the effect on the period is corn-
viscosity. Details of mathematical analysis are given in an paiatively small, and practically all the difference is due
appendix, and the paper gives an account of the work together to the inertia of the surrounding water.
with nume, ica! calculations and comparison with experi- The calculation of added mass for heaving usually
mental data. proceeds on the assumption that we may replace the

Oscillations in Smooth Water immersed volume of the ship by a double ship wholly
The usual approximate equations for heaving and immersed in an infinite liquid; this underlies the work of

pitching in smooth water are F. M. Lewis (R.It) and of Browne, Moullin and Perkins
(R.2). There do not seem to be any similar calculations forM " - Ni • -.- g p S 0 . . . (1) rotation, or any with direct application to ship forms.

I" N, Bi + W n, 0 0 . . . (2) One remark may be made about such calculations for
a floating body. A complete solution, satisfying theIn theme equations G = upward displacement of the condition of constant pressure at the free surface of the

centre of gravity G, 0 = angle of pitch about the trans- water, would include wave motion of the water. Neg-verse axis through G measured potnitive with bows up, lct
S = area of water plane section, W = g p F V displace- lecting gravity there are two alternative assumptions for
ment in the equilibrium position, m = longitudinal the surface condition, that it is either a rigid plane surface
metacentric height. Further, it is assumed that the ship or an open surface of constant pressure. We might take
has a simple symmetrical form so that there is no the condition at the free surface to be zero normal
coupling between heaving and pitching so far as first- velocity or zero tangential velocity. The calculations on
order equations are concerned. N1 and N2 are coef- added mais have, taken the latter condition. It is of
ficients which are considered later. interest to note that the former condition, of' a rigid

Effective Mass and Ifoment of Inertia.--It has been plane boundary, has been used by Brard (R.3) in work on
observed that the periods of heave and pitch in still the corresponding inertia effects in the rolling of a ship.
water are approximately equal, and it is easily seen In my view, the choice of appropriate boundary con-
how this arises. Suppose at first that we neglect the dition depends not only on the ntode of motion of the
damping terms in (1) and (2),and also ignore the effect ship, but also upon whether its oscillations are of short
of the inertia of the surrounding water. Then (1) gives period or of long period. However that may be, the
for the period of heaving 2 r, /(d/g), where d ,,/s = inertia coefficients in the present problems are generally
mean uniform draught. Turning to equation (2), the estimated by indirect methods, or in effect by comparing
longitudinal metacentric height is of the order of the observed periods with those calculated without allowing
length of the ship and a usual first approximation is for the inertia of the water. The only difficulty that
to take arises is that often the stated periods have not been

Ill G M B M S kl/V - k2/d directly observed, but have themselves been deduced
%here k is the radius of' gyration of the water plant' indirectly. There is, however, general agreement that
section about the transwvrse axis. a normal value for the added mass for heaving would be

If K is the radius of gyration of the ship about the from 80 to 100 per cent of the displacement, with even
transverse axis for pitching it can be seen that, at least more for broad. shallow forms; while for pitching the
for uniform loading, X2 differs from k2 by a quantity added moment of inertia might be normally 40 to S0 per
of the order of the square of' the ratio of' draught to cent of the moment of inertia of the ship-reference may

Protebsor uf Miilmaia~.s, King'% ("olle;, Nevcajbl¢-.on-T)ne. t Refcrences at end of il'itler.
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be made, for instance, to G. S. Baker (R.4). We may Calculations of the magnitude of this efftct have been
examine this in a few cases from the point of' view of given in a recent paper (R.1 I), and also in the Appendix
the same approximate basic period 2 rr %/(dlg) for both to the present notes.
heaving and pitching. Suppose the ship is acted on by a periodic force,

With data from Kent andCutland(R.5) fora cargo ship say H0 cospt, so that it is making forced heaving of
of 400 ft. x 55 ft. x 24 ft., we take the mean uniform period 2 trip. We could write the equation of motion
draught as 21 • 5 ft. This gives a basic period of 5. 1 3 sec. in the form.
The natural rcsisted periods of pitch and heave are given
as 6.20 and 7.42 sec. respectively; taking the ratio of M r gpS X -- H0 cospt (3)
each of these .o the basic period and squaring, we get where we consider X as the vertical resultant of the
the corresponý;:ig added moment of inertia and added additional fluid pressures due to the wave motion. The
mass, namely about 46 per cent and 100 per cent assumption is that if X could be calculated it would be
respectively. a resistance proportional to the velocity ý and couid be

Similarly, from the details given for the motor ship transferred to the other side of the equation and be the
San Francisco (R.6) with a mean draught of 22 ft. the term N, 4 as in equation (i). Meantime we can only
basic period is 5 19 sec. The observed periods of pitch evaluate N, by indirect methods. The impressed force
and heaveare given as 6.51 and 7.34sec.; and we deduce Ho cosp t does work at a rate just sufficient to maintain
corresponding inertia :ncrements of 57 and 100 per cent. the forced oscillations; if the latter are of amplitude 4o,

For a different type, a fast ship 400 ft. x 48 ft. x 13 ft., this mean rate of work is tp 2 N, ýo. This is equated
we have data taken from Kent and Cutland (R.7). The to the mean rate at which energy is propagated outwards
mean uniform draught of 10'5 ft. gives a basic period in the wave motion, and so we obtain an expression
of 3.59 sec. From resonance effects in rough water foe N1 ,. To determine the wave motion we replace the
the natural resisted periods of pitching and heaving were ship by a suitable distribution of alternating sources
assumed to be approximately 5-4 and 5-8 sec. Accepting over its surface and hence deduce an expression for the
these values, we get an increase of moment of inertia of mean rate of outflow of eneigy (A.1 and 2).* The same
about 125 per cent, and of mass of about 160 per cent. argument applies to the pitching motion with reference
These values seem too high, though increased values to the forced oscillations, and we derive an expression
would naturally be expected from the greater ratio of for the corresponding factor N2 . Calculations have been
beam to draugiit. made for a simplified form of ship; wall-sided, of

Leaving aside tite approximation in using the same length L, beam B, of constant drau4ght d, the horizontal
basic period for both pitching and heaving, the total sections being the same and elliptizal in shape. The
effective mass and moment of inertia can, of course, be expressions for N, and N2 are given in A. 5, 6, 10 and 11.
calculated if•we know the requisite data and the observed For numerical values we take L ý 400 ft,, B ý- 55 ft.,
periods; for from (1) and (2) we have M -= gp ST 2]4 2 d ' 20 ft.; these dimensions giving a rough corre-
and I in W T,/4 •r. spondence with a cargo ship of about !0,000 tons dis-

Dwuiping.-We consider now the second term in placement. Calculations for N, forom A. 5 and 6 have
equations (I) and (2). representing the damping of the been made for six different values of the period T -- 27rip
natural oscillations. This arises partly from frictional and the results are shown in Table I in lb.-ft.-sec. units,
effects and partly from energy lost in the wave motior. the lb. being the unit cf force.
produced by the oscillation. In order to evaluate the TABLE I
latter contribution we ignore for the present all effects
due to 'Niscosity. In the problem of rolling the associa- t N, x 10-- 1,41/m

tion of damping with wave motion has been familiar
since the time cf W. Froude. Some recent calcula- 027
tions (R.8) hame shown that it is certainly capable of 5 0.43 032

accounting for a large proportion of the observed 7 0.54 0.40

damping for a ship with zero speed of advance. The 8 0.60 0.45
rolling problem is simpler than that of heaving and 9 06'7 0.50
pitching in that the damping is small: on the other hand, 10 O-70 0.53
it is more difficult to calculate the %kave motion directly
in terms of the form of the ship.

For damping due to heaving, reference may be made For the values cf N./M in the third column, we
to some small-scale experimental studies, In particular, have assumcd an added mass of 90 per cent and have
Schulei (R.9) examined the waves produced by a prism taken the effective mass M to be 19,000 tons. If the
making vertical oscilla!tions, and, among oiher resuhs. ship were heasing in a natural damped motion of
deduced that the damping was due to wave motion, period 'I, the logarithmic decrement of the motion
viscous and other damping being negligible in comn- would be given by N, T/2 M. If, for instance, the
parison. in theapplication to hiip motion, Kreitner (R.10, natural period is 7 sec., then taking the corresponding
la,, emphasized the importance of this kind of damping value from Table 1, we should get a logarithmic decre-
in hca ing and pitching. A. refers to the appendi:, and R. to the list of references.
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ment of 1.41. This is a very high degree of damping these complications and evaluating the forces on the ship
compared, for instance, with rolling. It seems probable from the pressures in the undisturbed train of waves.
that any numerical estimates have been deduced from This was the simplification adopted by W. Froude in his
resonance curves under forced heaving. The only theory of rolling, and it was also the basis of the well-
published estimate appears to be that given by Horn (R.6). known work of Kriloff on pitching and heaving. The
It is stated that the result of observations on various conventional method is to suppose the ship held in its
models gave an average value of 0.45 for the quantity equilibrium position and to calculate the excess or defect
N T/2 7T M, in the present noiation, or a logarithmic ofbuoyancyanditsmomentfromhydrostaticpressuresdue
decrement of 141; it is also stated that the corresponding to the instantaneous position of the wave profile relative
damping coefficient for pitching was of the same order. to the ship. We confine the discussion in this section to

For pitching, calculations for the same model from the first approximation, but we calculate the forces and
A. 10 and II are shown in Table II. couples directly from the pressure system in a regular

train of simple harmonic waves. Reference may be

TABLE 1I made to A.§2, where results are obtained for the par-
ticular model we are using, a wall-sided ship with

T N 2 X 10-9 N2/1 elliptical horizontal section. For this model, equa-
tions (1) and (2) for smooth water are replaced by

5 2.46 0.21
6 3-87 0.33 M +N,ý-+gpS Hocospt (4)

7 4.61 0.39 10' +N 2 0±-Wm 0 - P0 sinpt . (5)
8 6-07 0.51
9 6.06 0.51 with H0 , Po given by A.16 and 18.

10 4.97 0-42 The forced oscillations are then

For an appropriate value of I we use data from a ý ý0 cos(pt - g1); 0= -o sin (pt -2) (6)

model of Kent and Cutland (R.5), to which reference with /o, 00, 91, /2 given by A,21.
has already been made; this was a cargo ship 400 ft. In attempting any comparison with ooserved results,
x 55 ft. x 24 ft. of 11,332 tons, with a longitudinal it must be remembered that the expressions have been
G M - 467 ft. and a natural resisted pitching period obtained from a very simple form of model. In general,
of 6-2 sec. Using I = T, W rn/4 7T2, we get an effective model results are for forms not readily adapted to
moment of inertia I = 11.85 x 109. It may be noted mathematical calculation, and moreov erad ere are other

that this gives an effective radius of gyration of 0.31 L, factors arising from lack of symmetry fore and aft:

which seems about the right value. With this value of 1, in particular, if the centre of buoyancy is fore or aft of

the third column in Table II gives the values of N2/I. the centre of flotation there is coupling between heaving

We notice the striking similarity in the values of NI/M and pitching.

and N2/I in Tables 1 and II, with some interesting We make numerical calculations for the dimensions
differences in detail. This agrees with the statement that used in the previous section: L - 400 ft., B r 55 ft.,
th: damping coefficients for heaving mnd pitching are c- 20 ft., and we take the wave height 2 r 5 ft.
of the some order. For a period of between 6 and 7 sec. There are various possible methods of exhibiting the
Table II givcs a logarithmic decrement of about 1- 16. results. We choose that of graphing the total pitch

The form of model used for these calcu!ations waschosen formor smplicity to d g thesorer ofmagnitueo f w 2 00 on the period of encounter as a base, in each case
chosen for simplicity to giv e order of magnitude of for a given speed of the ship. Thus for a given period of
the effect. The work could be carried out in detail for encounter at a given speed we find the corresponding
any form given by mathematical equations, with the wave-length A, and then the value of P0 from A.18.
corresponding source distribution over the surface; but For the effective moment of inertia I we take the value
such calculations are hardly worth while meantime, or used in the previous section and also the same natural
at least not without corresponding experimental work period 6'2 sec. Further we obtain the corresponding
on simplified forms specially arranged to test and develop value of N2 p/l from the data given in Table 1I.
the theory. In Fig. I the two curve, show the graph, tfr the ship

Oscillations among Waves at rest and for a speed of 8 knots. The double humps
If, instead of being in smooth water, the ship is on these curves are of interest; they arise because not

subject to the action of a regular train of waves, there only does the magnification factor have a maximum at
are many new factors which should be taken into account: resonance but the pitching moment P0 has maxima
for instance, the disturbance of the wave train by reflec- depending upon the wave-length. This effect can be
tion from the ship, and the wave system produced by the clearly seen in some curves of results from models; in
forward motion of the ship. The hydrodynamic forces particular, reference may be made to Kent (R. 12), Fig. 3,
acting on the ship will no doubt affect the amount of and (R.13), Fig. 3. Of course in actual model results
damping and may al'er the effective periods of pitch there would be no definite zeros of the pitching; the
and heave. A first approximation involves neglecting curves would be smoothed out by viscous and other

3
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effects. On Fig. I are also shown values extracted from positions at the instant of lo%ýest pitch. Referring to (6),
model results given by Kent and Cutland (R.5); these there is maximum pitch with bows down when
results were for wave-lengths of 175, 350 and 490 ft., p t- 12- 7/2. From A.13, it follows that the wave
in waves of 5 ft. in height. It should be noted that no profile relative to the ship at that instant is given by
attempt has been made to fit this model beyond taking ý =: - r sin (k x + 912). Hence there is a trough at a
the main dimensions and displacement about the same. distance 4 A - P2 A/2 7r ahead of amidshivs.
The points marked by a cross are for zero speed of If Te is the period of encounter aihd TP the natural
advance, and they fit fairly well into the calculated curve, period of pitch, and if damping were entirely neglected,
Points marked by a circle are for a speed of 8 knots. we should have 92 -_ 0 for T,> Tp, and f12 ý- 7r for
In the calculated curve for 8 knots we have used the Te < TP. In the former case there is a trough I A
same natural pitching period as for zero speed. There ahead of amidships and in the latter it is 1 A astern of
seems to be some evidence that the effective natural amidships. The damping smooths off this sudden
period increases with the speed. The large divergence change of phase: but whatever the damping we should

have f12 == -rv2 for Te - T,. Hence there should be a
-- I trough at amidships, for a simple symmetrical model,

3 ' r at lowest pitch at the resonance period of encoutlter.
I/ In the diagram referred to above, there is a trough

amidships for zero speed of advance at a wave-length
_2 of about 230 ft., this corresponds to a period of er.-/ + counter of 6-77 sec., the natura l period for the model

S8KN0rs being 6.2 sec. But, for various reasons, it is not possible
ZOSDto push the comparison so far as to determine the phase

+ •lags. The possible magnitude of surging effects, for
• .instance, needs examination; and in %arious respects the

K ,theory is only a first approximation and requires
- amplification in conjunctio., with suitable experimental4 5 6 7 9

PERIOD OF ENCOONTER IN SECONDS data.
FIG. l R-.,istance of a Ship among Waves

at the lowest period of encounter at 8 knots may be due A ship when moving through a regular train of waves
to various causes; for one thing the calculated pitching is subject to an average steady resistance greater than
moment P0 is more subject to error at the smaller wave- that experienced at the same speed in smooth water.
lengths, and for another it is probable that the pitching Thereare various obvious factors wNhich may be supposed
in the smaller wave-lengths is not the simple forced to contribute to this result :for instance, the disturbance
pitching to which the calculations refer. of the wave motion by the surface of the ship, the

Similar graphs could be made for heaving, but it alteration in the wave resistance due to interference with
should be remarked that obserxed maxima in long waves the wave train or due to altering attitude of the ship,
are generally greater than those given by calculation, or a more direct effect of the surging, heaving and
This has been noted previously in regard to model pitching motions.
results; it may be that the ca!culated buoyancy is more If we consider only the first order approximate
susceptible to change in wave-length or possibly that in equations used in the previous sections, the regular wave
long waves the damping is less--it might, for instance, train supplies an alteii-ating addition to the resistance,
be a better approximation in such cases to calculate the such as that given in A. 17; a more detailed examination
damping from the motion of the ship relative to the of this periodic force may be found in R.14.
fluid motion in the wave train. Finally, in this brief In order to obtain an increased average resistance we
review we may consider the phase lags for heave and have to iake into account second order terms. When
pitch denoted by the angles flg and 92 in (6). It is a we are dealing with first order effects it is, generally.
simple matter, so far as the approximate equations are legitimate to consider factors separately and obtain the
concerned, to determine the position of the ship in combined result by simple superposition: but this is not
relation to the wave profile at maximum pitch or heave, the case when we have to include second-order terms.
This is, of course, a \ery important point. It has been Noting, howe'er, that a complete theory including all
examined by J. L. Kent in %arious papers, and, in second-order effccts might well modify partial results.
particular, in Kent and Cuttand (R.5) a diagram is given Aw! shall examine two po•.ible factors which lead to
showing the \%ave crest and trough positions along the increased average resistance.
ship at maximum pitch. It is diflicult to derive from this Ware Ri/lection.--The first possibility is the elect of
diagram resulis suitable for the present calculations. reflection, or scattering, of the regular wave train by the
The model was not designed for the purpose: moreover, surface of the ship, and this is undoubtedly a true con-
it is stated that successive pitches bhowed a periodic tributing cause. It has been put for%\Ird recently as the
movement of the \%ave crest position back\\ards and sole basis of the extra resistance in a very interesting
forwards along the hull, the diagram giving iean paper by Kreitner (RI0). The underlying hydro-

4
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dynamical theory has been examined in a recent paper the mean value of sin 2 o with respect to the beam,
(R.15) to which reference may be made for details of the o being the angle which the tangent at any point makes
analysis. Tne ship problem is the reflection of the with the fore- and aft central axis.
wave train by the ship, which is itself free to move and Kreitner (R.10) gives an expression which, in the
does take part to some extent in the motion of the present notation, is
surrounding water; it is in fact the dynamical problem R = gp r2 Bsin . .... (9)
of the motion of the complete system of ship and water.

Leaving this on one side we consider the forces on a fixed In deriving this, it is apparently assumed that the
obstacle in waves. The fundamental case is that of a average pressure on a plane can be calculated from the
regular train of waves incident normally upon a fixed instantaneous value of the hydrostatic pressure due to
vertical plane, which we may take of infinite draught. the elevation of the water surface. When numerical
There is perfect reflection of the waves; if r is the ampli- values are obtained for ship forms, the general result is
tude (half wave height) of the incident train, there is an that the expression (8) gives about one-quarter or
oscillation of amplitude 2 r at the plane. The usual one-fifth of the value given by (9).
first order theory for waves of small height gives a If we take the elliptical model used in the previous
periodic force of (g pr A7T-) cosp t for the additional sections, an expression for the mean value of s: la can
force per unit width of the plane, A being the wave- be readily obtained; with 1. = 400 ft., B = 55 ft., thelength and 2 'rr/p the corresponding period. Carrying value of this factor is 0. 183. In waves of 5 ft. in height,
the theory to second-order terms, the result of the (8) then gives an extra resistance of about 0-9 ton.
analysis is to give an additional average steady force on With a normal ship form with moderate bow angle, the
the plane amounting to : g p r2 per unit width. If the mean value of sin 2 a would be about 0. I, reducing the
waves are incident at an angle o to the plane, the cor- extra resistance by this calculation to about I ton. The
responding average force is ½ g p r2 sin2' per unit observed extra resistance for a ship of that type would be,
width. An interesting problem would be the reflection on the average, about 21 tons.
of waves by a vertical cylinder of elliptical cross section, It should be noted again that the expression (8) is put
like the modcl used in the previous calculations of this forward only as an outside limit for a fixed obstacle of
paper; it is possible to obtain an analytical solution, great draight. In the actual problem the ship is free
but the functions involved have not been tabulated to respond to the wave motion; further, unless the
sufficiently to allow of numerical results. The correspond- wave-length is very much less than the length of the ship,
ing work has been carried out for a vertical cylinder of the finite draught of the ship seems likely to reduce the
circular cross-section, giving the variation of amplitude amount of the reflection effect. The general conclusion,
round the cylinder and the resultant steady force and so far as the present calculations go, is that, while wave
the dependence of both these quantities on the wave- reflection is a true contributory cause and must be in-
length. When the wave-length is small compared with eluded in a complete theory, it is only capable of
the diameter of the cylinder, the resultant steady force accounting for a fraction of the observed extra resistance;
approximates to the value g p r2 a, where a is the we must, however, add the re-servation that forward
radius. An interesting result shown by these calcula- motion of the ship through the waves might modify
tions is that this limiting value is practically attained so that conclusion.
long as the wave-length is not greater than the diameter. A possible application of the formula (8) would be to
We may obtain this limiting value by making an extreme determine the mean pull on the mooring rope of a ship
assumption. Imagine the waves to be completely subjected to waves which are short in comparison with
reflected by the front half of the cylinder, leaving smooth the length of the ship. This has been investigated by
undisturbed water round the rear half Then treat each Kent and Cutland (R.5) and details of the comparison
element of the front half as if it were part of an infnite with model results will be found in that p'aper. The
plane upon which the waves are incident at an angle a. experimental conditions most nearly approximating to
On this assumption we should have for the resultant force the theoretical assumptions were for a 16-ft. model

a moored in waves of 7 ft. in length; the height of the
R- I gpr2 sin d2.-.r ... (7) waves was given values ranging from 0.12 ft. to 0.32 ft.

J-,a It was found that, on the average, the value calculated
taken over the transverse diameter of the cylinder; and from (8) was about 56 per c.ent of the observed mean pull.
this gives the result ] g p r2 4. Resistance associated with Heaving and Pitching.--

This suggcsts a similar expression for a vertical Another possibility is suggested by the consideration that
cylinder of any horizontal cross-sect;on. With the first-order effects which in themselves are purely periodic
extreme assumption of reflection round the front half may, through phase differences, give rise to a steady
and smooth water round the rest, it appears that the additional resistance, Such a theory would associate
steady average force due to wave reflection should not the resistance directly with the oscillations of surging
exceed the amount heaving and pitching--though it is probable that the

R P gprB sin2 i .....n' (8) first of these plays only a minor part. There are different
"views of the extent to which the resistance depends upon

where B is the maximum heilm. and the last factor is the heaving and pitching motions: hut the effect is
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certainly most prominent when the period of encounter . the phae lags produced thereby; if there is no phase lag,
is near one of the natural periods and, directly or there is no resultant steady force. Reference has been
indirectly, the phenomena are closely associated. The made to the diagram given by Kent and Cutland (R.5)
problem involves to some extent second-order terms from which the phase lag for pitching might be deduced.
and the analysis is therefore subject to correction by a It is not suitable for the present purpose, however the
more complete theory; but meantime we ignore the attempt may be made so as to obtain some idea of the

disturbance of the wave train by reflection and use the magnitude of the resistance given by (1I).
approximate equations for heaving and pitching as in If we take the results in waves of 490 ft. in length, the
the previous sections. The analysis is given in detail diagram shows that for zero speed of the model there
elsewhere (R.16) and a short account in the Appendix was no appreciable phase lag. Hence, according to (11)
to the present paper. there should be no resistance; and, in fact, the measured

We calculate the force on the ship from the )resstre in resistance under those conditions was very small.
the undisturbed wave train; but, instead of taking the Incidentally the observed results also confirm the view
equilibrium position of the ship, we make the calculation that resistance due to wave reflection must be very small
for a displaced position, with a vertical displacement ý when the wave-length becomes greater than the length
due to heave and a rotation 0 due to pitch. To the first of the ship.
order in ý and 0, the resultant force backwards is found If we take next the same wave-length with a speed of
to be (A.25) 8 knots for the ship, a rough estimate from the position

.2 r b H 2 , P of the wave trough gives a phase lag for pitching of
FDF0-- t 0 .t about 12-5 deg. We shall assume the same value for

heaving, and xAe take f f2- 12.5 deg. For Ho and
In this, 2 7I4p is the period of encounter with the waves P0 we take the wall-sided ship with elliptical horizontal

and also the period of the forced oscillations; H and P section which has been used in the earlier calculations.
are the buoyancy and pitching moment and are also of With L -7 400 ft., B - 55 ft., d = 20 ft., A ý 490 ft.,
period 2 ri1p. The first :erm Fo is the purely periodic and in waves of height 2 r 5 ft., we obtain from
horizontal force to which reference has been made earlier. A. 16 and 18
Taking average values of the quadratic terms in the rest
of(l0) we obtain for the average steady resistance tt0 -358 tons; P0= 67,633 ft.-tons

R ---('A) Ho •osin 1  - (/) P0 
0 osin . (1) The observed measurements in 5-ft. waves give

_eh -- 2. 1 ft. and 0(o -= 1 6 deg., approximately. With
with H0 and P0 the amplitudes of the buoyancy and these values we get from (11) a rc-sistance R -: 3 .66 tons,
Sitching moment, a g and 92 the amplitudes of the forced of which about I ton comes from the term in the heaving

he~wing and pitching, and s. and P2 the phase lags of motion. From the given results in the senme paper, the

It is of interest to recall the history of the similar measured resistance for the 16-ft. model was 0.37 lb.
Itriblof interesto recallng. In h924 ehisryof th17 xersima or a resistance of 2"58 tons for the full-sized ship. The

problem in rolling. In !924 Suyehiro (Ra17), expert- measure of agreement is perhaps as much as could be
menting with a small menodel, measured a drifting force expected considering the uncertainty of the data and
sideways on a ship when rolling in waves. "The effect is also that no special attempt has been made to calculate
small and probably is only appreciable in suitable con- values for the particular model used in the experiments.
ditions of forced rolling in resonance with the natural It is not worth while adding further similar calculations
period of roll. Suyehiro himself ascribed the force to at the present stage, but it may be said that the suggested
reflection of the waves by the side of the ship: however theory is capable of giving results of the right order
no calculations have been made of the magnitude of of magnitude.
such an effect, In 1938 an alternative theory was put On the theoretical side, it is hoped that the various
fiorward by Watanabe (R.18). Starting from the Kriloff limitations and assumptions have been sufficiently
equations, Watanab6 deduced an expression for the indicated. On the experimental side, there is a lack of
drifting force involving the angle of roll and the phase suitable data obtained under conditions approximating
lag between the roll and the actuating moment; applied to the simplifications which have to be made before any
to Suyehiro's model, this expression gave a force of calculations are possible; such experimental results
rather more than half the observed value. Aould be a valuable and, indeed, essential aid in develop-

Returning to (11). consider the various factors when ing and modifying any tentative theory of such a
making numerical comparison with observed results. complex problem.
The values of tio and P0 have to be taken from such
calculations of buoyancy and pitching moment as can
be made for any given form. The amplitudes 40 and Ot Appendix
we shall take from observed results, assuming, as is 11) Damping in Smooth Water.-If a ship ik makinig forced
necessary, that these are for forced oscillations. The oscillations of heaving or pitching, we may calculate the wave
must uncertain factors are the phase lags. It will be motion by supposing each element of the ship's surface to be
noticed that these are important in that on the present the scat of an alternating source, say of strength m cos p t
view the extra resistance arises from the damping and per unit area. Knowing the velocity potential of the distribu-

6
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tion of sources, it is possible to calculate the average rate at The integral in (7) may be expressed in teims of Bessel fune-
which energy is being propagated outwards in the wave tions, and we find
motion. It has been shown (R.11) that this mean rate of
outflow of energy is given by P + iQ = - POo B L2 e-2pdl J2 (qcos0)1(qcosO) (8)

16

E -- 2 7r p (p31g)fo(p -4- Q2) d 0 . (1) Thus for pitching motion we have

whereE -= 7 B2 L4'0p5 e-plgJ2 t(q cos0) dO . (9)

P i Q { i11 (x..v , Z) ep2 g.I ( ix cs +O ± iysin 0) d S (2) 32 g

the integral in (2) being taken over the immersed surface of Equating this to I p2 N2 02, we obtain

the ship in its equilibrium position. The axis O x is taken N2 = (7y p/16g) B2 L4 p 3 e- 2p' dg1 F 2  . (10)
along the longitudinal axis of the water plane section with
the positive direction from stern to bow, Oy transversely at where F2 is the integral in (9). This may be evaluated from
the midship section, and 0 z vertically upwards. We shall the series
assume the source strength at each point to be such that 4 7r m rr."a (-- i) (2 m - 2)! (2 m -r- 4)! 2 (II)
is the amplitude of the normal component of velocity of the F2  8in'f(m- (m -- ( I)!'2 (m -4)!

ship's surface at each point, this being a reasonable approxima- Z I+ ! (4q)!

tion in view of usual ship dimensions. A further simplification
may be made by neglecting the distribution in the transverse (2) Buoyancy and Pitching Moment in Waves.-Suppose at
axis 0 v, since the length 2 7T g/p 2 is usually several times as first that the ship has zero speed of advance, and that the
large as the beam of the ship. waves are moving directly towards it. The velocity potential

Suppose the ship to be wall-sided, of uniform draught d, of the fluid motion is
and with the horizontal sections ellipses of axes L and B.

Let the ship be making forced heaving oscillations of = rip) e Zsin(pt ±kx) • (12)
amplitude 4o and period 2 7r/p. The source strength over the with p2 = g k; this corresponds to waves of elevation given by
flat bottom is of amplitude p 4o/4 ir per unit area; and we
treat it as a line distribution at constant depth d along the , r cos (p t "- k x) .... (13)

central line, with strength proportional to the beam at each the amplitude r being one-half the height measured from
point. Hence from (2) we have trough to crest, and the wave-length A being 2 7r/k. The

B, ii 4-x2)'et2 pressure p at any point is

P _- iBQ 0P e ,-Pdlk I -- "°2.V dx po in t1
4I i T P -- Po -gpz- P ýt (14)

-= r pý, B L e -p04dg J, (q cos O)1(q cos 0) . (3) The second term is the hydrostatic pressure whose effect is
included in the equations of motion of the ship in smooth

where q = p2 L/2 g. water. The third term
Hence from (1) the mean rate of propagation, of errgy

outwards is given by p -0 - gpr ekzcos (pt :- k x) . (I5)

7r ~ P 0)
E - B2 L2 Q, 2p-d5 g [Jd(q1cos d)l2d, (4) is the additional pressure due to ihe undisturbed wave system.

8g j3 . q cos 61 The resultant forces and couples are obtained, to this approxi-
mation, by integrating this pressure, and its moment, over the

We now equate this to the mean value of N, 42, namely immersed surface of the ship in its equilibrium position.
j p2 N, 02, and we obtain With the same simplified model, we have for the additional

buoyancy H,N, -:(n'p/4g, B2 L2p3 ,,-Ih -plF, 5 aIL( '•'

where FU has been ,vritten fur the integral in (4). H , gpire- AdJ' B I L cos (p t - k x) dx
This integral may be evaluated by quadrature using tables - L

of Bessel functions. It was, howeer. found more satisfactory -- t0 cos pt.
to calculate it froman equivalent series. It can be shown thai where

F1  " (-lJ (2 m) 2m+ 2 '1 H0  1gprBAe--274P, J,(OrL/A) (1h)

n=0 (ni) ( ) 2 )1(4  There is also a resultant horizontal force from the pressures
on the vertical sides; measured in the negative direction of

Similarly. if the ship is making forced pitching oscillations of 0 x, from bow to stern, it is
angular amplitude 00 and period 2 ri/p we have

,J P6 4-* F0  J•,z q.p r B ,A- cos(p t k Lcos 6) cos OdO

4 Or I. 2 jgp"-BA(I g-2rd/))J 1 (7rL/Afsinpi (17)

in which we ha\e neglected the contribution of the \ertical This force might be used as a similar first approximation in
sides of the ship compared with the effect of' the flat bottom. regard to the surging motion of the ship. By comparison
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with (16), it can be seen that in genera! it is only a fraction where thle integrals are taken over the equilibrium position
of the corresponding vertical force, of the immersed surface.

In evaluating the pitching moment we take moments about The additional buoyancy anti pitching moment, which were
(he transverse axis 0 v, assuming for simplicity that the calculated for a special ca-,e in (16) and (18), are given in this
centre of gravity G of the ship coincides with 0. The more general form by
pressures on the vertical sides will contribute to the total
moment, but this part will be of the order of the horizontal It g p r ck- COS( (p1 4- A X)t (IdS

force F0 multiplied by some fraction of the draught, and it JJ
can be seen to be negligible compared with the moment of the
pressures on the flat bottom, We have then for the pitching .13 g p r e O pt+ k vl( -~ c) itx d S (24)
moment f

FA L. 4.2 1 Hence we may write the backward force as
P gpr Bekdj X ( I Lf- COS(p t + k x) dx f: FU-k H k P

PO -Psinpt -) L I - yt,~
where When calculated for any form of ship, H and P are in general

P0 jg prB L AC -2ndXJ2 (7rL/A) . (8) of the form H0 sin (pt x Iz) and P0 sin (p1 I- ý a) rcsPectiýCly.

For a ship advancing through the waves, we have the samne The corresponding forced oscillations of heaving and pitching
expressions, so far as this approximation goes, with 2 7T/p are then given by equations such as
the relative period of encounter; thus if A is the wvave-length t4 1-10 Sill (p 1 al PI
and v the corresponding wave velocity, and V is the speed - 0~l~~ 2
of the ship, then 2 7r/p =AItv ~- V). -tZPosn(t 1, 2)...(6

On this theory, the equations for heaving and pitching ol /,~ and /12 being positive factors.
waves are, for this symmetrical model Putting these expiessions in (25) and taking mean values

M ý N, I gpS H cos 1 19) of the quadratic terms, we obtain a mean backward force

1 + N 2 ~ Win /11 - P0 sin p t (20) R ~k t 1iH2sill 1 -- . k~Psn .(7

The forced oscillations are rhis is anl esscnitially positive expression, so that this force is

4 4~cos(p - l1) 0 ~ - 0 s (p P2)always a resistance.
with ýCO PI-p)a 0sn( -g With 40 and 00 the amplitudes of forced heaving and

pitching respectively, this expression is equivalent to

I0 M{p p I) Rj ---b A1 7Rtr/A) H0 40 sinl P 4 (7r/A( P0 00 sin g2  . (28)
600 Poll {(l,2 p2)2  kZ' 1,2p2} k2 - N2/1,

2 2 Ap/p - p) (2) hre 9, ond 9 2, are the phase lags of the forced heaving and
tanl9 -k pl(p2 l) tail 2  A__ p -p

2  2) pitching behind the buoyancy and pitching mnoment
the natural periods of unresisted heaving and pitching being respectively.
2 7r/p 1 and 2 7r/p2 respectively.
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SOME CALCULATIONS OF SHIP TRIM
AT HIGH SPEEDS

By T. H. HAVELOCK

(Presented to the International Congress of Applied Mechanics, at
Paris, 1,946. The Proceedings of this Congress have never been
published)

SUMMARY

Although much work has been done on the theory of wave resistance, that
is on the horizontal resultant of the pressure system round a ship, there do
not seem to have been any calculations of the resultant moment of the pres-
sures about the transverse axis.

The present note records some work on this problem and a comparison of
the results with measured trim in experimental models. Assuming the
usual approximate theory of the pressure system, the effective part of the
pressure for a symmetrical model is put into a suitable form and an expres-
sion is obtained for the moment for a certain series of models, used at
Teddington, for which experimen*.al results are available. Numerical cal-
culations have been made ior three models of this series over a consider-
able range of speed and curves are given showing the comparison between
calculated and measured trim. The agreement is reasonably good, especially
at the higher speeds, and in general the order of agreement is much the same
as between calculated and measured wave resistance.

1. The pressure changes established by the forward motion of a
ship may be considered in two parts: (i) those associated with the
so-called local disturbance, (ii) those due to the wave motion trailing
aft from the ship. In the usual approximate theory of wave resistance,
neglecting viscosity, the pressures from (i) give no resultant hori-
zontal force on the ship as a whole and we only need to calculate the
resultant of these from (ii). If we wished to examine the sinkage of
the ship, we should require the vertical resultant of the total pres-
sure system and such calculations would be too laborious in general;
though we may estimate the effect at low speeds by ignoring the sur-
face disturbance of the water [1]. On the other hand, if we limit con-
sideration to a model which is symmetrical fore and aft, the moment
of the pressure system about the transverse axis will only involve
the pressures from the wave system (ii). As this calculation does
not seem to have been carried out hitherto, it was thought of interest
to see how the results so obtained compare with the meaqurel trim of
experimental models.
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The part of the pressure system which is effective for this purpose
is first put into a suitable form, and an expression is obtained for the
moment for a certain type of model whose form is given by an equation
involving one parameter. This moment is then turned into an equiv-
alent angle of trim for the ship, using the ordinary righting moment
as if in still water. Finally, numerical calculations are made for
three models of this series, with different values of the parameter,
for which experimental results are available. Curves .re given show-
ing the calculated and measured trim for these three models.

2. We take the origin 0 in the undisturbed free surface of the
water, Ox in the direction of motion, Oz vertically upwards and Oy
transversely, v being the velocity. If there is a source of strength
m at the point (h, o, -f), the velocity potential is given by [2]

sec d- (1K ,(1
r = Ir r2 rf:-K 0 sec 2 0 + illsec0s(

IT 0

with
r 2 =(X_h) 2 +y 2 +(z+f) 2 ; y 2 =(X_•) 2 +y 2 +(Z_) 2 ;

2
Z7=(X-h) cosO+ ysinO 0 Jo = g/V"

The pressure p, other than the hydrostatic pressure, is given by

p = _ p . (2)

We require the part of the pressure due to the waves trailing aft from
the source. From (1) and (2), taking the limit for u-* o, we find this
effective pressure at a point (x, o, z) due to the given source at
(h, o,-f) is

77/2

p 8PK0 02tmf e- o(fz)xC2 0CoS1KO(zh)secO1 sec'OdO, (3)

0

for x-h<o; and p - o forx -h> o.

For a ship form given by y = ±F (x,z), we have the usual approxima-
tion of a source di.stribution over the section by the plane y = o, the
source strength per unit area being

v F(4)

For a model of length 27, draft d, %ith 0 tt the midship section, we
obtain:-
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1 d 77/2

p 4 J2 - V 2 df dAd e-O(fz)ec 2 9

X cos{Ko(x-h)secO}sec'OdO. (5)

The horizontal component of this pressure integrated over the surface
of the ship gives the wave resistance; it may be roted that, with the
usual approximation, we evaluate the pressure not at the actual sur-
face of the ship but over the plane y = o. We use this expression
similarly for evaluating the moment of the pressure about the trans-
verse axis Oy. Consider the total moment in two parts. First, for
the horizontal component of the pressure, the moment will be of the
order of the wave resistance multiplied by some fraction of the draft;
it is found that this part is small compared with the moment of the
vertical component and we neglect it, meantime. However, when com-
paring calcalated and experimental results we allow for tnis correc-
tion by estimating the moment of the total resistance of the model.

For the moment of the vertical component of the pressure we have

M =ffrx dx dy, (6)

taken over the wa.ter plane section of the ship, with p given by (5).

3. We confine the calculations to a simple type of symmetrical
model used at Teddington, for which experimental results are avail-
able, and for which the numerical calculations are not unduly labori-
ous. This set of models is defined by

-- ý2 
Z 2)y = b _ a _K)- (7)y---1 21•)(1 2 a 1 2- (1- )()

For this form, we have

p(x,a) =8 pVK26b (1 - a2 ) + 0a2  ,h I

J1 - d 1 1- Q-') ec2

0 0

02 . -A) eO(0}Ce'0dO, (8)
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CALCULATIONS OF SHIP TRIM AT HIGH SPEEDS

and

If= -4bfxz x2)(1+ a 'r)p~x2) drdz (9)

Carrying out the integrations and, for convenience in computation,
changing the variable from 0 to u with sec 0 = cosh u, we obtain
the result

Al 64gpb 2 C3(
K 5d 2 1 (3)X 2(f3)X(a(sech udu, (10)

0. 0

with /3 = Kodcosh 2u; a = K0lcoshu;
(1 +l-( 3) e e-•; X2 = 1 -t2 +( + 2 e3

X3 = 2 +-3-+ 1 - -isin2a + i_ _cos~a +2 4 4 9+ 132)

a a ` ) - a/

+ -- 5 + \CS 2  a'

*a '2 3 96 720 + 74 768 1440) i a

2~ a 0C ý -i + --- Jan6

+ 12 291 1344 720)

+ 7+ cos 2''

The moment Ai given by (10) will, f positive, tend to give a trim of
angle 0 which is positive with bo\% up and stern do\%n. In comparing
with model results, we note that the model is towed, the point of
atuichment of the tow-line being at the water level in the midship
section; if R i; the total resistance, we have therefore a reverse
moment Rd', whore d' is some fraction of the draft d of the model.
The effective pnsitive moment is Af - Re'.

%%e have also the restoring moment Oue to the hydrostatic pressure
and for this we takc, a s a sufficient approximation for the present
purpose, gp..kO0, where Ak 2 is the moment of inertia of the areat of
the %ater plane section about Oy. !'or the models defined hv (7),
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Ak 2 = 4bl3(+ a2 ). (11)

With these assumptions we turn the calculated moment into an equiv-
alent trim 0 given by

.41 - Rd'
- gpAk 2  (12)

calculating values from (10) and (11), and using the measured total
resistance for R and an estimated value cf d'; the actual value of d '
is not import~ant as in any case Rd' is found to be a small fraction of
thqe value of Al.

4. Numerical calculations were made in the first place for two
leddington models of this type, with extreme values of the parameter
a2 : namely

Model 1805A, with a2 = -0.6

Model 1846A, with a2 = 0.6

For each model we have

length = L = 21 = 16 ft,;

beam = 2b = 1.5 ft;
draft =d 1 ft.

Further details of the models, ard measured values of the trim are
given by Wigley [3].

For these models d' was taken to be 5 inches. The integral in
(10) was computed by quadrature, the value of the integrand being
calculated for values of u differing by 0.1; it was not generally neces-
sary to go beyond about 3.6 for the upper limit of u. This process
was carried out for six values of the Froude speed ratio f in the
range 0.32 to 0.54, f being equal to v.\ (yL). Finally t.he results
were expressed as trim by the stern in inches for the 16-foot model,
that is by 1920 the experirrental results for these mrodels being
recorded in that form.

As an example of numerical values, at a Apeed ratio f - 0.5, the
calculated trim for wodel IS05-A is C.45 inches, while the measured
value \%a:. 6.0 inches; of the calculated value, the momol't 11 of (10)
gave 6.7-2 inches and the torm- Rd' roduced this by 0.27 inches.

S',iilarly for Model 14G4\ at f - 0.5, the calculato,! trim is 4.S2
inches, the measured value being 1.7 inche,.

"Tho results for the t\No model-; are sho\sn in Fig,. 1. The full
('urvo,; are tho me:i-,ure',I vilueo,, anml the broken curv(,- sho\ the
\;tlue, eolt-ined froii the prv-ont :ci Iculations.
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A third example of this series was also examined, because it has
a larger beam and only half the draft: namely Model 2038C, with
a 2 = -0.5; length = 21 = 16 ft; beam = 2b = 1.75 ft; draft d = 0.5 ft.

Further details with the measured trim, may be found in Wigley's
paper [41.

In this case for the small correction Rd', the value of d' was
taken to be 2.5 inches. The calculated trim at f = 0.5 was found to
be 4.75 inches, the measured value being 4.37 inches. The com-
plete results are shown in Fig. 2, the full curve being the m-neasured
values and the broken curve those found by calculation.

Considering the three cases together, the general measure of agree-
ment between calculated and experimental curves is perhaps as good
as could be expected from a first-order theory with the various ap-
proximations involved and including the neglect of viscosity effects.

The order of agreement is much the same as that between calculated
and measured curves of wave resistance, the greater discrepancies
in trim occurring at speeds at which there are corresponding differ-
ences between calculated and measured resistances. It may be said
that the present calculations afford further confirmation of the ap-
proximate theory of wave resistance.

H E, FE REIENC ES

1. '. 11. Hiavelock, Zeit. f. Any. Moath. Ifec ., 1.4, 1). 202 (1939).

2. T. 1. ilavelook, Proc. Roy. Soc. A, 13S, p. 3.10 (1932).

3, W.C.S. Wigley, Cong. intern. Ing. Navals, Liege, p. 174 (1939).

4 W.C.S. Wigle, Trans, Inst. NVav. Arch. S4, p. 52 (19 12).

526



C A.L(. UL..\ ION S• O F SHIIP "FII.M A T£ IIIC d I SP EEI)S

-II
I/

//

//

/ /
/ /

52"/



CALCULATIONS ILLUSTRATING THE EFFECT OF BOUNDARY LAYER ON
WAVE RESISTANCE

By Professor T. H. HAVELOCK, M.A., D.Sc., F.R.S., Honorary Member (Associate M-mber of Council)

Summary ing an empirical formula for the variation of the factor
The main )bject of the paper is to examinethe possible with the speed. In this work also the factor was applied

effect of the boundary layer in producing a virtual imodifi- to the whole of the rear half of the model and it was found
cation of the lines of the ship near the stern. Ihis is re- to vary in value from zero at the lowest speeds, where
garded as a deflection of the streamnlines due to increased only the front half is effective, to unity at the highest
displacement thickness of the boundary layer in this speeds, where front and rear are equally effective. This
region. By superposing a source distribution to prodtuce extension and analysis by Wigley is very useful in giving
this additional deflection, expressions can be oh•b.ined a practicable way of modifying theoretical resistance
for the modified wave resistance. No attempt is made to curves, but, admittedly, it leaves much to be desired from
attack the problem directly for actual ship forms. Instead, a thcoretical point of view. In particular, the variation
an indirect method is taken of considering som~e ideal
simple forms and assumiog small modifications oi the of the factor from zero to unity seems rather para-
lines near the stern such as might reasonably be ascribed doxical; no doubt viscous effects vary with the velocity.
to boundary layer effects. It is shown that such variations but not to such an extent as is implied by that range of
suffice to eliminate the hum•s and hollows on resistUince values. I believe an explanation can be found in the
curves at low speeds whijc making relatively much less fact that boundary layer effects on wave formation are
difference at high speeds. a result which would improve appreciable over only a ýmall length of the model near
the general comparison between calculated and measured the stern: just as one has a similar comparison between
wave resistances. The paper also includes some remarks actual normal pr.:zures and those calculated for a
on experiments with plank-like forms which are not wholly frictionless liquid. It is well known that for a friction-
submerged. tnd an attempt is made to assess numerically less liquid the wave-making effect of bow and stern
the wave making resistancc in such experientS on ski angles is predominant at low speeds, while at high speeds
friction. this is not the case. Hence if the modification of the

Introduction form is confined to a region near the stern, and even if
The theory er wave resistance in a frictionless liquid that modification does not vary much with the speed, it

leads to a resistance curve *¢hich oscillates rapidly and will automatically have greater effect at the lower speeds
excessively at low speeds, and such oscillations do not than at the higher. The present paper is an attempt to
occur in resistance curves derived from experimental find out how far this is the case.
results. This is commonly ascribed to the wave making The general point of view so far as the friction belt is
at low speeds being mainly due to the bow of the ship: concerned has been well expressed by Baker 4 in the
and an obvious explanation is that the effect of viscosity remark: "in the after body two things take place, first
has been to render the stern relatively ineffective in wave the contraction of the virtual body, round which the free
production at low speeds. Some years ago' the author flow is taking place, which includes the slow-moving
considered the matter from the point ef view that the portion of the friction belt- a rather indefinite extension
effect of the friction belt surrounding the ship is equiva- of the real form--causes an expansion of all the stream
lent to smoothing out the lines in the rear portion and tubes and of the frictional belt, and second expanding
some calculations we e made to show that this would lead stream lines are never very stable and do not adhere
to a diminution of interference effects at low speeds; to the form from midships to stern post." It must be
however, the calculations were too complicated to pursue admitted that this "rather indefinite ex -nsion" of the
in any detail at that time. Later 2 the direct assumption form still remains undefined. In principle, if we know
of a reduction factor for the rear half of the model was the thickness of the boundary layer and can deduce its
made; the assumption was as simple as possible so as to displacement thickness, we know by how much the
make calculations practicable, the wave-making proper- streamlines of the outer flow are deflected. We can
ties of the whole of the rear half being reduced by an then, in theory, superpose on the original form a source
arbitrary factor less than unity. Subsequently this idea distribution which would produce the required extra
of a reduction factor was largely extended and examined deflection and hence calculate the modified wave re-
in detail by Wigley.3 In particular, Wigley compared sistance. It may be said at once that the necessary data
theoretical aad experimental resistance curves for a are not available, and in any case the calculation would
large number cf models, deducing the necessary re- be almost impracticable. The scope of the present paper
duction factor to give reasonable agreement and obtain- is muca less ambitious, and the work may be described

1
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as an illustration of the possible effect of boundary a valid approximation in most cases. It is obvious that
layer on wave resistance. The problem is attacked in- in the prcesnt hypothetical case anN "a\c resi,;tance
directlyby taking a simple form and making small modi- 'oust be associatcd with a change in the tancential
fications of tie lines near the stern so as to obtain the frictional forces \ ith, no doubt, a consequent disturbance
required kin, of change in the calculated resistance of the conditions in the b(,undar\ laser. Hlo~kxer,
curve; one may then consider whether such rmodifica- Ica~ing aside this interaction for the time being, vc may
tions can reasonably be ascribed to boundary layer attempt to find some numerical \aluc for a possible -•avc
displacement. We consider first the ideal case of a resistance. It is clear, from the \alues of h given above,
thin plank, with some incidental remarks on wave-
making in experiments with planks. Then we consider that on any assumption it will be very small compared
a form with simple parabolic lines and with vertical with the usuA skin friction: but a rough estimate may
sides: in the first place of infinite draught, and thei be made.
of finite draught. Finally calculations are made for a We quote no\\ expressions for the \kave resistance of
form which is unsymmetrical fore and aft, in order Lr) a gixen source distribution.' We take the origin 0 in
show the difference in resistance between motion with th,,e free surface, 0 x in the direction of motion, 0 :
hoN leading and motion with stern leading, vertically do\Nn\xards, and 0 'v transversely. If the

sourcc distribution is in the : x-plane and is of amount u
Wave Resistance of Planks per unit area at any point, the corresponding wave

We begin with the ideal case of a plank of negligible resistance is

thickness. Assuming the boundary layer to be turbulent, R R - 16 7 K2 o(P Q2 ) •e •d. 4
we take for its thickness 6 a! a distance x from the leading R 6 K ( Q2) seL3 d . (4)

edge the expression 0

0 3 7 (v xlv)- x() wt a e J j 9 £KOASCL d (5)

where v is the velocity. In the present problem it is the where Ko - g/v2 , and the latter integration is taken over
displacement thickness 61 with which we are concerned, the distribution.
as this gives a measure of the outward deflection of the We shall be concerned with streamline forms which
streamlines; in general, 8, is defirxed by are narrow compared with their length, and if the form

u1 61 J f(u, - u) dy ...... (2) is given by an equation for y as a function of x and z,we use the approximation
where u is the fluid velocity at a point in the boundary we uy

layer, u, the velocity at the outer limit of the layer, and - 2 ()
the integra! is taken along a normal through the layer.'
Assuming the usual velocity distribution we hive Further, in the present paper, all the forms have vertical

481 - . At the rear end of a plank of length L, the sides; so that, if d is the draught, we have
displacement thickness 8, has a value'b given by 4p 2

b - 004625 R-' L .... (3) R -=7 (1 (12 j- . 2) cos od 6 . (7)
0

R being Reynolds number. Some values for a plank with I -I- i i V F ' , %CC 0 dx. . . (8)
16 ft. long are given in the following table for various f Zi X
values of the Froude number f-= vI//(g L); taking Returning to the immediatc problem, we simplify it by
v ý 1.228 x ,0- 5, and with b in inches, we have replacing the displaced streamline by a simple parabolic

i curve which starts from the front edge of the plank and
f 0-2 03 0.4 0.5 leaves the rear end parallel to the plank and at a distance b

I - _7 , -62_ -- from it; the resulting i,.tegrals are familiar in this work
b 0393 0 362 0342 0.327 and can be readily computed and the approximation will

serve for the immediate purpose. Taking the origin at
the rear end of the plank, we use (7) and (8) with

We suppose the plank to be immersed in water and cut-
ting the free surface. We might devise a source dis- b (1 -x

2lL 2 ) . . . . (9)

tribution which would give this displacement boundary and we obtain
as a streamline. Knowing the surface waves produced R 16 p 2 2
by the source distribution and hence the energy required R P( o (0 - 2 sinsi
to maintain the system, we can deduce the corresponding b0i2  YI Y
wave resistance. Of course, for any body with form the 2
wave resistance is associated with the normal pressures. Cos Y) Cos d-' (10)
and the skin friction with the tangential forces; there with
must always be some interaction between these, but the
usual practice of treating them as entirely independent is yo g L/v; f-A) g dh-; Y r, sCeC 6; r go sec2 0.

2
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Computation was made for a plank 16 ft. long, witl' a ( X4 .2I
draught of I ft. at a speed of 8 ft. per sec., or a value of b * I -- 2( a 2 12 ; 14 /4 )I -- (11)
f - 0"3535. Further, b as given by (3) was taken to be
0.03 ft. The result was R = 0-003 lb., compared with withca 2  04375:a - 04375;length 2 1 -6ft.;
the usual skin friction of about 5-86 lb. The point of beam - 2 b - 1 5 ft.: draught d 1 ft.
this calculation is simply to confirm that the effect of The skin friction has now been calculated from the
the plank boundary layer may be taken as inappreciable, standard plank formula corrected for temperature."
It will be still less relatively when we consider a form of Form effect has been allowed for by adding a constant
finite beam with any appreciable wave resistance. When amount 0.05 to the corresponding (C( values, which is
we deal with such forms we shall therefore simplify t'z equivalent tc increasing the skin friction by an amount
work by neglecting that part of the boundary layer ranging from 5% to 6%. The skin fiiction so increased
which is the same as that for a plank, and shall consider was subtracted from the total measured resistance, and
only the region near the stern where the boundary layer the residue was taken to be pure wave resistance. We
becomes appfeciably and rapidly thicker on account of now reduce these values according to the square of the
the curvature of the fbrm. beam for a plank-like form, with lines given by (11),

Before proceeding, a few remarks may be made on length 16 ft., draught I ft., and beam 3 in.; this value
skin friction experiments with planks. Actual planks of the beam gives an angle of entrance (to the middle
have thickness and form, and if the upper edge is above line) of 1.75'. The wave resistance for this plank-like
the free surface there will be wave disturbance due to form, so estimated, is given as Rw, in the following Table:
the form, modified to some extent by the boundary layer. Rf is the skin friction derived from the standard plank
Reference has often been made to the possibility of wave formula.
resistance being included in some measurements of skin
friction, but usually only in the form of a caution; there r. lb rf, lb

do not seem to have been any attempts to give a numerical
estimate of its value. Perring6 refers to the possibility 0.20 4.54 0.0092 2.057
of having to make allowance for wave-making in experi- 0.22 4.99 0.0141 2.448
ments with plank-like forms, and Schoenherr,7 in re- 024 5.45 0.0295 2.869ferring to his experiments with 3-ft. planks, remarks that 0026 5.90 0.0352 3.320

ferngt hsexeimns ih -t.pansOrmrk.ha 28 6.36 0.0601 3.890
the speed should not exceed about 2.7 ft./sec. on account -O2 8 6.81 01063 43181

of appreciable wave-making; it may be noted that this 0.32 7.26 0.1376 5.079
is a Froudc number f of about 0 27, but other experi- 0.34 7.72 0.1405 5.417
ments with partially submerged planks have been made 0.36 8.17 0.1711 6.013
up to f=- 0.4 or even higher. 0.38 8.63 0.2139 6.637

Knowing the form of~the plank it would be possible to 0.40 9.08 0.2589 7.288
calculate the wave resistance from the usual formulae,
but such results would be of doubtful value at low speeds
because of the viscous effects which are now under dis- It appears that the wave resistance is about I per cent of
cussion. However, wave resistance theory suggests the total resistance at fj* 0.24 and rises to about 3 per
another line of attack. According to the formulae, for cent at f - 0.4. Direct comparison with planks used in
models with the same mathematical lines and with con- skin friction experiments is not intended, because these
stant length and draught, the wave resistance varies as havedifferentformsand, in particular, theirsmallerareaof
the square of the beam. This relation was esamined by vertical cross sections wculd diminish the wave-making.
Wigley8 for a series of three models satisfying these con- Further, it is clear, from the various steps in the above
ditions. The residuary resistance, deduced from the calculation, that the results cannot be more than a rough
total resistance by the usual method, did not quite obey approximation; nevertheless they will serve as an indi-
this law; but the divergence was attributed to the neglect cation of the possible numerical magnitude of wave-
of form effect in estimating the skin friction, and small making resistance in plank experiments.
increases in this part of the resistance would give a wave
resistance approximately obeying the theoretical relation. Parabolic Form of Infinite Draught
It may be remarked in passing that form eflect is not Returning to the main problem, we consider a model
easy to estimate for these narrow models because it is with parabolic lines and make small modifications near
not sufficiently greater than the possible experimental the stern. We suppose at first that the draught is
errors in measuring resistance and velocity at low speed!F, infinite, as the integrals can then be expressed in
where in additi.n there may be the complication of terms of functions forwhich tabulated values are avail-
laminar flow. For a general discussion of the relevant able, and the general character of the results is not
data for form effect reference may te made to Todd.9 much affected by the draught,
For our present purpose we choose Model 1970B, an Putting y = b 7) and x If, and the model having
experimental model used at the N.P.L. by Wigley.10 vertical sides, the form is given by

The model lines are given by I =1--........ (12)
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Hence from (7) and (8) Suppose this form has, say, a length of 16 ft. and a
4pb2 I/2 beam of -5 ft., and consider the virtual modifications

R 7r_ (12 + J2) cos 0 d 0 . (13) which might be ascribed to boundary layer effect. Let
• JoB M S be one side of the contour of the model. The

wave resistance formulae are, in fact, derived by follow-
with I + iJ -2 d e . . . (14) ing the streamline which starts from the bow B, follows

the contour B M S to the stern S, and then goes off
where y = •o sec 0; yo = K0 I = g 11,2 along the central line. Suppose we know the displace-

ment thickness of the boundary layer at each point and
Using P functions, which are defined for integral values set it off to form a new curve B M' S': we propose to

of n by take this as the virtual streamline form and to apply
7t12 wave resistance thecry to this line instead of the original

P 2. (p) = (- l•flcos2n sin (p sec 0) d 0 curve B MS. This new line starts from the bow B,
- 1(15) deviates slightly from the model except possibly near the

'75) stern, and we shall suppose that it becomes parallel to
P2 , + I (P)I (- 1)l +I ] cos2" +: 0 cos (p sec 0) d 0 the central line at a point S' somewhat to the rear of

the stern S and possibly at some small distance from the
we obtain central line. In default of sufficient information about

R 32 p -2 8 1 the boundary layer in such cases, we shall make some
b2 v -- 2 , + -P 3 (2 yo) arbitrary assumptions and see what effect is produced on

;o Dthe wave resistance.
2 1 We shall neglect the displacement thickness calculated

-y P4(2 7o) + -Ps (2 o)_ (16) as if for a plank, as we have seen already that this has
no appreciable effect, this simplifies the work consider-

This has been graphed on a basef in curve A of Fig. 1, ably, as it enables us to follow the actual form from the
corresponding to the form section A in !he same diagram. bow to some point near the stern. We suppose that the
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new streamline then leaves the form tangentially, and and hollows at very low speeds and reduces them con-
gradually becomes parallel to the central line at some siderably up to aboutf - 0.24.
small distance to the rear of the stern. It may be noted To make a rather larger change, we suppose next that
that this departure of the virtual streamline from the the point of departure is 2 ft. before the stern, the line
form does not necessarily mean separation of flow in the closing in as before at 2 ft. behind the stem. The
usual sense; the latter phenomenon might be represented coefficients in (17) are now determined from
on this scheme by the new line leaving at an angle to the 7 d 3 31
form. We shall take two examples and in both we shall 7 - for
suppose the new curve to reach the central line at its 16; d 2 4 (22)
rear end; we are then dealing effectively with closed d- 5
foi,1 s and this simplifies the work, though it could be 7 = 0; d- 0; for; = -- 4
extended to include a permanent wake to the rear.

First, considering a 16 ft. model, we take the point of These give the curve
departure to be 1 ft. before the stern and suppose the
new line to close in at a point 2 ft. behind the stern. If 25 15 3 2 . (23)
this new curve is given by 7? / + -,6 f 2 6 - "

71 == ao + a, e + a, f2 - a 3 f3 (17) The curve is shown starting from C on the section in

the conditions are Fig. 1. It passes the stern of the model at a transverse
distance j b from it. In this case, we have15. dv1  

7 for•-

37 = 64' d 4'f
d 7 5 (18) f J= -2.•••d

77= 0; •- 0, fore-

These determine the coefficients in (17) and we get + 5-6 3 3f2)eiy~d . (24)

1075 35 4 32 (19) -

07 -= 444 - 2 and hence we obtain

This curve is shown starting from the point B on the R 16P F2 73 1 288 I 7
section in Fig. 1. It passes the stern at a transverse dis- b2, -- [3 B A + J-5- A - 4 (p)
tance 5 b/72 from it, and represens little more than
smoothing out the stern angle of the model. 19 6 9
We now have instead of (14) + 2 Ps (P,) - A P6 (PI) + 2-•o P4 (P2)

1* 21~ 66
-ti + -- 2ff:el'r•d$ 2o PS (p2) +ý3 6 02 +6_oP 3 )

3 18 ]

+ 5++ 2)eiytdf (20) + (P3)- 4P7(3 . . . . (25)

Jýý2 where p, = 7 ro/ 4 ; P2 = 9 yo/ 4 ; p3 = ye/2

From (13) this gives the result This is graphed in curve C of Fig. 1. Here the dif-

R 16 p [2 2128 1 32768 1 32 ference from curve A for the original model is very

b2_v L- + 3 f•4 (p') marked, and the modification is probably more than is2 3needed so far as low and medium speeds are concerned.
32 64 2 It remains to be seen what difference is made at high

y- 2 Ps (.P) + -- Pll (P) + -P4 0•) speeds, but a model of infinite draught is not suitable

62 64 owing to the exaggerated values obtained at high speeds.
+6?Ps(2 ) 3 .4 (P2) s(

320 33 9Parabolic Model of Finite Draught

*3-20ps (P)-- v 2 p0 (P8 . . (21) We turn now to a model of the same form, with
§V-0 vertical sides, and of draught d. We shall take the

where p, - 15 yd8; P2 = 9 yo/4 ; ps= 3 •S/8 draught d to be one-twentieth of the length 2 1, because
this ratio was used in some previous work' 2 and the

This is graphed in curve B of Fig. I. It shows how results given there can be used to check the present work.
this small modification practially eliminates the humps For the model itself, we have from (7) and (8)

5
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R 312p F •- line at 1 ft. to the rear, assuming a model length of' 10 ft.

h2 
1,2 IJ( I cos 2 Hence the conditions are

Jsi2 (26)15 d 7 7 71
sin sy) cos sdOl (26) 64' df 4' rY /" (28)

d-q 9
with 

=0, for - 8

y0 g 0I. P,, g d/,.; y- sec 0: P p0osec2

These give the curve
In this, :.nd similar integrals, it has been found more

convenient for computation to change the variable from 569 63 7 2 (29)
0 to u given by cos 0 - sech u. The integral was then I2-8 8 - -
evaluated by direct quadrature, together with an asymp-
totic expansion for low speeds when the parameter yo is which is shown starting from the point E of the section
large. The cu.-e is shown as D in Fig. 2. in Fig. 2. It passes the stern at a transverse distance

0'35 _ - _ _ _ - _

030 _- _

'mF nT
Sots,--LLL4: __, ,,I

05

--

005 ' 21-_

O0 026 034 042 050

scALE o- f --

Fio. 2

We shall not use the same modifications as in the 9 b/128 and it finishes at a transverse distance b/64. We
previous section, simply because t1he cubic curve adds so have now
much to thc numerical work. It is suflicient for the

•:ao alf a ~ * . (27) l+iJ=--2J fel';-d+ j( + 7 eeI~de

for the new part of the streamline near the stern. First -- I -

we suppose the curve leaves the form tangentially at
1 ft. befnrc the stern and becomes parallel to the central (30)
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CALCULATIONS ILLUSTRATING THE EFFECT OF BOUNDARY LAYER ON WAVE RESISTANCE

and this leads to further, it is considetcd that the modifications of form
-7v are such as mieht be caused by displacement of the

Rt16 p s /17\ streamlines by boundary layer effects near the stern.

h2  . I e- 7 s 8i No doubt the results could be improved by furtherb 7 ?608detail: for instance, by change of boundary layer with

/ \1 1velocity which might possibly correspond to a change
9sinl15 I 167 o 17 in the point ofdeparturc of the new line, or by assuming- 9sn y •, i7cos 7'

(8 2 8 a greater virtual extension of the form to the rear with
5 63 (14 a permanent wake. However, the simple cases given

- 9 cos ( 8 y) - 2 cos G Y) I cos3 - d0 now are sufficient to illustrate the point of view.

(31) Unsymmetrical Model
We consider finally a model which is unsymmetrical

Values computed from this are shown in curve E of fore and aft. The difference in resistance according to

Fig. 2. the direction of motion may have various contributing

In the next place we take the new curve to extend factors; for example, wave reflec,.on might be important
similarly from 2 ft. before the stern to 2 ft. behind the if there were considerable difference between bow and

stem. The conditions are thus stern angles. However, the main effect may be taken as
due to boundary layer modifications. We choose, as

7 dl 3 3 the simplest case, a model with vertical sides and with

.16 .de... fore -- 41 draught equal to one-twentieth of the length, and with
(32) the lines given by

d 0 __ 0- I -- 5 (1 -- 62) I- ( + . . . (36)
d 4

This gives a bow angle twice the stem angle. When
From these we get going bow first, we take the new streamline near the

77 15 3 stern to be given by (27) with the conditions
2 85 .d 253. 7 7

the curve shown starting from the point F on the section. 512 d $ -: 192 for=- 8

It passes the stern at a transverse distance 5 b132, and d q 9 (37)

finishes leaving a narrow wake of half-width b116. d 0 -: 0; for • . 8
In this case

S- from which we obtain the curve

I + 1 2 e) y .d. 20501 2277 2 .53 (38)

. . . (34) With the fine end leading, the model is given by

and for th', rcsistance we obtain . . . (39)

712R216 p 9 ()
- ( - ) 1-- 3 sinly To lighten the numerical work, we assume the two

00 L 4ends of the new streamline to be in the same relative

) 1 positions as when going bow first. The conditions are
-- s+ 2 - + acos/4 71 now

7 is \4 155 d¾ 419 7"
52 Cos Cs cotd 0 512' df 192' for. 8 (

-5oGv) ,cs2~ jcs / .2 (401)
(35) d 0: for

This resistance is graphed as Curve I in Fig 2. and hene the curve
It is submitted that inspection of the curves in Fig. I

and Fig. 2 supports the general conclusion that these 34123 3771 419 (41)
small modifications give the required kind ot change in 6144 384 96
the reststa,;ce curve for the original model. namel)
clhriniiation of the humps and hollt, at hl'w •lpeds The form of the mLodel %kith the iniodilicit tions (38) and
with a much smaller relatise effect at high speed. (41) is shown in the .,ection in Fig. 3.

7
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0-20

© 0.10 ____ "__

005
q0~1

-AJ

010 020 030 040 060

SCALE OF f=
FiG. 3

With the full end leading we have These integrals have been computed and the curve is
shown in Fig. 3; the ordinates in this curve are the

+ 2 ' f 2)eiytdýcorresponding difference in 9 values for this model.
1+-- i J --- -- 2 -- e'd~ This curve may be compared with results from experi-

ments with unsymmetrical models, for instance in work
at the N.P.L. by Wigley."0 The curve has the samt

22 d (2 general character and the right order of magnitude,
+ |-- 48 / except that in the experimental models the difference in

-, -• reistance diminishes to zero at about f = 0.5. Th:

and with the fine end leading we have agreement could probably have b-.en improved in the
calculations by taking the point of departure of the new

Scurve at different points for the full end and the fine end.
±-- - 2) eiy d However, there is little to guide one meantime in making

these assumptions, and moreover, in dealing with actual
Sship models boundary layer structure is still more
371 4 ý19 .difficult to unravel in its dependence upon form.

8 .ely~df (43)

We shall examine only the difference in resistance References

between the two cases. Forming 12 + J2 from (42) and (1) T'. H. HAVELOCK: Proc. Roy. Soc., A, 110, p. 233 (1926).
(43) and using the difference we obtain eventually (2) T. H. HAVELOCK: Proc. Roy. Soc., A, 149, p. 417 (1935).

Rw2 16 521 1 (3) W. C. S. WIGtY: Trans. Inst. Fng. Ship. (Scotland), 81,
(diff.) 4r - p. 187(1938).

- - -3 ya (4) G. S. BAKER: Trans. N.E. Coast insw., 46, p. 83 (1929).
(5) T. H. HAvm.ocx: Proc. Roy. Soc., A, 138, p. 339 (1932).

/23 is 169 Co 15 (6) W. G. A. PERIuNo: Trans. IN.A.. 67, p. 95 (1925).
"+ si U V.)l - (7) K. ScHoENHERR: Trans. Soc. Nay. Arch. and Mar. Eng.

(New York), 40, p. 279 (1932).
(29 56\ 2 (17 ) + Cos (7Y (8) W. C. S. Wioty: Trans. I.N.A., 59, p. 193 (1927).

+ - 6? k8 (9) F. H Tooc: Trans. Inst. Mar. Eft., 57, p. I (1945).
56 (10) W. C. S. WI1LEY: Trans. I.N.A., 86, p. 41 (1944).
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THE, \\ AXE RESISTrANCE, (OF A (A LINI)EI
!ý,ARTED) FROM UZESTr

By TI. H. 11 V 1'IMC)(K (A inq . ('iu//v rof AtNou'/v

[RIeccvivt,dt 1 : Augnst 19~4S]

S I M M A R Y

A int lht-d )f' -otaininriri *~xpi'-,i )it. ft i wlt\ r- tiý i ni iii J i e(itrtix ( t td 11 uitiu is

stairlt't I foII Itin t intoI mitu t It - I() I ' w~tit 11 1111 if. 'I'l ItIuIthit y. *lfit staufuiw' I-It'-\t ionu

ait auny tjlitte ,ifwtr T il'l talt. Niriivrical 'tliftilatit its ittvt lwit ni wdt.i fur titrvt'

di ffetrent sjt'.lds. antid ihl'Vt'' i ult' giv.t I shmiitwug IIIw the' r'sýistiiulco rises iniitiaully

1. Introduction

CALCLATI.-TONS ot Wave it tistance have hithIerto) beenll mate oidl for a bodtt
moving with constant \'Iocit V. thle probilemi b~einig tr'eated( d irectly as onte
of a stead 'v state whien Mieerted to axes moving with tilte body. The Case
t&f nn-m ib'ion) nml) ii at is iid inItere(st ill itself, and also has possible applic-
tions, For instance. ill mecasiuring tilie resistance tit Ship model~s, thle qumestionhi
arises howv long it is before t he etffet 4i the Mlarting onfliitiilkm becomes
inappreciable. As a matter of hiet. nieasiiret resistanc-e cures aiwa 'vs
show oscilltions A~IMt the steadti v value tor a given speedI. l)ut these are
no dloubt inainiiv (die to tilie tiat inal pvGH'j 11 of thle measuring applaratus:
however, it w~ould1 het of interest to have sonie exanilliltiolt of' the alppioacli
to the steady resistance after thle initiil > age of aceelcrate(1 motion.

Expressionls for' wave resistance ill acceek,- iated m fot ioni hav~e beenl givenl
by Sretensky (1). who obtained themi by transforming the hyvdrodynamical
etjuat iofs tA a tbrm ý t t Jit fwi axes intwirlp with act'eleiat ion but thle
hwimulae ire ti 1 ovulild icatet l' Aw numerical calcuilat ions in general:
.Sret('nskv has, it is under'stu ii. made some valetulat ions mole recentl lv fOir

a particular' law of aceelerat it n hot Aw results ar'e niot availa ide.
In some early work, (2). instead of assmning the steatdy state as estab-

lishied, I used an alternat iie& method ft r unifirni motion. rhis mayv be
dlescr'ibedl a,, finding thle (list ill lbance (LEx to an infinit esuutial. stepJ iii t he
mlotion. of, thle bod ' and( tOwin initegratting. It \%aS poinrted outit at tile time
t hat thle met~x l et oUd b( e app lied to mont ion w~ith v'ariable v'elocit 'v. It is
showit now that thIiis moet ii it leads- dIiriectly to ex press ion s equinvalent to
those obtainied ot herwise 1), Sret ensk ,v. Hmviw er. thle lI'tesent nolte deal s
Olt'lmlv with o ime part ic-ula r Problem. utallelY. a irclu.1l uters re'e

,Quart. Journ. Mech. and Applied Math_. Vol. 11, 11t. 3 (1949))
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T. if. H{AVELOC(K 326

in water at a given depth. ,ud(ideily started from rest with a given velocity"
andl maintained at that spee(d. It has been found posgible to make nufnerical
calculations in this case, and t le results illust rate various points of interest.

2. Circular cylinder

Take the origin 0 at the crntre of the circular section, of radius 7, at
a depth f belo% the free surface. with Ox horizontal and Oy vertically
upwards. Ift he cylinder is given a small horizontal displacement c AT, from
rest to rest, the velocity potential of the subsequent fluid motion is give'n
by

, = 2ca 20 8-r f e-K(2 k-J)sin(K.r)-in(g'tK)Ki dK. (1)
0

This is equation (12) of the paper already quoted (2), obtained there by
a Fourier integral method; it can also be derived in the manner given later
by Lamb (3) for the three-dimensionel case.

The vel'city potential for continuous motion with variable velocity can
be found by a direct integration. We consider first the simple case when
the cylinder is suddenly started at time t = 0 and made to move with
uniform velocity c. We obtain, noting that the origin is at the centre of
the moving cylinder,

-.ca2x ca-x

x 2+Y 2  x2+(2f__y)-

±2ca2gi f dr e-hg2f-y)sin{K(X- C-r)jSin{ (t-r))Ki dK. (2)
* .1 

(

o 0

Deriving the surface elevation q from the relation

a_ (. = f), (3)

we obtain

2ca 2 f d, e-f sin{K(x +ct--c)}cOsfg'K(t T)jKdK. (4)
0 0

Hence -we have

7) x 2+f 2 +-2Koa2f--e- K aK-x fK--K0

0

Ca2Cc0s(KX_+Kct -g'tK) cos(fx± Kct--git,) (5-- ca2~_ [ cg~ + Kc-t: Ke- f dK, (5)
f KC+giKi KC- glKi

0

where K. = g/'c, and the principal values of the integrals are to be taken.
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327 T. H. HAVELOCK

The first two terms in (5) give

2(• = -- Y 1Ko (1-C-K,/ sin *',.r-

2 f KSil fK.i--I¢cOs Kf -Xd (x > U),
3 K -2- K02 e1 ( )

S00

2a 2f

----- _i 0  
2cKoai r-,sn /-• o /

0

The expressions for mq represent a steady state relative to the moving

cylinder and symmetrical fore and aft of it. With xJct ' - _ -d- (istance

from a fixed origin at the starting-point, the last two terms in (5) represent

the surface elevation at any time( due to an initial displacement and velocity
which is the negative of that given by (6); this must be the case in the

present. problem and it can be directly verified. With a change of variable,

and with 11 = Ko, tie last two terms in (5) are given by the real part of

•72 ~ ~ ~ ~ ~ ~ ~ _ U, -- a tel' t -4 ' -- ! e-111' du. (7)t e- 1110 da 1

The limiting value of -q,, as t becomes infinite is (lerived from the principal

value of' ie first integral in (7); taking the real part. we find that

'12 -* 2 2rCoa-"fiil K0 X as t -(+)

Turning to (6). we see that ultimately (S) cancels out the regular waves

in advance of the cylinder and(( doubles the' amplitude of those in the rear.

Without examining the suriace elevation in detail, we may specify more

closely the part which at any time consists of a regular train of wraves

accompanying the moveing cylinder. It is clear friom the form of the integrals

in (7) that the oniy contril)ution to such a train comes from the first

integral. or from
-- "_'t-u; - - -/"- (lU, ( .))

--- L

and is (lue to the pole at ? i- ,. Regar(ling i as a complex variable, tile

l)ath is along the real axis indentedk at i :- -. ithere is a sadllle- point at
a r- gjt 26. First suppose 1 ). The path of integration may I)e rotated

rouMn!d the saddle-point to the line of .,teepest descent, namely, thie iine
i rlfit 26-- r0 t, the eontribution of the cireular arcs required to complete
the (losed contour being zero in hlie limit. We have also to take account
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WAVE IRIESIS'TAN(IE OF A (YLIND1EIR 328

of the indentation at 'u according as u0 > or < git!2ý, that is, according
as 6 > or < lct. Mi this manner, it is found that as far as the regular

waves are concerned, (9) gives

27rKoa 2 e"e-o/sinKox (• > jct),

-- 27rKoa 2e-Ko• sin Kox ( < jct). (10)

Similarly if < 0 the line of steepest descent is the line u = gtt2e+re! . ..

and the corresponding contribution is - 2 7rK0 a
2e-KoI Sin K0 X.

Summing up this outline of an analysis, the surface elevation at any
time is made ur of three parts: (i) the local symmetrical disturbance

travelling with the cylinder given by the first and ÷hird terms in (6);
(ii) a .:egular train of waves 4 7rK0 a

2e-KoI sin K0 x behind the cylinder extend-
ing from x = 0 to x = - -ct; (iii) the part given by the reýnaining integrals,

representing a disturbance which spreads out in both directions and

diminishes in magnitude as time goes on.
The second part agrees with the general description using the idea of

group velocity. The third part has not been examined in detail, but an
asymptotic expansion suitable for large values of ý and t may be found
from the transformed integrals indicated in the previous discussion. For

large positive values of . and (git/2ýi)-uoei, the first term in such an
expansion is 77 1/2g 1/2 a2 Ct2 2 4j /Si e gt/4 cos 7r - gt2/4_). (11)

2~ ~ 6326 -Ct)

For • - ct, that is, at a point Jver the centre of the moving cylinder,

this reduces to

a2(c-O)e-l-oi cos ¼(Tr--tct), (12)

a result which can be obtained directly from the integrals in (7) by using

the method of stationary phase. After a sufficient time, (12) gives approxi-
mately the departure of the motion over the cylinder from the quasi-
steady state consisting of the local symmetrical disturbance and the regular

train of waves to the rear. If A0 (= 2 71/K 0 ) is the wave-length in the regular
train, the wave-length of the disturbance near the cylinder is 4Ao, the wave-

length for which c is the group velocity. The usual direct solution for motion
with uniform velocity leads to the surface elevation (6) with regular wa-es

in advan'ce as well as to the rear. The so-called practical solution is then
obtained by superposing a free infinite wave train cancelling out those in
advance and doubling the amplit ude to the rear. Another well-known

method of obtaining this practical solution directly is to use the frictional
coefficient introduced by Rayleigh. In the present analysis we have not

used this frictional coefficient, the values of the integrals being interpreted
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329 T. H. TIAVEi,OCK

as principal values wherever necessary. The chief point of the discussion
is that there is no ambiguity when the motion starts fronm rest. '¶, motion
which is gradually established as time goes on is the practical solution for
the steady state, with regular waves only to the rear of the cylinder; this
result is in fact associated with the group velocity being less than the wave
velocity.

3. The Wave Resistance (Revised, 1959).*

The velocity potential (2) is sufficient for the surface elevation to
the usual approximation; but, in order to calculate the forces on the
cylinder from the fluid pressure, it is necessary to add a further ap-
proximation so as to satisfy the correct boundary condition on the
surface of the cylinder with a = x + iy and V = (g/K)1/ 2 , the complex
potential of which (2) is the real part is given by

ca 2  ca 2 +a 2 t OD

S2if+ cag dr

le-i K (c-V )(t-r) c(c + V)(t)} IX e-icz-2,Kf Kid.K (13)

We may expand this in the neighbourhood of the cylinder in the form

Ca2  nS+ n .z (1 4 )

Hence the required form for the complex potential is

ca2  a 2 A (15)

Zn

valid near the cylinder, the asterisk denoting the conjugate complex
quality.

If X and Y are the horizontal and vertical forces on the cylinder,
we have from

2j da'1 zw j iw*dz (16)

the integrals being taken round a small contour surrounding the origin
From (14) and (15) we get, to the first order in the co-efficients A

X - iy = 4rtpca2 A2 - 21pa a A' (17)

*EDITOR'S NOTE: In preparing this 1959 revision of Section 3, pages 329, 331, and 332 af
the originel paper were modified and page 330 was deleted completely.
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WAV\E IESISTAN(E ()F A CYLINDEit 331

with

A 1  = ca 2  Co

Al -•= ca2 91/ 2 drJ

{e i ( -V) (t3/)e - (c + v) (t-r)} e -2 'K 3 l 2 dK
(18)

A2  a 2C 1 c 2 1/2j r

0 0

{e - (c -V) (t--r)_e- (c + V) (t--)}e 2 ic f / 2 dK

Taking the real part of (16) and integrating with respect to r, we
obtain for the wave resistance

0R=~ ~4 2rg~afosin K(c - Ote- + sin K(c +V)t ' - 2•f~ K .f19

Putting P = K 0 U2 = gu 2/c 2 this becomes
Co

R = 41gpr 2 a4f [sinkau(u-1) + sinjau(u+1)I1 e-, 2 U4du (20)0  L U--1  u+l 1

with a= K Oct, 83 = 2K 0of.

For suitable values of the parameters a,4 the integrals in (20) may
be computed by direct quadrature, or from convergent and asymptotic
expansions which may readily be deduced. In particular, the limiting
value as t becomes infinite follows directly from the first term in the
integrand and is

R 41r 2 gpK0
2 a4e- 2 P of (21)

the wave resistance for uniform motion. The next approximation for
t large is of order t-1/ 2 and -can be obtained from the same integral by
the method of stationary phase. This gives, as t -4 -

R - 4wrgpK 0
2a e + T jrc Ofsin (K ct.. )(22)

Thus ultimately the resistance oscillates about the steady value,
the amplitude of the oscillations diminishing slowly with the distance
travelled and the period being roughly 4U., corresponding to the per-
turbation of the wave motion given in (12).
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4. Three-dimensKe'al motion

Turning to the general problem, we take the origin 0 in the free surface,
with OZ vertically upwards. Suppose a point source of strength m is
suddenly created at the point (0, 0, -f) and maintained for a short time

Si-. To satisfy the condition at the free surface for the initial motion, we
take

0o _ __, (23)
r, r2

with r4 2 x-2 +y 2 -+(z+f)2; rA = X- y2+(Z-f)2.

The initial surface velocity found from (23) aceing for a time S- gives
a surface elevation which can be put in the form

7r 0o

7T f )

-IT 0

withtwr = xcos O+y sin 9.
The velocity potential of the fluid motion at any subsequent time t due

to this initial displacement without velocity is

=- g, 8r dO fe-K•/+ cos(Kw)sin(gitK')Ki dK. (25)
7T

-- ? 0

Consider now a source moving parallel to Ox at constant depth f, the
strength m being a function of the time. Let x Le measured ficom a moving
origin vertically over the source, e from a fixed origin at the starting-point;
and let 9, be the a-coordinate of the source at any time t. Then we obtain,
from (25),

S It I.mt r(t) g• frn(.,)dT dO e-f •+,'I=eOS(•)i~''tO•
7-- -- - m~jdi-'sn~11( -r)'K

0 -7 . 0 (26)

with=' = (e•9--)cos0+ysin0.
We may generfize this result for a solid body moving through the liquid.

If the solid moves through an infinite liquid with unit velocity, we may
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WAVE RE{ISISTAN('E OF A (CYLINDER 33:-

t, ke the fluid motion to be that due to a certain distribution of sources
and sinks over its surface and of amount o per unit area at each point. We
assume this distribution in the present problem in order to obtain the wave
motion to the first approximation. Thus in (26) we replace m by uc(t),
where c is the velocity at time t; if (h,k, -f) is a point on the surface of
the body we also put x- h for x, y--k for y, and

= (--h--,)cosO+(y--k)sinO,
t

and the required velocity petential is obtained by integrating over the
surface of the body.

We shall not carry the general problem further meantime, but consider
the case of a slender sh.;p form. Here the usual approximation is to take
a ý-- -(ay/lh)/lir, where the surface of the form is given as an equation

for y in terms of h and f; further, the source distribution is taken to be in
the longitudinal section of the form by the plane y = 0. We obtain, in
this case,

2-r' f'f (rI 12)dhdf

91 LY dhf fc(T) dTr __fe-IKZ

f fJ f ff dO fe-+K cos(K=')sin{giK(t--)}idK,
0 --r 0 (2T)

,h r' = (--h-s,)cosO+ysin6. This result is equivalent to that
tained by Sretensky by a different method.
£he pressure at any point is given by p 00/1t, neglecting the square of the

fluid velc 3ity; and the resistance is foiiid from

R = -2 Jp(h', 0, -f' dh'df (28)

taken over the longitudinal vertical section. Hence, from (27) and (28),
we find

R _ P6 f f. "' dh'df' x
-7 2r OJ~h'

x ff[((-h)+(flf)2-J{(h'-i 4 )2+(f'+f)2}i]ý-dhdf+
tA

*+~2ff adh'df' ff aydhdf f c(T)d-r f do x
0 -irf

000
X fe-Ký1+1r)cos(Kl')COSfg•-Ki(t--r)jK dK, (29)

0

with =r' = (h'W•-+s-s•-eos O.
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334 WAVE RESISTANCE OF A (YIANIi)ER

The coefficient of e is an effective mass for this particular problem,
taking account of the free surface and assuming•no wave formation and
noting that the square of the fluid velocity has been neglected.

As a special case, suppose the model to be started from rest with a
velocity c which is then maintained constant. The finite resistance at any
time after the start is given by the second' term of (29), with c a constant
and .r' =: {h'--h+c(t--')kcos O.

The result can be reduced to the form
t Ir 00

.1?-PCJd7- dO f(I 2 +J 2 ) CoSfK((t-r)CoOS0CoSfg~K1(t-T)}K dK,

0 - 0 0 (30)

with I+U = fJ'j!' e-K/+iyhcs 0dhdf. (31)

Integrating with respect to r, this gives
jir co

B =- 2gpc dOf ([12+j2) [sin'((CcosO--g10)t}•_+sin[(Kc Cos O±gUK)t•]•d_••
f. JJ Ccos 0-giK* KCCOSO+g-W
0 0

(32)

It can be verified readily that the limiting value to which this tends as
t becomes infinite is

R g 4KO-gp f (I2 +J2)sec 3 0 dO, (33)

0

where 10 +iJ 0 is given by (31) with K replaced by KOsecC2 0.

This result (33) is the known expression for the steady resistance at
constant speed.
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THE RESISTANCE OF A SUBMERGED CYLINDER
IN ACCELERATED MOTION

By T. H. HAVELOCK (King's College, Neweastle-on-Tyine)

[Reccived 8 March 1949]

SUMMARY
The problem considered is the resistar~co to motion of a circular cylinder at a

constant depth below the free surfac?,, in particular when the motion Atarts from
rest and has uniform acceleration. The resistance is expres.sed as the sum of two
terms; one corresponds to the wave resistance for uniform velocity, and the other
may be taken as gi-ving an effective inertia coeflicient, the variation of which during
the motion is of special interest. The expressmns are carried to the second order
of approximation and have been reducd tc forms suitable fo.r numerical computa-,
tion. Curves are given showing the variation of both parts of the resistance during
the motion, for various values of the acceleration.

1. Foi the steady motion of a submerged body with velocity c parallel to
Ox, the condition at the free surface of the water is

c'oa2 /lx-+g 00/ay = 0,

where 0 is the velocity potential, Ox is horizontal, and Oy upwards. For
small values of c this becomes formally equivalent to 00/ay = 0, while for
large velocities the corresponding limit may be taken as 0 = 0. The same
effect may be seen if we consider the expressions for, say, a moving point
source at a given depth below the surface; it is easily seen that in the limit
the image system becomes a point source far small velocities, while it
approximates to a sink for 1mrge velocities. Sonic discussion has arisen as
to the appropr;ate surface condition to use when estimating the effective
inertia of submerged or floating bodies; but any argument based on steady
motion assumes a state which hias been uniform for a long time, and
cannot be applied directly to accelerated motion or •notion started at a
given instant. In a previous paper (I) expressions were given for resistance
in accelerated motion, but no case has hitherto been worked out. It can
be seen from equation (30) of that paper that, if we proceed only as far
as the first approximation, the total resistance separates into two parts,
the wave resistance and the inertia resistance; further, the latter part is,
to that approximation, the same as for motion under a free surface
neglecting gravity and thus corresponding to the surface condition 0 = 0.
To obtain a more accurate result it is necessary to proceed further in
the approximdtion to the solution. In the present paper we consider the
problem of the circular cylinder moving at constant depth below the
surface, examining, in particular, motion with uniform acceleration starting

[Quart. Journ. Mech. and Applied Math., Vol. II, Pt. 4 (1949)]
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from rest; the solution is carried to the second order of al)proximation.
It has been found possible in this case to reduce the expressions to forms

w1hich are not too difficult for numerical computation, an(] curves have

been drawn to show the influence of the acceleration upon the resistance

and upon the effective inertia coefficient.

2. We shall construct the expressions by the method used in the
previous paper. With the origin 0 at a depth f below the free surface,

Ox horizontal and Oy upwards, , ippose a singularity of ordeil n created

at the origin at time t = 0, maintained for , short time &r and then

annihilated. To satisfy the condition at the free surface during this

impulsive motion, we have for the complex potential function
wo ý P. z-11-- P*(z-- 2if )-",'II

where P, may be complex, and P* denotes the con-ugate complex

quantity.

To obtain the surface elevation in a convenient form we write (1) as

(--i)_ .P( f K" "- 1ePi dK - (n fl K Pn eiKZ2
-f dK. (2)

(n- 1)! " n
0 0

The result of the initial vertical velocity ac~ing for a time Sr is to leave

the free surface with an elevation q given by

(n-i)p 3 KeiKXKf dK, (3)7/•R(n-l) f

0

where Re denotes the real part.
The potential function for the subsequent fluid motion due to this

initial surface elevation, without velocity, is
IV=2g~ii, P'*' 35 K?'-j,--iK:-21cfsin(g•/t0) dK. (4)

w (n-- f)---

0

We now con-sider this to be a continuous process occurring as the origin

moves parallel to Ox with a velocity c, with c and P,, functions of the time.

Let st be the distance travelled by the origin from the starting-point; then

in (4) we replace t by 1--r, and z by z-(s--s,), so that z is now referred

to the moving origin. Integrating from the start up to the instant t, we

obtain for the complex potential

P, (t) P* (t) P"+1g
S= P--(t- P(g) ( f) P*) d* f Le -"-"2KIK'-i dK; (5)

0 0

with L ei)K- (1-)}--eifKtR,-r)+Oi(t-)). (6)
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This result may be confirmned by using the pressure condition ati the free
surface, when the axes are moving parallel to Ox with velocity c and
acceleration (. For these relative coordiniate>; we have

-) = Po+ q _ (7)

Yq•t g " (X

The condition that p is constant on the free surface leads to the condition
RRe"a7w + d2w (ig6) du - 2c ' "=If. (9)

e W -Z• dz et\dz I)

It may be verified by direct substitution that (5) sabisfies this condition.

3. Suppose a circular cylinder, of radius a, centre at the origin, is
moving horizontally with velocity c. We assume that the potential can
be expressed as an infinite series of terms like (5) for integral values of n;
and the quantities P,, are to be determined from the boundary condition
on the circle JI = a. If we write

F(,<, 0) = • (- )•,(t,"-!; -1! (10)
1

we have the general expression
00

=W P,,(t)z-n-- f F*(K, t)e -iKZ-2Kf d~c-

0

0 0

We may expand the second and third terms in positive powers of z in the
neighbourhood of the circular boundary, and we get w in the form

w :- (P,"z-11+ Q.z), (12)
with 00

Q, = -LI) f F*(K, t)Kne-2Kf dK +

0
t •O

n +1 1 F *(Kc, r) dr , Lt n+ie- - dK. (13)

0 0

The boundary condition on the circle gives
P1 = ca 2 +a 2Q*; P, - a 2aQ*. (14)
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{ence, for the quantities P, we hove the infinite set of equations

P(t) ca 2-- ia 2 F(K, t)Ke 2Kf dK-gia2 f F(K, .) df L*K'e-2Kf dK,

fq f
0 0 0

00

P+ jl 'qFa2, f F(t, 7) d Ldn! f

+ i-F~ia~ FK, -) 7-L*"+Ie-2 Kf dK. (15)
0 0

4. We shall only attempt an approximate solution of these equations
as far as the second order, that is, up to n ý 2. It may be noted that the
condition at the free surface is satisfied exactly, but the condition on the

circular boundary is only satisfied approximately to the order indicated.
For the forces (X, Y) on the cylinder we use the general expression suitable
for axes moving, -ith the cylinder (2), which is in this case2

X--iY = Pi f (ý) dz+ - (16)

We shall find it convenient to take the corresponding resistance in two
parts; thus, to the pre.ent order,

-R1  Re( 1pi dz -Re{P 1 P (17)

R2= -- rpa2e+Re{Pi-" f lv* dz*}= rpa2d+27npRe{a P*}. (18)

Further, from (15), P1 and P] are given by,
t 00

P1  ca _--_---P,f-ga {-iPl('r)--KP (i')}dr L*Kjp-2"fdK
o 0 (19)

Pa =I 3iaa {-4 iP,0")--F(•')} dr L*Kie-2 ,f dK.

o 0 (20)
If we neglect gravity, we have approximately

P, = ca 2(l-a 2 14f 2 ); . = -- ica/8f 3 . (21)

From (17) and (18), R,? is zero 4nd
RK -= 7rpa 26(1-a 2/2f 2 ), (22)

the coefficient of 7rpa~d being, to this order, the effective inertia coefficient
for a free surface, neglecting gravity. The next step is to use these first
approximations for P, and P2 in the integrals in (19) and (20) and so
obtain the next approximation.
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5. Before proceeding, we may confirra this process by applying the
method to the case of uniform velocity c, for which the results have
previously been obtained by direct consideration of steady motion. We
require the limiting values of the integrals in (19) and (20) for t becoming
infinite, the quantities P being constant. Putting in the appropriate form
for L from (6), we have, for instance, the integral

drf 0ee(COlIc7}0eK K

f d- f(i(KC-01 K1 X1-.)-eiK)__)(- )jj-2K K (23)
0 0

Integrating with respect to T and taking the limiting value of the
intagral in K for t -> co, it is readily found that (23) has the limiting value

2gKo c-2['re-0'+ i{•x-l-e-0Ei(a)}], (24)

where Ko0 = g/c 2, 4 =- 2K0 f, and Ei is the exponential integral. The similar
integral with K' in place of K

1 converges to

2gb - - - e-Ei(a)}]. (25)

The integral with a factor KV is not required at this stage; being factored
by P2, it clearly does not enter into the second-order approximation.

Hence, to this order, (19) and (20) give, for uniform velocity,

P -= ca 2-- a2 Pl ÷ 2i 2 ca 4[Te-IX+i{fa-1 -e-aEi(cx)}],

P,= • a4 P ~S= ---- P[,Ire-- '+i0- 2 + a -1x-eEi(x)}. (26)

The resistance R2 is zero in this case; and from (17) and (26) we obtain

R, = 47r2pc2K• a4e-0[ 1- 2K• a2(x- 2+ 2a-4- 2e-•Ei(a)}]. (27)

This result agrees, to the second order, with the more general expressions
obtained previously for the wave resistance at uniform velocity (3).

6. Returning to the general expressions (19) and (20), we shall examine,
in particular, motion with uniform acceleration y, starting from rest; thus
we have c =- yt, s jryt2. The first approximation to PI is ya2t(1 -aR/4f 2 ),
and it is sufficient for the next stage to put P1 = ya2+ in the integrals in
(19) and (20). Hence, to the required order, we have

S 1 a2 .
9 00

0 0

P2 = --- P- -- gIaI r d7d f L*Kle- 2Kf dK, (28)
0 0

where L= (29)
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We now reduce the integrals to a more convenient foim. The integration
with respect to T can be-expressed in terms of Fresnel integrals; after some
reduction we obtain the result

f L*-. d" = p-lei(I-Q)'{qP(pt--q) +qP(q) -- ie-iIJ-

0
-p-2ei(vI÷Q)I{qP(pt+q)-qP(q)-½ie-,iq'}, (30)

where 2p2= K'Y, q2 = &,;

and P(u) = C(u)-iS(u) f f e-U' du.
0

For the integration with respect to K, we change the variable from K to v,
given by K = 4gv21/y2 t2 ; and we obtain finally

i co co

f -r d f L*xie-2UfdK A 2 +iB 2 = k9g-t-3 f (A+iB)v2e-s8v dv, (31)
o o 0

f -r d-r f L*Kle- 2Kf dK A 4 -iB4 -- k1 3 g-ft- 5 f (A+iB)v4e-8v' dv, (32)
o 0 0

with
k2 = 2g/7; ft = gf/72t2; Px = k(v--); P2 = k(v+-);

A = C(p 1)cosp2+ S(p 1 )sin p• C(p2)cosp•+S(p 2 )sinp++

+{C(jk)-k- 1 sin ¼k2}(cosp2-cosp2)±

+{S(ik)+k--1 cos ¼k2}(sinp 2 -sinp 2); (33)
B = C(p,)sinp-- S(pl)CoSp•+ C(p2 )sin P-- S(p 2)cosp+-

-- S(½k)+k-I cos 1k
2}(cos --cosp2)

+{C(kk)--k-l sin jk 2}(sinp2-sinp2). (34)

7. For the resistance, we consider first the part 1?I. This could be obtained
to the second approximation, but it was thought sufficient meantime to
examine only the first approximation. The general effect of the second
approximation is known in the case of uniform velocity; it consists in
increasing the value somewhat at lower speeds and diminishing it slightly
at higher speeds. From some rough calculations it appears that the effect
in the present case would be similar; but for a general idea of the effect of
acceleration upon R,, which reduces to the wave resistance for uniform
ve!ocity, it is sufficient to take the first approximation. From (17) and
(28), we have

R, -- 27rpyga 4tA 4 = 1287Cgpa 2kfl2(a2/f 2) f Av4e-s*" dv, (35)
0

in the notation given in (33).
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RESISTANCE OF A SUBMERGED CYLINDER 425

For the second part of the resistance we include second-order terms:
from (18) and (28) we have

1.4 -7rpaly+ pa27y((1-a 2/4f2) -27rpygia 4OB2,/Ot. (36)

From (31) and (33), this leads to

a= na•yp,

with p = 1-(j+32kP2b)(a 2/f 2),

b (--3+ 16Pv2)v2Be-s8fv' dv. (37)
0

Numerical computations have been made for the integrals in (35) and
(37). The quantities A and B depend only upon the acceleration, while
the instantaneous value of the velocity enters through fP. The integrals
were calculated for two different accelerations, and for about a dozen
values of g in each case-ranging from * to 40. For small values of P it
was necessary to go as far as v = 4.0 or further, but subdivisions of 0-1
for v were usually sufficient. For large values of fl the necessary range
for v was less, but subdivisions of 0-02 had to be taken, especially for the
larger values of k. For various reasons it was difficult to obtain any high
degree of accuracy in the final results; but it is considered that the
calculations are sufficient to show the general character of the effect of
acceleration upon the resistance. i ý

8. Some of the results are shown in the curves of resistance. These
curves show the resistance for a particular value of the ratio of the radius
of the cylinder to the depth of its centre, namely the value given by
a 2/f 2 

- 0.1. We have chosen to graph the curves on a base of velocity c,
or yt, the abscissae being c/(gf )i. This was partly so as to bring into the
diagram the wave resistance curve for uniform velocity; this curve is
shown as R0 in the diagram.

Taking the resistance R1 first, the curve A, shows its value for kV 97T/2,
or for y/g = 0.1418; while the curve B 1 is forV -- 7r/2, or for y/g = 1-276.
The effect of greater acceleration is shown in the lower maximum wave
resistance and the higher velocity at which it occurs compared with the
curve R0 for uniform velocity. It should be noted that if we had graphed
the curves on a time base, the abscissae for curve B1 would be reduced
to one-ninth compared with those for A 1 .

We turn now to the resistance B 2 , which is of greater interest. In
general, the relative magnitudes of B1 and R2 depend upon the two ratios
y/g and a/f. In the diagram, the curve A 2 shows the resistance R. for the
case y/g - 0.1418, and aU/f2 = 0.1; the total resistance in that case is
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426 T. H.: HAVELOCK

given by A.--jA 2. It is seen, from (35) and (37), that the part of the total
resistance which is simply proportional to the acceleration is

7rpaly(1 -a 2 /2f 2 ).

If we define the effective mass as the coefficient of y in this term, then
the inertia coefficient is the same as for a free surface neglecting gravity.
We could, on the other hand, divide the total resistance by y and so define

I II I I I I 1 I

S A2  P0Al

0*0

M 9paZ

0 0.5 1'0 1'S Z.0 2'5 3'0

the effective mass at each instant. However, from the way in which B1
and R 2 arise and from their variation, it seems convenient to refer to R1
as the wave resistance and to regard R2 as the product of the effective
mass and the acceleration; with this convention, the indrtia coefficient for
motion with uniform acceleration from rest is given by the quantity p
of (37). It can be seen from (37) that p converges to 1 -a 2/2f 2 for both
c -* 0 and c -+ o. In the particular case being considered, the inertia
coefficie::t would be 0.95 for a free surface without gravity, and 1.05 for
a rigid surface. Its variation with velocity can be seen from the curve A 2 ,
which gives the resistance R 2. The coefficient p begins with the value
0.95, rises to a maximum of about 1.07 near c/(gf)* equal to 0.4, falls to
a minimum of 0.78 near c/(gf)i ý 1.4, and then rises towards the value
0.95 with increasing velocity.

Similar calculations were made for the case y/g = 1.276, for which the
wave resistance is shown in the curve B1. The curve for R2 in this case
is not shown in the diagram, because on the scale its magnitude would be
nine times that of A 2. However, the curve, in its relation to B 1, is of the
same type as in the case of the curves A 2 and A 1, but with less variation
in the inertia coefficient; this coefficient begins at C 95, rises to a maximum
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of 0.975 near c/(gf)= 1, falls to a minimum of 0.91 near c/(qf) 2 -5,
and then rises gradually towards 0.95. It is of special interest to notice
that while the coefficient begins with the free surface value it-, rise towards
the rigid surface value occurs before the wave resistance RJ has become
appreciable. A few calculations were also made for a very small accelera-
tion, with y/g -- 0.035, to confirm the general trend of the variation; in
this case, the coefficient p has risen to a value of 1.05 at about c/(gf)i =- 0.2.

Referring to (37), some of the approximate values found in these
calculations are given for reference.

For y/g = 0.1418, the quantity 32k-f2b has the value - 0.52, -1-2, -I,- 1,
0.92, 1.66, 0.4 for P equal to 40, 10, 4, 1, 0.5, 0.25 respectively. For
rig -- 1.276, the values of 32kpflb are - 0.04, - 0.24, 0.3, 0.4 for fP equal to
10, 1, 0.25, 0.125 respectively.

The motion which has been examined in detail is uniform acceleration
starting from rest. Similar calculations could be made for other cases of
variable velocity, in particular for motion with uniform acceleration with
a given initial velocity. In the latter case the results are not likely to be
much different in general character; it appears that in any case the initial
value of R 2 would be the inertia resistance for a free surface without
gravity, and its subsequent variation would be similar to that shown by
the present calculations.
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Expressions are obtained for the tangential and radial forces on a sphere moving in a circular
path at constant depth; similar calculations are made for a prolate spheroid, including in this
case the couple acting on the spheroid. Numerical computations have been made, and curves
are givexi to show the effect of curvature of the path upon the wave resistance.

1. The forces on a ship moving in a curved path are, no doubt, affected to some
extent by the wave motion produced, but it is not easy to estimate the magnitude
or nature of this influence. In the following paper an approach is made to some
aspects of this problem by considering some cases of a submerged body moving in
a circular path, namely, a sphere and a prolate spheroid. The motion of a sphere has
been examined recently by Sretensky (1946), but the results given by him are in-
correct. In the present work a different method is adopted; it is one which can be
used for bodies of other forms, and also for non-uniform motiomi.

2. We may derive first expressions for the ideal case of a simple source moving in
any manner at constant depth f below the free surface of the water. We take fixed
axes with 0 in the free surface, Oz vertically upwards, and we use cy!indrical co-
ordinates (w, 0, z). If at time r the strength of the source is m and its horizontal
distance from 0 is w0, the velocity potential due to an infinitesimal step in the motion
is given, as in equation (27) of a previous paper (Havelock 1949), by

S= 2mg*T Jo(KMo) e-Y-8) sin {g*K*(t - r)} Ki dK. (1)

We may regard the effect due to a point source, varying in strength and moving in
any manner, as made up of the superposition of small steps of this nature. In
particular, for the present problem, we suppose the source of constant strength and
to be moving in a circle of radius h; further, we take the motion to start at t = 0 and
the angular velocity to have a constant value U. Hence we obtain the velocity
potential at any time t as

~!0mm
=--M + -- 2mg' dr Jo(KWo) e-W-)sin gKi(t - dr)}K1d, (2)r, r2

where r=ws + h2- 2th cos (0- Qt) + (z +f)2,

A= w + (' - 2wh cos (0 - 1) + (z f3)

w- ws + h2 - 2wh cos (0- Qr).

For the relative steady state which is ultimately established we require the limiting
form of (2) as t--bo. We substitute in (2)

J0 0) = Jo(xW) J0(Kh) +2 J J(i) J.(Kh) cos n(O - (4)

554



T. h. Havelock 298

We then integrate with respect to T term by term and obtain the limiting form of the
resulting integrals in K as t --> o. This process readily gives the result

M( - K e-K(f-z)

0= 1+4m P 22 J,(KW) )J,(Kh)cosfn(O - t)dt

I n' J,(n 2fW/g) J,(n2Uih/g) exp [- n 2Q2(f - z)/q] sin n(O - i2t), (r)

g 1

where P denotes the principal value of the integral. It may be verified directly that
this solution satisfies iA" conditions for the quasi-steady state.

3. If a sphere, of radius a, is moving uniformly in a circle we may, as a first
approximation, take it as equivalent to a doublet of moment M equal to 4a3hU.
It is easily seen that the velocity potential for this doublet can be derived from (5)
by taking a0/at and replacing mha by M. Thus we obtain

Mtu sin (8 - f•t) Mw sin (0 - Qt)

+ 4 N 0 K-nKZf/g nJ.(KW) J,(Kh) sin n(O - O)t) dK

47nMQ2 -+ -T txnJ"(n 2&k/g) J-(nS&2 L2h/g) exp [- n2J 2 (f- z)/g] cos n(O - at). (6)

It may be noted that the second term in (6) is equivalent to

2Mw sin (0- Qt) 4M 12 o • p e naJ*e(KW)J.(Kh) sin n(O- ft)d. (7)
+2 * K- n 2L22gflnK)K

We may deduce the wave resistance from the energy propagated outwards through
a cylindrical surface, namely,

dJ pL-OLwdO. (8)
c- o at 0 a w

Taking the cylinder of large radius, we require the first terms in the expansion of
(6), which are seen to be of order 4-i. One such term comes from the integral in (7).
Referring to (4), since we are concerned with large values of W, we may replace
J,,(Kw) in the expansion by H•)(KM) and take the real part. Thus we have to evaluate,
the real part of

Pf"H W ,(K w)Jft (Kh)dK (t>h; z<O), (9)

where we have put K, = n2 f 2 /g. Regaruing K as a complex variable, we may change
the path of integration to the positive half of the imaginary axis; taking account of
the indentation at K = K., we obtain for (9)

2 f a m sin m(f- z) + K, c,,s m(f-Z) Kn(m) 1 (hm) dm
"nJo m2 + Ka,

- nYn(Kn ) J.(Kh) exp[- K,(f- z)]. (10)

Collecting the results from (6), (7) and (10), and using the asymptotic expansions
for J, and Y., we obtain, for w large,
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With this value of 0 in (8) we obtain the rate of propagation of energy outwards,
and this must be equal to RhQ with R the steady wave resistance. Finally, replacing

M by ½a3h, we obtain for the wave icsistance of the sphere
4nt~pa604 GoR =-• a nJ•(n h exp [- 2n2 2f/g]. (12)

R gh I n J( 2fl2h/g) ep 2~1

It is of interest to examine the limiting form of this expression as h - oo, Q-- 0,
hil-+ c. The series then becomes an integral, and by using appropriate asymptotic
expansions for Bessel functions of large order and large argument, it is found that
(12) reduces to t .

R = 47Tpa6K4 C sec6 fl exp [-2Kafsec2 fl] 4, (13)0 f

with Kc = g/c2 , and this is the wave resistance for a sphere in stes dy rectilinear motion
with velocity c.

4. Returning to the general expression (6) we may evaluate the resultant fluid
pressure on the sphere and so obtain both the radial force and the tangential force

or wave resistance. The effective part of the pressure comes from paq/at, and we
notice from (6) that the terms divide into two groups, (i) those symmetrical in the

angle 0- ft, (ii) those anti-symmetrical in that angle. Obviously the resultant
radial force on the sphere comes from the terms in group (i), while the tangential

force is due to those in group (ii). It is necessary to note that, in using this method,
the expression for the velocity potential must be carried to a further degree of
approximation, because the boundary condition at the surface of the sphere must
be satisfied to th. same stage. Let (r, a, f8) be spherical polar co-ordinates referred
to the centre of the sphere so that

lr cos (0 - t) = h + r sin a cosfl,]

w sin (0 -t) = rsin, asinfl, j (14)
z = -f+rcosa. I

Th. 3rst term in (6) is the doublet D giving the correct normal velocity at the surface
of the sphere. The remaining terms in (6) may be expanded in the neighbourhood of
the sphere in spherical harmonics so that we have (6) in the form

c D (15)
1

The required extension is then

Taking the tangential resultant force, the effective terms in pao/at from (6) are

(2nrpa 3!n'/g) Y n4Jd.(K, M) Jj,(xK h) exp [ - x(f- z)] sin n(O - fQt). (17)
1

In this, we put

Jd(K. m) exp [ - Kn(f- z)] sin n(O - Qt)
= O . e [- x,,(f-z)]_ exp [icWoos (0- f - u)] sin nudu

_ 0Mr exp 2K, ] exp [iK.r(sina cosfl cosu + sina sinfl sin u - ioosa)
-f-KiKAhoosu]slnnudtu. 

(18)
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Expanding under the integral sign, we obtain the required expression in terms of
spherical harmonics. Obtaining the resultant force involves multiplying the pressure
by a surface harmonic of the first order and integrating over the sphere. Thus we
only need the first-order term from (18), which is

2-oKnsaexp[2J ]_(sina cosflcsu+sin a sinfl sinu-icosa)

exp [L-iKhcosu] sin nudu. (19)

In accordance with (16), this must be multiplied by 3 to get the correct operative
value of the pressure. We insert these results in (17), multiply by sins sin/I and
integrate over the surface of the sphere. It is easily verified that this process gi- es
the same expression (12) for the tangential resistance.

5. For the resultant radial force outwards, we carry out the same process on the
pressure derived from the first three terms of (6), ncting that in accordance with
(16), the first-order surface harmonic from the second and third terms of (6) must
be multiplied by A. We then multiply by sin a cos /? and integrate over the surface
of the sphere. The details of the calculation need not be given; after some reduction,
we find for the resultant radial force outwards the expression

2TpaahQ I 1 - 1 3 )! + 4;Tpa6 12 J0 KP _ 2()2f" nq2J (Kh)J'(Kh) dK. (20)

This expression does not lend itself readily to numerical computation. We notice,
however, that the first term in (20) represents an effective mass 3 pa3 ( 1 - 3a 3/16f 3 ),
which is the first approximation for a sphere under a free surface, neglecting gravity.
On the other hand, when the angular velocity is small the last term in (20) approxi-
mates to J7rpa 6tj 2/f3, since >2n2J,,(Kh)J;(Kh) = -idh. Thus for small velocity, the
effective mass approximates to jfrpa3 (1 +3a0/16f 3 ), as for a sphere under a rigid
surface.

It is of some interest to make calculations from (12), so as to obtain some idea of
the nature and magnitude of the effect of curvature of the path upon the wave
resistance. Curves showing the results are given in figure 1. The abscissae are values
of hQJ/j(gf), so as to include rectilinear motion for comparison; the ordinates are
values of R/M'g(a/f)3 , where M' is the mass displaced by the sphere. Curve A is
for steady rectilinear motion, that is, for the limiting case hif--.-oo, and calculated
from (13). Curve B is for h = f. Even in this case the mean curve approximates to A,
but it is of interest to note the hump and hollows due to wave interference when the
sphlre is making complete circles. For curve C we have taken h = 4f; it shows how
with increasing radius of the circular path these interference effects disappear and
the wave resistance approximates quite closely to that for straight-line motion at
the same linear speed.

6. We consider now a prolate spheroid with its axis at a constant depthf below
the surface, its centre C describing a horizontal circle of radius h with constant
angular velocity f1, the axis of the spheroid remaining at right angles to the rotating
radius through C. We use the same fixed axes as before, with cylindrical co-ordinates
O(u,0,r); and, when required, we use rotating axes C(x,y,:) with Cx along the axis
of the spheroid in the direction of motion and C: vertically upwards.
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M"g(a/f)3
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II I !

0', 0.8 1.2 1'6

h f/%/(gf)

FIGURE 1

The motion of the spheroid is made up of a linear velocity h, parallel to Cx and
a rotation 0 about Cz. In terms of spheroidal co-ordinates given by

x = aet.C, y = ae(l -/1 2
)1 (ý2- I)jcos0, z = ae(1 -/t2) (ý2- I)isin o, (21)

the known solution for this motion in an infinite liquid is (Lamb 1932)

- 2Aaeht)API(p) Q1() - WBa 2e2•p•(/•) Q2) cos o, (22)

with A- 1 = 2e'(I - e2) - log {(1 + e)/(1 - e)}, (

B-' = {3(2 - e2 )/e2} log {(1 + e)/(l - e)} - 2(6 - 7e0)Ie(1 - (23)

It is well known that the linear motion can be expressed in terms of a certain source
distribution along the axis of the spheroid, and it can easily be shown that the angular
motion can be ascribed to a doublet distribution along the axis. In fact, (22) is
equivalent to

ae kdk ± f ja k(a2e2 -k 2)dk
J {(-k)+ y2 + Z21J YJ( )2 + y2 + Z2j' (24

We may nc.w obtain the required solution by integration of the expression for a
source given in (6). For the first term in (24) we have to replace a typical factor
J,(Kh)cos n(0- •it) in (6) by J,{K(h2 +/k 2)j} cos n(()- 0t -a), where tan a = k/h; and,
taking account of the integration in k, this may be replaced by

J,{K(h2 + k2)i} sin nz sin n(O - at).
Further, so far as the co-ordinates x, y, z are concerned, the second term in (24) may
be derived by taking ý/ly of the first term; and when the expressions are put in terms
of the fixed co-ordinates this is equivalent to operating by a/ak. Also we have

A [J,,f{(h' + kL')) sin na]

= fI[J,, J{(h- + -.. )I} sin (it - 1) a - J,,+fK(hs + ks)i} sin (n + 1) a]. (25)
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The forces on a 8ubmerged spheroid moving ivn a circular path 302

Carrying out these operations we obtain for the rotating spheroid at depth f, its
centre describing a circle of radius h,

qS jAhnkF + B~k(a2- k2) GIdA, (26)

with

.. -. --+ P J.(Ktg) J,,{Kn(h 2 + k2)1} sin na sin n(O - Qt) dKr, r2 I f0 K--Kn

+ (47A 21/g) n2j.(Kn ) Jn{K,,(h 2 + k 2)j exp [ - K.(f- z)] sin na cos n(O - Qt), (27)
1

G=h- wcos (0- t) h- w cos (O-M•)

r3 3r

+ E P Jn(ef M) [J;,+1 {K(h 2 + k2)i} sin (n + 1) aI foK - Kit

- Jn 1 {K(h 2 + k2)1} sin (n - 1) a] sin n(O - QOt) dK

+ --- • n4J,(cnz) [J'+h{K2(h2 + k2)i} sin (n + 1) a

-J,--{Kn(h 2 + k2 )i} sin (n- 1) a] exp [- K.(f-Z)] cosn(O - Qt). (28)

In this Kn = n2J 2 /g, tan c = k/h,.and

r = {w sin (0 - it) - k}2 + {h - t cos (0 - t)})2 + (z +f) 2 ,

r2 {w sin (0 - t) -k} 2 +{h- tcos(O- nt)}2+(z-f)2.} (29)

By comparison with § 3, we see that for w large we have

~2hn2 ) {2nAL, + n3B(L•2/gh) Mi}
1

exp [-Kn(f- z)] cos {n(O - 2t- n) + K,, I - 17}, (30)

with L,, =4f kJn{Kn(h 2+ k 2)i}sin nadk,

M" = fa k(a2e2 - k2 ) [J,,+1{cK(h 2 + k2 )I} sin (n + 1) a (31)

- Jn_.{Kc?(h 2 + k 2)i} sin (n - 1) a] dk. I

Using this in (8) we obtain the rate of propagation of energy outwards; if R is the
tangential resistance and G the couple required to maintain the uniform motion,
this leads to

RhL + GQ Z ALL+ B-- n2M exp[-2n2f22f/g]. (32)
g 1 gh '

7. We may obtain the resistance, the couple and the radial force by calculating
the resultant fluid pressure on the spheroid. For the wave resistance the only part of
the pressure which gives a resultant is the term p a/ at, and we have

ft = ff S= pa2 (- ~e2) f$IaOp do), (33)
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303 T. H. Havelock

in terms of tht co-ordhiates (21), with =go = Ile on the spheroid. Taking from
(26) the terms which contribute "o the resultant tangential force, we haveMR

- 4{.kF1 + B.fk(a2e2 -- k2) 01) dk, (34)at -ae

with

F, - n + k2)i} exp[_Kn(f- z)sinna.inn(O_-ft), (35)
g 9

and a similar expression for G,, delived from (28). If (34) is expanded in the form

CA 7
', Y, (A, cossao+B~sinswo))1,(/s)P(), (36)

rt -1 8-0

we must add a similar expcession with Q,(ý) in place of P,(C) so as to maintain the
boundary condition at the surface of the spheroid; for this part of 0 this is a/la = 0
for g o. Hence on the 9pheroid we have

E E C,( -[,co.- od + B* sin sw) P,(&) P(/#),

with C I = 1- (37)

We now expand (34) in th6 form (36), noting that for the value of R we only require
the term in P•I(#). Fo- this purpose we have

T(Kw) cxp [(K(f- z)] ain n(6 - Qt)
(-= ) exp [-2KxJ+Kxz] j exp [iK,,(xsinu -y cos u) +ih cosu] sinnudu,27T _E "

(38)

with the origin now at the centre of the spherqid. Substituting from (21), we multiply
by /sd/t do) and integrate over the surface of the spheroid. It can be shown that

-I Itdu f exp [iKn{a/ sin u - b(1 -_/ 2)j (cos u cos co + i sin w)] dw

= 4ni(7r/2Knae 3)* sin-iuJ(xKnae sin u). (39)

Using (39) in (38), we have, so far as this typical term is concerned, the integral

4ni(7T/2Jae3)*f exp [itn h cos u] J1(Kcae sin u) Fin-1 u sin n-udu. (40)

It is of inteiest to find that (40) can be put in the form (47i2/aee3)i i"L,,. hi the notation
Gf (31). Collecting these results and including tbh factor C' from (37), we obtain for
the wave resistance

g87r'PhilA ' n'Ln,2ALn+B- 2 n•M,) exp- 2n'f 2 f/g]. (41)

We could obtain the couple 0 by similar calculations; or, using (32), we have

47r0~phWl 10 l
G 4 B n5M, B L h nnMn) e.Kp[-[-2nQ''f/]. (42)
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The forie8 on a submerged sphe.rod monving in a circular path 304

The radial force can be obta.ined b' the same method fromn the remaining terma in
the velocity pobential; but the expressions are hengthy and not suitable for numerical
computation.

If we take limiting values as h -> oo, £Q -> , h Q --- c, the couple G becomes zero and
R reduces to the wave resistance given previously (Havelock 1931) for the linear
motion of a spheroid. On "he other hand, if we tLke h = 0, we find that L= 0,

M2n+l. =0, and we obtain the couple for pure rotation as

512ir2&aVe
G = 52B P, exp r -82fg

g 1

with 2= (1 -u 2)J.,,(4n"- 2aeulg) du. (43)

8, Fo- numerical computation the iitegrals for L, M can be expanded ir. various
forms; for ipstanct, one which jzroveci usefil can be derived from the expansion

J•{p(1 + u-"`t sin (n tan' 1 u) (J,-i + J,+l) (Ipu)
- (n-• 3,,+ 3, • J+:)(PU),
+ + "-' +J ,-•.A -*"" (44)

3!

the Bessel functions having the argument p. For some values of the parameters it
was found more convenient to -valuate the integrals by direct quadrature.

0 12

___0.081•'pb3

0'04- -

0o6 o's 1.0 1.2

FiorTRE 2

As a particular case we take a spheroid for which 2a = 5b, so that e = 0.9165; and
for the depth we takef = 2b. This was one of the cases for which calculations were
made previously for rectilinear motion. To bring out the effect of curvature we take
for the radius of the path h = &b. The results fur the wave resistance are shown in
figure 2. The ordinates are values of R/ngpb3, and the abscissae are hkQl/(gf). The
curve A is for linear motion and is taken from Ohe paper already quoted (Havelock
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305 The forces on a submerged spheroid moving in a circular path

1930). Curve B shows the effect of circular motion in this particular case; the
difference between the two curves is quite small even in this rather extreme case.
A curve is not given for the eotiple 0, as the quantities M are rather difficult to
evaluate with sufficient accuracy for this purpose; however, approximate computa-
tions were made and the maximum value appears to be at about h/IV(gf) = 1.25
with a value of O/ngpb4 of about 0.026. It might be expected that the couple would
be small for a solid of revolution in this particular case; it would probably be larger
for a flat ellipsoid, for which similar calculations could be made by the methods used
in the present work, the appropriate source and doublet distributions being then
over the plane area enclosed by the elliptic focal conic.
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Wave Resistance Theory and Its
Application to Ship Problems'

By T. H. HAVELOCK, VISITOR-

It is now jus, over fifty years since the first stant at the free surface of the water, (,3) for deep
matlhematical analysis was made of the wave re- water the velocity diminishes to zero with in-
sistance of a ship form, and during the latter half creasing depth. We may also impose a condition
of that period there has been a considerable out- for the motion far in advance of the solid, such
put of work, both theoretical and experimental, as, for instance, to insure that in the usual phrase
It is impossible to give any adequate survey of the solid is advanciing into still water. In gen-
this work here, and fortunately it is unnecessary eral, this problem has only been attacked by some
to make the attempt; there are excellent sum- method of continued approximation. We may
maries which have been published from time to suppose that the wave motion at the surface is a
time, and in particular I would refer, for a com- relatively small effect, and we take q60 for the
prehensive account with references, to Wigley's velocity potential as if the solid were moving in
recent paper, "The Present Position of the Cal- an infinite liquid, and satisfying condition (1).
culation of Wave Resistance" (L'Association We then add a correcting potential 01 so that 40 +
Technique Maritime et Aeronautique, Paris, 4)i satisfies condition (2) at the free surface; and
1949). then a potential 0.4 to maintain condition (1), and

In the following notes I deal first with a solid so on. Thus we may picture the solution - as an
body which is completely submerged; a short infinite series 0o + 01 + 42 + .... We may as-
descriptive account of one method of developing sume this process to be convergent; but Lhe ex-
the mathematical theory is followed by some re- pression of it in any particular mathematical form
cent results on motion in a curved path and on ac- would involve consideration of convergence and
celerated motion. The second section deals with of the uniqueness of the solution so obtained. It
floating bodies, or surface ships. Reference is has oaly been possible to carry out this process in
made to the need for improving the approximate any detail for solids of simple form, such as a cir-
theory for models of fine form and extending its cular cylinder, sphere, or spheroid. In fact, for
range of application; and a short account is most cases it has not been carried further than
given of some attempts, dealing in particular with the first three terms; while for bodies of ship-
(1) models of fuller form, (2) models of non- shape form nearly all the results have mneantime
mathematical form and methods of approximate been built up on the first two terms--denoted
calculation, (3) the inclusion of the effects of vis- here by Oo + 01. Assume now that we know the
cosity and the possible interaction between fric- first function 0o, giving the solution if we neglect
tional resistance and wave resistance, the wave motion completely, and consider the

Submerged Bodies. Consider a solid body determination of the next function 01. There
wholly submerged in water and moving in a hori- are various methods available; the one I wish to
zontal line with given velocity. Assuming the outline may not be the best from a mathematical
water to be frictionless, the fluid motion is speci- point of view, but it has some advantages for de-
fled by a velocity potential 0 satisfying given scriptive purposes. Thenmethod is one which wos
boundary conditions: (1) the normal fluid veloc- used long ago by Kelvin for the waves produced
ity on the solid is equal to the normal velocity of by a pressure disturbance traveling over the sFur-
the solid at each point, (2) the pressure is con- face of the water. Consider for a moment the

classical problem of the traveling pressure poiut.

Pater presented at meetings of the New England Section. August Instead of treating this directly as a continuous
28, 1950, and of the Chesapeake section, Septembe- 7, 1950.

Kings College, Durham University. Newcastle-upon-Tyne. process, we may regard the motion as the limit of
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14 WAVE RESISTANCE THEORY AND APPLICATION

a succession of small steps, at each step an impulse motion or to motion of any kind in a curved path.
being applied to the surface of the water. Each Although not necessary, it is convenient often
impulse starts a series of ring-waves traveling to introduce the idea of sources and sinks. The
out in all directions; and to get the total effect potential 0o due to the motion of the solid as if in
at any time we have simply to sum up the effects an infinite liquid can be regarded as due to a dis-
due to all the previous elementary steps, the well- tribution of sources and sinks, or other singulari-
known wave pattern emerging from the mutual ties, on or within the boundary of the solid, and
interference of these elementary ring-waves. The an elementary step in the motion corresponds to
process can be expressed mathematically to give establishing this distribution for a short interval
the complete solution of this problem. of time. Consider in Fig. 1, a point source of

Returning to the submerged solid, we regard strength m established at time r at the point (0, 0,
the continuous motion as the limit of elementary -f) in the liquid, where we have taken the origin
steps and examine what happens at any given 0 in the free surface with OZ vertically up-
step. We picture the solid as suddenly started wards. During the short interval of time 6r we
from rest with a given velocity and then stopped have the velocity potential
after a short interval of time. For this impulsive m M
motion 40 is the potential as if the solid were r r2

started from rest in an infinite liquid. But the
form of the surface condition for this step is that
there sl~all be no impulse at the free surface and
we must add the appropriate function 41. This
may be written, down directly as a reflected po- -m4
tential, but we may picture it in this way. Sup-
pose the water continued above the free surface f
and place in it the image of the given solid. When 0
the solid is moved through its elementary step,
we move the image suddenly through an equal f
small step in the opposite direction. The poten-
tial for these two motions in an infinite liquid M,
gives the required approximation 0o + 01. We may
notice, in passing, that gravity does not come into
play during this impulsive motion. We now cal- FIG. 1

culate the vertical velocity of the free surface,
and the result of the step from rest to rest is that
the free surface is left with a known elevation.
The subsequent motion due to this elevation can with
be worked out, the elevation spreading out in all rt x x2 + y + (z + f)'; r,' - x2 + y' + ( -)

directions in the form of free gravity waves. The initial elevation left by the e!ementary step is
Finally, for any continuous motion of the solid
we sum up the total effect of all the previous ele- - 2mf Sr mar w doe e.-k x
mentary steps in the motion. The process can be (XI + y + f1 ),/, - J----
set out in mathematical form, and so we obtain x cos [k(n cos 9 + y sin 9) ]k dk

the first approximations for the assigned motion; and the motion at any subsequent time t due to
it may be remarked that further approximations this elevation is given by
are possible by generalizing this process. An in-
teresting point is that this formulation of the 0. - -'/:- do f e-k(/-5) x
problem automatically leads to the so-called prac- × o [ cos 9+y sin 9)1 sin (g'/sk'/'@ -0)jk'/' dh

tical solution with the solid advancing into still

water, and with the main wave pattern to the In' particular, suppose the source starts from rest
rear. This result is connected with the fact that at time t = 0, is of constant magnitude, and
for water waves the group velocity is less than the moves with uniform velocity c in a horizontal line
wave velocity; if the contrary had been the case, parallel to OX. The velocity potential at time
we should have arrived at a steady state with the I is given by
solid pushing the wave pattern in advance in- M _ _o + X r dG e-.h(-u) X

stead of leaving it to the rear. It will be seen -" +- Md
also from this description that this impulse cos [kl(x + ca - cr) cos 0 + y sin 011 X
method can be applied equally well to nonuniform sin [g'/lk'/*(t - r)lkIVA dk
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The limiting form as t -' o gives the steady state J, denoting the Bessel function.
which is ultimately established for uniform mo- If we make h tend to infinity, keeping c con-
tion in a straight line; namely, stant, this reduces to the known result for a sphere'

m m g fo'/f e-ko(1_s) aebC sin (kosec O)x in linear motion with uniform velocity c, namely
ri r2 C fsi/ e-eo f v/I e 9 sec 5fd o

X cos (kty sin 6 sec 6) sec2 0 dO 4 = 41r9a-ko4 c2  -
76 These expressions can be evaluated numeri-

Pf/ see f OdO k - k0 so 0 0) dk cally, and Fig. 2 shows some results.

where k0 = g,/c 2, and the origin 0 is now a moving
origin vertically over the source. 0.4

Calculating the surface elevation from this ex-
pression, it is found that the wave pattern at a
great distance to the rear approximates to the 0.3
forum 

-r . 4 k•-om f '/' e - k°f.eoo, 0 " 0.2

cos Iko seC2 
0 (x cos 0 + y sin 0)] sec 3 0 dO

From these results for a single source we can 0.1
derive expressions for other singularities, or for
any distribution of sources and sinks. Knowing
the wave pattern at a great distance to the rear, 0.4 0.8 hi/(-gf) 1.2 1.6

we can, from energy considerations, write down FIG. 2
the corresponding wave resistance of the solid
body which is represented by the given distribu-
tion. It may be remarked that the forces and Curve A is the resistance-velocity curve for
moments on the submerged body can be calcu- lur m ith constantevelocity Curve for
lated as the resultant of the fluid pressures on its linear motion with constant velocity. Curve B is
surface, but in that case the approximation must for circular motion with h f; we notice here
be carried to the next stage, that is, to the stage the humps and hollows due to the motion of thlu

k00 + 4'1 + 02 in the notation used here; this is sphere in the waves produced by previous revolu-
necessary in order to satisfy the condition at the tions in the path. For curve C, h = 4f and we see
surface of the solid to the required degree of ap- how quickly these effects diminish with increasing
proximation and it is a point which has sometimes radius of the path and the resistance approxi-
been overlooked, mates quite closely to that for linear motion at

We leave this brief description of fundamental the same speed. A more interesting case is that
theory with the remark that nearly all the work of a prolate spheroid whose center is describing
on such problems has been limited to uniform mo- a circular path. The motion of the spheroid in-

tion in a straight line. More recently, Sretensky volves both translation in the direction of the axis

has given some formulae for accelerated motion; at each instant and rotation about a vertical

and Brard has examined the motion of a source in axis; the analysis is rather complicated but ex-

a straight line, the strength of the source being pressions were obtained for the wave resistance,

subject to periodic variation, with a view to ap- radial force outwards and the couple on the

plying the results to the interesting problem of spheroid.

the pitching of a ship under way. Fig. 3 shows calculations of the wave resistance

Using the integration method outlined in the for a spheroid whose length is 2h times the maxi-

foregoing, I have worked out the case of a sphere mum breadth, the radius of the path being equal

moving with uniform velocity in a circular path to the length of the sphero'd. Curve A is for

at constant depth below the surface. If a is the linear motion and curve B for motion in this cir-

radius of the sphere, h the radius of the circular cular path; even in this extreme case the wave ie-

path, f the depth of the center of the sphere, and sistance is not much affected by the curvature of

c the linear velocity in the path, the wave resistance the path. These problems are, no doubt, chiefly

is given by of academic interest in themselves; but the de-
velopment of such work may have a bearing on

S- 40'0'0' J.1 S, e-(,.'./. questions of great practical interest in the theory
gh- ,7 gt of steering, stability and so forth.
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16 WAVE RESISTANCE THEORY AND APPLICATION

0.16 A comparison the curve R0 shows the wave resist-
ance for uniform motion at each speed. At uni-

0.12 form speed the ordinates of A 2 wouldý of course,
be zero; in accelerated motion it is appropriate

4 -to call A2 the inertia part of the resistance, al-
a- 0.08 -- - though, as the curve shows, it depends upon the

velocity as well as upon the acceleration. If we
0.04 had used the approximations of treating the sur-

face of the water (1) as rigid, or (2) as free but
neglecting gravity, the part A, would be zero and

0.6 0.8 1.0 1.2 A2 a straight line of constant ordinate; for (1) the
hf/LV(f) ordinate would be 0.15 on the diagram, and for (2)

FIG. 3 it would be 0.135. It is interesting to note how,
in fact, A2 varies between these extremes as the
velocity increases. The curve B, is the wave re-

Another matter of interest is the question of sistance part for a greater acceleration; namely,
accelerated motion and effective mass or effective 1.276g. The corresponding curve B2 is similar in
moment of inertia in such cases. There has been character to A2 but is not shown on the diagram
some discussion, for instance, about the suitable as its ordinates would be nine times those of A2.
condition to take at the free surface of the water These results are obviously iot of much value
for an approximate estimate of effective inertia for direct application; but they may serve to show
in ship problems; we may, on the one hand, the need for further work in a region which has
neglect the wave motion completely and take the been somewhat neglected, in which there are
ýurface to be rigid, or, on the other hand, we may problems which could be studied both theoreti-
neglect gravity and treat it as a free surface. cally and experimentally with a view to practical
Very little work has been done in this field and it applications.
seemed worth while to attempt a more detailed Floating Bodies of Ship Form. If the solid is
examination of some simple case which could be only partially immersed in the water we have a
carried far enough to allow of numerical calcula- much more difficult problem, even when we as-
tion. I have worked out the problem to a certain sume the water to be frictionless. In the usual
stage for a circular cylinder moving with con- theory of wave motion we neglect the square of
stant acceleration and starting from rest; some the fluid velocity. Further, except in special
of the results are shown in Fig. 4. circumstances, the first two or three terms of an

approximation similar to that for a submerged
solid may be inadequate.

A2 - / . 1 Then there are also complications arising from
0.15 -"-- the intersection of the solid and the water, with

R- - the different conditions over the two surfaces;

(Z,40.10 - ~and, in general, any solution which has been ob-
0.- - -k - - - tained involves a mathematical infinity in the

r- vertical component of fluid velocity at the bow
0 -,•- and stern. Meantime most of the work on ship

0.05 - - - _ forms has been limited to cases of small ratio of
beam to length where these difficulties may be

0 0.5 1.0 1.5 2.0 2.5 3.0 neglected in the first place, and further approxima-
C/4f• tions made later to improve the theory. How-

FIG. 4 ever, a more direct approach is much to be de-
sired, so as to give an adequate theory of wave re-
sistance for a floating solid. In particular, a de-

The abscissae give Ithe velocity acquired from tailed study of simple forms would be valuable.
rest with the given acceleration, and the total for instance, a vertical circular cylinder, or a
resistance at each speed has been divided irto sphere or spheroid half immersed in water. One
two parts. For the first case, the acceleration is may apply to such problems a remark made by
g/7 and the two parts of the resistance are shown Kelvin in regard to the motion of a wholly sub-
by the curves At and Aj. From the way in which merged circular cylinder, which was solved some
the two parts emerge from the calculations, it is years later by Lamb; after suggesting the prob.
convenient to call AI the wave resistance, and for lem he left it with the remark, "it is a mathemati.
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WAVE RESISTANCE TIIEORY AND APPLICATION 17

cal problem which presents interesting diffliculties, -

worthy of serious work for anyone who may care
to undertake it." __"-

It may be added that such work would give a/A
better idea of what has been neglected in the pres- 0.2 B
ent approximate theory, and might lead to a fresh
approach to the problem of the ship with more
usual values of the ratio of beam to length.

The approximate solution for a slender ship Cr

form was given more than fifty years ago by 0.1 - ____

Michell in a classical paper, which unfortunately
was overlooked and forgotten for many years. __._

Michell's approach was different from that out-
lined in the previous section. He considered a
semi-infinite uniform stream of water with a free
upper surface and bounded by a vertical plane 0. v/ 04.

parallel to the stream; and he solved the prob- f=V/g¢•
lem of the motion due to a given distribution of FIG. 5

normal velocity over this vertical plane. A ship
of narrow beam placed in the stream was pictured
as producing a normal velocity outwards on both
sides of amount given approximately by the prod- sixteenth of the length, showing the humps and
uct of the stream velocity and the horizontal hollows which are so much exaggerated at low
gradient of the level lines of the form; finally, this speeds compared with experimental curves. It
was treated as a given distribution of horizontal is interesting to recall that Kelvin ended his lec-
velocity outwards on the two sides of the longi- ture on "Ship Waves" (1S87), in which he first
tudinal vertical section of the ship. Such a dis- described the ship-wave pattern, by making
continuity of normal velocity is equivalent, of "with some diffidence" a practical suggestion. It
course, to a corresponding distribution of sources was to the effect that since wave disturbance is
and sinks over this vertical plane; and so we ar- so much a surface effect, it might be an advan-
rive at Michell's results as a particular case of tage to put as much displacement as possible be-
the source distribuLions we have considered in the low the waterline, assuming no doubt that one
previous section. In particular, we may quote would not then increase other resistance by a
for reference the well-known resistance integrals, greater amount. It is, of course, well known that
With one-half of the submerged form given by the form of the lower level lines has compara-
y = f(x, z) we hae tively little influence on the wave resistance as

S/ (12 + J2compared with the form of the level lines near
= j (d k 2 the L11L; and one can see this confirmed by

work on pressure distribution round the hull, such
with as that of Eggert. This point may be illustrated

It r+fi ,-,10 4 .k. dx d- quite simply in Fig. 5 by inverting the parabolic
I+ i =,f [-J L ox model and putting the keel in the surface; thus

the equation of the form is now

taken over the longitudinal vertical section of the
hy -p b(l - x2/I')(2z d - ý-2/d)S~ship.

Although, as might Le expected, this formula Curve B shows the result. The operative fac-
does not enable us to predict with certainty the tor is the ratio of draft to wave length at each
resistance of a given model at a given speed, it speed. As one would expect, the wave resistance
proved to be near enough to the general run of in the second curve is negligible at low speeds,
the resistance-velocity curve to give much in- but ultimately would rise to equality with curve
teresting qualitative information: in particular, A; the difference is rather striking even when the
in the changes produced by small variations in wave length is several time- the draft.
the form of the model and the general explanation I wish to refer now to some attempts which
of such changes. have been made to improve the theory and to ex-

Fig. 5 shows the resistance curve A for the tend its range of application. It may be remarked
simple parabolic model given by y = b(l - x2/11) that the Michell resistance integrals can be ap-
(1 - zmi'dl), for the case with the draft one- plied to a much greater range of forms than was at
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18 WAVE RESISTANCE THEORY AND APPLICATION

Comparison of Co IculatedWave Resistance with Residuar Resistance 1.4
Derived from Experiments for Mudel 1846B and Mol'el N43 ©ýR From Experiments

The Relation of the Quantity (Dto the Resistance is is fol low 1.3

rR =Resistance of Model in Lbs. - _ - - 1.2©@ 645.8 R/6 2/3-U2 Wher.'-t6 Displacement of Model in Lbs. %PII~ -.

= Speed of Model in Ft./Sec. -i.1 - I
=: Rsstance of Model inKS. C w From Calculated Wave

Wher =U islacement of Model in igs..RstncinrfcFld 0
tv= peed of Model in Ms/Sec.sRssac nPrfc li . 0

-- II III r_ _- C 1Fm Calculated Wave 0.
h R-es-ista nce Corrected for Ef fect

of Viscosity on Wave-Making -0.8

1.7- --------- / 0.7'c
1.6 -0.6-- - __ _

1.4- -- ~'am,"or © From Ex~perimnen~ts I
S1.4 --- 

0- 4--

00

I Prticulars of FormsMoe Mdl
.0 Length- 16 F+ Beam .1.5 Ft., Draft 1.0 Ft.for Both Forms 18lc offcet-0462 0.561

0. Equation of l846Bis 3. 1-12 1-1
2
;8+0.21')BlcCofcin 0.6 0509 atoof4 .isPIR11 Mid-Section Coefficient - 0.667 0.909Eqato 0. Prsatican Coefficient - 0.693 0.693-

'0.8 Both Forms are Symmetrical Fore and A4ft and Wae laeCefcet J.~ .9
ie Bowand Stern Endings are Vertical Edges ~ Angle of T'ntrance on LWL -12.70 27

0.7 Bhoth Forms hove Vertical Sides above th4 LW.L. 'A ---- o.5--

_0.5 @w From Calculated Wave 6-14 , ..Resistance in Perfect Fluid- 71

--------------------. ' odl846 Mde2
re1cdtnevlo 9. Ins for 9ot-1r1

and undhav wokedwithfors offuler id- s full mid-seiof nerand there ns.fore ýof a rates fa

section and Fig. e' 3hows some of their results. bottom, does not cause more discrepancies be-
The original Lale form was altered by adding a tween calculation and fact than occur with finer

bulge which widened the form amidships as indi- mid-sections.
cated, and the resistance curves for the two models It is desirable to be able to calculate results for
are shown. The comparison is made in a more non-mathemnatical forms or for ordinary ship
striking manner in Fig. 7, which shows the differ- models. In essence the object is to replace the
ence between the two models, with calculated and continuous distribution which represents the ship
observed values, by a finite number of elements; these elements

The models were tested in different tanks must be such that their super-position gives an
(Teddington and Trondheim) and the lack of approximation to the form of the model, and the
agreement at very high speed is probably a depth elements must be of a simple character so that
effect due to the difference in depth of the two the necessary functions for each element can
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WAVE RESISTANCE THEORY AND APPLICATION 19

be calculated and tabulated in sufficient detail, lines around a fine hull promises results of great
The element proposed by Guilloton is a semi- value, especially if it can be carried out for models
infinite wedge; or, if we prefer, we may think of it for which experimental results are available.
as a certain semi-infinite source distribution. Another method, proposed for approximate cal-
Guilloton has tabulated many of the necessary culation at high speeds, is to replace the continu-
functions and has had noteworthy success in cal- ous source distribution over the longitudinal ver-
culating wave profiles and so forth; and the ap- tical plane by a finite number of sources and sinks
plication of the method to a survey of stream of suitable magnitudes and positions; it is ob-
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+0.4 ,/,/

+0.3 I//

iD_ ii
', +o.2 /!'__ _ __ _ _ _ _

o o

-+0._ I1_ _n _ _ _ rolc at

z

__ _ _ _ _ '_ _ _ _ 1' __ s____ n_ __ r_____ ___ __ Effe __

-0.2 _ - -- In ©wc from Calculated Wave-

-0, Resisanc in a Perfect Fluid
-0./ In ®w) from ECperlmerWe

-0. I(Dtfo xe i mn
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Scale of Froudis Number-v/vjt
FIG.
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20 WAVE. RESISTANCE THEORY AND) APPLICATION

vious that this method would not be worth while effect of finite heam. I reproduce some diagrams
for low speeds, as the number of elements would to show the sort of results which have been ob-
be too large and other methods of calculation, tained by these methods.
such as that used by Weinblum, would be less Fig. 8 shows calculated and observed wave pro-
laborious. However, one possible extension is of file for a certain model. The calculations were
some interest; we may subdivide the ship into nmade both by the wedge method and by the
compartments also by longitudinal vertical planes, source nethod, and there is not much difference
so that the sources are not just located in one in the first approximation; it should be added
plane but are distributed in space. This repre- that Guilloton has considered various second
sents an attempt to extend the theory to models order corrections by his method, and his car-
of fuller form than can be represented adequately rected curve in this (diagramn shows extremely good
!)Y a plane distribution ; although the method is agreement with the observed profile.
rather crude, it might give some better idea of the

15.0

12.5--_ _

Profils de Vague ca Icule' et mesurgs
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WAVE RESISTANCE TIH1EORY ANI) APPLICATION 2

Fig. 9) is fromi Guilloton 's work onl streai lines. I__II__I___I

Fig. 10 shows resistance curves for two miodels,-------------------rFrom Approximation
the calculations being uriade by the source miethod. w.6 - 1 1 1
Th'le formis were not experimental niodlelS lut J. Modl B
were actual ships, of high-speed formn and not syni- 0.14 - - -

Mietrical fore and aft. Trhe miodels were (livided
inlto tenl comipartmients and the strengths and 0.12 -0

positions of the sources dleterminued dlirectly froin ".
the p~lanls of the miodel, the chief point of the work 0.101
being to show that the calculations canl be carried
out in such cases. ,*MdA

Finally, I reproduce in Fig. I1I a diagrain fromn 00

Lunde's recent paper in which hie examined the 0.10 -- i
effect of placing siurccs and sinks off the lonlgi-
tudinail vertical section. Here the miodel was of 00
destroyer type, but it is unnecessary to enter into 035 0.40 0.45 0.50 0.55 060 0.65 0.70 0.75
details of the comparison except to note that somie f=v49
iniprovenient was obtainedl by the space distribu*. -1
tion of the sources.

Wave at Surface invents a frictionless liquid. Trhe only experi-
mental result is the measured total resistance. We
mnay ad1opt the usual procedure, which has beeui
so well justified for muost practical p)urposes, of
considering the frictioiial resistance and the wave
resistance separately, and wu use sonie stanmdard

- method, Froude's coethcu;,-nts or sonic morc rue~ent
formiulation, for determiining the fr-ictin ial re-
sistance. Then we begin to realize, when we rQ.-
quire greater accuracy, that the ship is not a

hplank and that we should imnake sonic ahlowamice for
the effect of forin upon frictional resistaticu
arid, as the iniportance of boundary layer thecory
becomies recognized in ship p~roblemms, we finld ho(w

Model No.755 (Mr. Wigley) for -3L=0.274 necessary it is to know miore of the condcitionis ill
Taget -V--t th the boun'dary layer, the extent of laiiiiimar flow,Tangnts +a he Sreaminesturbulent flo'w, s'eparation and so forthi, a nilatter

In Doffed LirmesAp~proximcate Traces of whc a -lsrled as a burning qutestionasomne Streamlines thihe nionant. dcitaywll betecsetaoniat
Ft(;. 9 tenoin.I nvwl etecs la on

of the dlifferences between calculated wave re--
sistance and so-called experimnen tal values mmna '

In sonic cases, all([ not only ill those cases prov'e to he clue to etror iii estiunatitig the fric-
which have been reproduced here, one mlay sus- ti(.iial resistance. No dloub~t as we puish onl to
pect that tile agreement with experimnental re- greater accuracy, we mnay find it inadequate to
stilts is too good(l; or perhaps one shouild say treat the two p~arts (11 tie rt-idstamice as ind(IV)Cni(
rather that the agreement may be (lecehti,\ e wheni eit; the pm-obleni is one, aud the two minust fiave
;iusL~ed too far in view of certain considerations mnutual in teractioni, the iniportamit po~int Leimig
which have been neglected. Thiere are, for inl- whether it is of appreciable miagnitude. O n the
stance, the effects of trimi and sinkage at higher one hand, it is obvious that viscosity effects hla\e
speeds1, oif which it is poissible to mmake a rough es- a very considerable dhirect influence uplonm the
tilinate ; but, specially, there is the question of wave-mnaking; onl the other hand, it sc' 1115 po1
thle effects of v'iscositv. sible that the wave niotitnin may have anl al)I),eii-

We talk of com1paring calculahted wavek resist- able effect umpomn c ,,idt~itns in thle boundary layer
-nice with experimient, but there is no such thing inl special circunistances, as, for instance, the po(-
as an experinientahlv mneasured ,. ave resistance; sitions (;f crests and trrongss in r~1.tinn to tlh:c
for that we mnust wait for the day whein somneone lilies vr the model.
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WAVE RESISTANCE THEORY AND APPLICATION 25

in regard to the effect of viscosity upon wave- ficient to eliminate the excessive resistance oscilla-
making, sonic attempts have been made to allow tions at low speed given by theory for a friction-
for this, but no adequate theory has yet bee" pro- less liquid, while at the same time not materially
vided. It is well known that at low speeds we do affecting values at high speeds.
not observe the oscillations in the resistance curvm Figs. 12 and 13 show some of the results, with
indicated by theory for a frictionlss liquid and the modified forms and the corresponding re-
due to interference between bow and stern waves; sistance curves. They agree fairly well with the
in fact, the wave resistance is due veiy largely to anticipated effect, except that the hollow at a
the bow and entrance only, the effect of viscosity Fro..de nuinber of about 0.34 still remains tou
being to reduce the wave-making properties of proiounced; but the latter is a persistent dis-
the stern. We may begin then simply by intro- agreement between calculated and observed re-
ducing an empirical reduction factor into the sults for which some other explanation niust be
calculations, and for simplicity this factor was found.
taken as constant and operative over the whole
of the rear half of the model. This idea was im-
proved by Wigley and made more useful from a
practical point of view; comparing calculated
and observed results for a large number of models,
Wigley deduced a simple expression for such a re-
duction factor and for its dependence upon veloc-
ity. When we remember other considerations ' I I I I - - -

which have not been taken into account, it must 035- Tbe admitted that this viscosity correction prob" ]03 0 -- • ' -
ably includes other effects than those due to -t
viscosity alone; nevertheless it serves a very use- 025 0 -0.50 -I.00 . I1,
ful purpose. The difference made by this correc- 0 0.20 - -1 . A
tion can be seen in the curves of Figs. 6 and 7. - 015

The latter diagram illustrates a promising field of 0 0.1O
application of the theory as it stands at present; •Y i'm I
although it is not possible to give with sufficient 0.05

certainty absolute values of the resi.tance, yet it 0.15 0.17 0.19 0.21 0.23 0.25 0.27
is within reach to forecast differences made in the Scale off--uv//g.L
resistance curves for two models of a series with
small variations in form. However, fur a satis-
factory account of viscous effects it will be neces-
sary to link up wave theory and boundary layer
theory. Starting with a much simplified concep-
tion, consider a ship of streamline form with its
boundary layer over the surface and becoming
of any appreciable thickness only near the stern.
The displacement thickness of the layer gives
sonic measure of the amount by which the stream 0.35' -
lines of the flow are displaced outwards; suppose

tl, ' that we take the effective form ( of the ship 0.30 -- .X

for wave-making as the actual form increased by)•'t
the dislplacement thickness of the boundary layer. ;n' 0 -0.5 -l:.0
Some calculations were made on these lines 0.0--7
recently; but, needless to say, it was not possible 0 1

to deal with actual boundary-layer structure. /0D

What was done was to make small modifications U 0 E

of the lines near the stern such as might reason- 0.10 4VN

ably be ascribed to boundary layer effect, the A
main point being that these modifications were 005

e.onfined to quite a small region near the stern.
The purpose of the calculations was to illustrate 018 0.26 034 042 050
the possible effect of such boundary-layer modi- Scole of -vrg/•L
fications of the form and to see if they were suf, I:14. 13
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24 WAVE RESISTANCE "I'tHEORY AND APPLICATION

This inadequate survey of wave-resistance Note: The illustrations are from the following
theory and its applications may be concluded by sources:
indicating briefly some directions in which further Figs. 2 and 3: T. H. Havelock, Proceedings
work would be specially useful. Even with the of the Royal Society, (A), Volume 201, page 297
theory as it stands at present, much could be done (1950).
to extend its range of application: for instance, Fig. 4: T. H. Havelock, Quarterly Journal of
by a systematic study of methods of approxima- Mechanics and Applied "Alathcniatics, Volume 2,
mation and by the computation of necessary page 419 (1949).
tables of functions, so that numerical calculations Figs. G and 7P W. C. S. Wigley and 'J. K.
could be carried out more readily. But the two Lunde, Transactions of the Institution of Naval
main problems, broadly speaking, are those of Architects, Volume 90, page 92 (1948).
the ship of finite beam and of the effects of vis- Fig. 8: W. C. S. Wigley, Bulletin, L'Associa-
cosity. It may well be that in both cases it may tion Technique Maritime et A6ronautique, Vol-
only prove possible to advance by successive ume, 48. page .533 (1949).
stages of approximation to a solution: but the Fig. 9: R. S. Guilloton, Transactions of the
former problem, leaving viscosity out of account, Institution of Naval Architects, Voiume 90, page
is essentially a mathematical one for which a new 48 (1949).
approach is much to be desired. On the other Fig. 10: T. H. Havelock, Transactions of the
hand, our knowledge of boundary-layer condi- North East Coast Institution of Engineers and
tions is insufficient and the latter problem is pre- Shipbuilders, Volume (60, page 47 (1943).
eminently one for combined theoretical and ex- Fig. 11: J. K. Lunde, Transactions of the
perimental investigation. Indeed the whole sub- Institution of Naval Architects, Volume 91, page
ject calls for a close association between mathe- 182 (1949).
mnatical and experimental work, especially if we Figs. 12 and 13: T. 1H. Havelock, Transactions
keep in view its practical application to ship of the Institution of Naval Architects, Volume
problems. 90, page 259 (1948).
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THE MOMENT ON A SUBMERGED SOLID OF
REVOLUTION MOVING HORIZONTALLY

By T. H. HAVELOCK (King's College, Newcastle upon Tyne)

[Received 20 February 1951]

"SUMMARY
The moment, due to surface waves, on a submerged solid of revolution moving

axially at constant depth below the surface of the water is examined in detail.

1. A SUBMERGED solid of revolution moves axially with uniform velocity
and with its axis at a constant depth below the surface of the water. If the
solid is such that the motion in an infinite liquid can be represented by a
known source-sink distribution along the axis, the horizontal and vertical
forces on the solid due to the wave motion can readily be obtained to the
usual approximation; however, for the moment about a transverse hori-
zontal axis it is necessary to obtain the velocity potential to a higher degree
of approximation, a point which was noticed in an early paper on the
circular cylinder (1) but which has sometimes been overlooked. In the
present note we consider a prolate spheroid, for which this extension can
be carried out; the form of the additional term in the moment in
this case suggests an approximation applicable to other elongated solids
of revolution, such as a Rankine ovoid, generated by an axial source

distribution.

2. We suppose the spheroid to be held at rest in a uniform stream of
velocity c in the negative direction of Ox, the axis being at a depth f below
the free surface of the water. We take 0 at the centre of -he spheroid,

Ox along the axis, Oy transversely, and Oz vertically upwards. Using the

known axial distribution for motion in an infinite liquid, the velocity
potential is given by

cx+Ac 
k dk

- Ae{y2+z2÷(x-k)2}-

Ac kdkf dO [ K-+K- 8e(!20 -(f--z)+iKW dK, (1)
2i, f J ~ K - KseC29 +illseeO

-~T 0
where

A-' = 2e/(1--e2)-logr(l+e)!(1--e)', wr= (x-k)cos09±/sin 9,

K_ = g/ c2, and the limit is taken as .t -+ 0.

[Quarn. Journ. Mech, and Applied Math., Vol. V. Pt. 2 (1952)]
5092.18
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130 1'. H. HAVEI,()(!K

The first two terms in (1) satisfY' the condition at the sI'rface of the solid.
The third term, which we shall dlenote Iy 03, is the first approximation to
the wave motion, its form is determined so as to ensure that the three
terms together satisfv the condition at the free surface of the water (2).

The se:'oid term in (1). which is the velocity potential for the axial
motion of a prolate spherold, is usually given (3) as 2AcacP1 (11 )Ql(ý) in
terms ,.f coordinates specified by x I z: aIC, y_ -x (ur( I -- 2)!(•2- I )! Cos w,

;: - W ,(l(--y2)j(42-... 1)! sii w; it can readily be verificd that the two forms
are equivalent. This equivalence is a ,particular ease of a general relation
which does not seem to have been stated explicitly, and the opportunity
is taken of recordiing it here in view of its use in problems dealing with the
motion of a sl)heroid. The relation expresses prolate spheroidal harmonics
in terms of axial (listriblutions of poles or multi-poles. Using the appropriate
fbrmn of the known general expansion of reciprocal distaice (4), it follows
at once that

(P = ,(k ae) (A

For the general case, forming t he corresponding expansion for t he potential
of a multi-pole, it can be shown that

ae
)Q(4) 2 1 k2 .ps(lae)dPS2f,)Q (De' =L r(- Tlk T@l f l y2 + z'+(x - k) "

-ae

WVe use the theorem that the forces on the .-olid can be( obtained as the
resultant of threes on the internal sources, the force on a typical source m
being - 4rrpm q, where q is the fluid velocity at the point other than that
due to the source itself; in fact, we may omit the part of the velocity due
to all the other internal sources and sinks. 'I'hus fo tie horizontal force,
or wave resistance R, we have

vit'

R -- -4rp .Ac-(uk3 (0) dx, (2)

taken along the axis y =-z = 0.
Taking 0, from (I ) and onitting terms which. on account of tile integra-

tions in x and k, give no contrilbtioii to the final result., this reduces to

O , lie if 7 C 2 Kfi iK (X -k)"i 0s

R - -... l;p c 2A 2 f x /x ffk d k f seelO e ! 3(10 dK,
- tie - ie 0 0

(3)
where the imaginary part is to be taken.

576



MOMENT ON A SUIMER;1ED SOLID OF' REVOLUTION 131

The integration in K may be transformed in the usual manner by treating
K as a complex variable and integrating round a suitable quadrant accord-
ing as x-k- or -- 0. Finally we obtain

i rr
-B 327T2 rpae 3AC A 2  seC"0 J2(K0 qa' see 0)r-- 2  

! S&Lt" d0. (4)

which is the known expression for the wave resistance.
The vertical force, Y, apart from that due to buoyancy. can be obtained

similarly from nt
Y" = 4 Acx (C-3 z) (tr. ()

. -ate

This involves the real part of the contour integrals in K reft'rred to above,
and leads to double integral-;: the expression for Y call easily be written
d(own, but it is not, very suitable for numerical computation.

3. The moment of the forces about (O! requires more consideration, and
we shall take it in two parts.

We calculate first the moment on the initial source distribution arising
from the vertical component of the velocity derived from the term #13

in (1); we denote this part by 011. Thus

ar

G,-47rp f Ac- 4(-j2( /Z) 01r, (6)

taken along the axis.
But we have to proceed to a further approximation to the velocity

potential, because the uniform stream produces on this second approxi-
mation a contribution to the moment of the same order as 6'l; we denote
this second part by GC. Let O be the term to lIe added to (1) for the nmext
approximation. This term represents some (list rilution of sources and sinks
within the spheroid: if -1 is the total moment of this distribuifon resolved
parallel to Oz, then we have

0ý. ý- -41rp(,M, (7)

and the total moment on the solid to this stage is (6',- 0-.

4. From (6) and (1), we have

ffe as IT CO

G, -Z 4p.A*.c 2 f x2 dr k A dO K K(K+ s-
f f K -sec"O--l-iftseeoX

-ae -
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132 T. H. HAVELOCK

Treating the integration in K as before, and carrying out the integrations
in x and k, this leads, after some reduction, to

•rr

G, _ 647rpa 2e2 A2 (c2/'K0 ) }ge, Qi2 Cos X

0

X (sin p+ 2cosp-2 sinP)e -2K8ofec'2 dO, (9)

with p - K 0ae sec 0.
We now determine the next approximation to ý so as to satisfy the

condition at the surface of the spheroid, namely that the normal component
of velocity from #3+-04 must be zero over the spheroid.

We use coordinates ui, ý, w given by

x = aeju4, y = ae(1-IjL2)j(42- 1)i-sin(A, z = ae(1--A2)1(ý 2-- 1)! cos o,
(10)

th spheroid being given by 4 = ý0 - 1/e.
If, in the neighbourhood of the spheroid, 03 is expressed in the form

rt.(A'eos scoJ B8 sinso)P'(ji)P11(4), (11)
r=1 8=0

then the required next approximation is given by

4- _ P'()(A coss8 w+ Brsins)prt) r.) (12)

t=1 8=0,o

By considering the behaviour of the terms in 0 as o -> •, we see that
the only one which contributes to the moment M referred to in (7) is the
term in PI(pt)Q1(ý)cos w; this latter quantity approximates to - 2a 2e2z"3r 3

as C -> o. Alternatively, we may get the same result from the expression
of this term as a line distribution of doublets parallel to Oz along the axis
of the spheroid between the two foci. Hence, putting in the value of the
factor PI'(ý0 )/'"Q(0), we have

M = la2-e 2BAl, (13)

with B-1 = j log{(l A-e)/'(1--e)}+e(2e2 _- 1)/(--e2 ).

To. determine A I we take from the expression for 0 in (1) the term in the
integrand involving the coordinates, namely

exp K(Z + ix cOs 0 + iy sin 0),

and expand the value of this on the spheroid in the form

(1 ,1(C~ossw+Dssin8A)P•(,u). (14)
r-o 8-57
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The coefficient C' is then given by

4C ( -/-42)h d1- f ex() b( -- tt-) (c,,W i

+-iKaULCcosO}(cos w dw. (1 5\

The integrations can be reduced to known forms, and we obtain

Cl -- 3(Tri2'Kaae3 )-b sece0 .J.(Kae cos 6). (16)

1{ence, from (11), the corresponding term in the integral for A' is

3('ri2Kae)i seCe8 J (Kae cos 0). (17)

Using (7) and (17) in (1) we obtain the expression for G"2, which may be
written in the fo.'m

G2 - 16paec2AB k dk sec2 0dO J (ilnq--cosq)+ 2Kf ,--~,o, d

0 0

where the real part is to be taken, and

q Kaecos0, D 1) (K,+Ksec2 )(-0)iK,(,--,K O -- i/secO).

After carrying out the integrat:ons in K and k this leads to

Gi 2 -647rpa 2 e 2AB(c2 ,K)) - _cosP) 2 e 2-o /+ "se0 ds , (19)

0
with 1) ý- Ko ae see 0.

For comiputation it is convenient to express these results in terms of the
so-called spherical Bessel functions, of which tables are available. If we
write write+S.(p) (= , ( 2p)+J~,,+A(p),

11--" S.(p)Sa(p)()e-2K.f !""20sec40 dO,

12 f S2(p)e-2K,•fC2'9 sec30 dO,

we have R 647TrgpK a4e4 A 212,

11 -647rgpa 4C4A 2 (Ko ael1 - 21.,),

G 2...647rgpa7 le"A B I.,. (20)

5. These results may be checked, to some extent, by taking the limiting
case of a sphere. In the first place we may calculate directly the case for

the sphere by the same method. For a sphere of radius a, we obtain

G( = 47rpc 2a6K03 f see•0e - v/t"C"O dO.
0
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For G2 we expand the corresponding term 03 in spherical harmonics, and
we find that 02 reduces to the same expression (21) with a negative sign;
thus the total moment is zero, as should be the case. Turning to the
expressions in (9) and (19) for the prolate spheroid, we find their limiting
values for e -* 0 reduce to the correct values for the sphere.

6. Returning to the spheroid, we notice that G1 may be positive or
negative according to the speed; on the other hand, 02 is essentially
negative. Further, from (20) we have

G2 = - BRiK, A. (22)

If k, and k2 are the inertia coefficients for axial motion and transverse
motion respectively, we have 2e3A = (1-e0)(1+kj) and a similar relation
between B and k2. Hence (22) may be put in the convenient form

02 = -- (1+k 2)R/K0 (1+k 1 ). (23)

The ratio (1 +k 2)/('1 +k 1 ) is unity for a sphere, and approximates to two
for a spheroid of large length-beam ratio. Wheh c -> o, or K0 -- 0, the
integrals in the expressions for R, G,, and G2 all reduce to the integral
given in (21), which can be expressed in terms of Besse! functions; hence
we may find the limiting values of these quantities as the speed increases
indefinitely. It appears that as c -- o, R becomes zero of order c- 2 ; on the
other hand 0, and G. approach finite limiting values, with

GL -• 1rYpase6A 2/f 1, 02 --+ -- ,igpa6e6A B/f 2 . (24)

Thus the moment 0 approaches the limiting value
G = 04G1G2--> -- gpa2b4(1j-kj)(k 2-k 1 )/f2 , (25)

and this is negative for a prolate spheroid.
Some numerical values have been calculated from (20) for a spheroid of

a length-beam ratio of 10. The moment at low speeds may be positive or
negative and is small numerically; after a Froude number, cl/(2ga), of
more than about 0.4 the moment remains negative and increases rapidly
towards its limiting value.

It may seem unexpected. a4 compared with surface ships, to find the
moment remaining negative at high speeds. The model of a surface ship
is usually allowed to trim and at high speeds it takes up a position with

bow up and stern down, corresponding to a positive moment; the attitude
of the model is then roughly parallel to the mean line of the water surface
in its vicinity. But the submerged spheroid we have been considering has
its axis maintained horizontal; so we may describe it roughly as being in
a stream whose effective direction in the vicimity of the spheroid is inclined
to the axis and this provides a momer.t tending to increase this angle, that
is. a negative moment. For a numerical case take a spheroid with a -- lR
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and1 immnersed1 to a depth f 2-5b: we calcuflate t he- part U., od t he
moment for a F'roudle liiiull)CI 0-5, Fo~r a spheroiid ill a iinifoiwi st real in t

asmiall angle 8 to the axis the ll(Ion-Ient tetahngll~ to inc(re-ase tinis ingle is
477,~jj)(-2k 1 ,k,)6. ( ojmpar~inIIg thIeIe t %(), UI Io IIIe lit S I I t I Iis paIrticula I Ir case,

w'.e hind that G, wAould be accounited Foir in this bav wanl angle 6 of about
O*(13, which seems not unireasonable. However, thIis cnlai cannot he
pressedI far: it is onily iiltend~ed to iniicate a possible physica'~l exp~lanation
of the negative mioment at high speeds.

7. Consider now an v solid of revolution whichl. so fiar as axial motion iii

an infinite liquid~ is conicerned. cmin lbe specified by a known axial ,otirce
dist~ribution. The part. G, (f thle uloiient ca;n be obhtainled at onmce by the
methlod used in the previous sect ioils:, but it is 14Imt possible. ill general to
calculate the part U. Tungu to (tile ('(liii exin mbetuwen (77, and Rt I' )r the
spheroid given in (23), it is proposed now to 1use t Ills as at suitable approxi-
mation. for any* solid of' revolut ioni, ando in particular lI'o one of' large ratio
of leng~thl to beam11. The inertia c'oeflicient I- call he calcuilated: if' 3 is tilie
total moment of the given axial source dlist~l ribution andI I' is t! h volumle
of' the solid, we have 470I 0I k1 ) V. It is I lot possible. inI generalI , to
Calculate L',. However. I'or a loing slender solid. k-1 is smiall: oil the (other

hand. k, aprolximlat es to the vaile inc uity -wh ich it Ila,; for the t ra-.isverse
motion of a cireular c vlinder. Tim-s. in such a ease. it is sliflicient fia .r
fairly close a pproxi mat ion to take

where R is the wrave resist ance (if thle sllb~ilerged solid1. Tile simpilhest case
is that of'the solidl specifiedh 1) a single source and sink. If in is t he st rength1
of the source orI sink, 2hi thle (list ance apart,. 21 the axial lengthI of thle solid.
andl( 2/i the miaximiumi beamli we have

Taking the axis at depthi f. the ve](wityv potential can be writ tenl dom.nI
to thle smilie aipproximlation as tortilhe sphevroid inl (1), The prcs of
determining R? and1 t he part G, of thle tIlnlient is "lie salne as Inch ire and
the details lieeu(i not he given. Using (27) tf 4' tx lIss. ill inl I elnIs ofl t lIu

dimhlensiionls wv obtain

( 1c iI Sv0!

A' 7 0~!~'' f- 4( K 0 b , 4~ 2 /0 .s i5''f)
1  

.. ~'~5Ct (28)
0I

GI -rgp~ hbl I b-' -) (ill()K.,-;(2-O)
0I
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For G, we should work out the next approximation for the velocity
potential, as in the case of the spheroid; but this does not seem feasible
for the given solid. Meantime. as already indicated, we shall take (2(6) as
giving a sutfieient approximation and thus we assume

Or,,. 47-qph4 ( I ' ,- h2 ) -os( 2K(• h see 0) p-2K, ','"secSO C0. (3:()

Computation of the total moment (6 can be made from the integrals in

+ 0

F0*5

1.0 R?

-1'S

-2"0

03 c i(2</) 0-4 05 C >

(29) and (30() either )y direct quadrature or b3 asymptotic expansions
suitable foir large values oft the parameter 2K h. To show the nature of the
results calculations have been made for an ovoid with h - l0h. giving a
lengt h-bea m ratio ot a bohut 1 rwo5, Tw( depthis of im mersion were taken,. and
the results are shown in the figure with values of G Trypbl( I -4-I" h2 ) graphed
on a base of Froude number c , (2fl/). (C'urve A is for,/" 2.-hb, and curive B
f'or f - 5h. ('urve .A shovws the typiCal oscillations at low speeds due to
interference betweeni how and stern wa'es.: these would no do(iht be
damped 1)' , v\ise|s, eftects in an aetual liuidI. Fo'r curve B at greator
depth these (Iseillati)Is are ta. small to be sholmni am the scale of the
diagram.

It EFI ' •EREN ('I"

1. T. It. IIAV'ELO)•', iPOW-. h#'!/,..•, A. 122 (1Hus), 3192.

2. - ibid. A. 1.38 (19 :I32, '14 .
3. II. LA,.MIIq, lt!r.•lbl•#M1#uiu.i , 11 ' Id, ('miallIridgie. 1 :'32_,, 1). 141.
4. E. W'. I I)o it S, *ph'i . r I ibl u Iu iarisiuisi ((' ruu l'i' l!4-. 193 1). p. 411.,
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SI-1P VIBRATIONS: THE VIRTUAL INERTIA OF A SPHEROID IN SHALLOW WATER

By PROFESSOR SIR THOMAS H. HAVELOCK, M.A., D.Sc., F.R.S. (Honorary Member and Associate Member of Council)

Summary

It is known that certain motions of the surface of a spheroid expressed by spheroidal
harmonics are similar to flexural 2- an1 3-node vibrations, and can be used to obtain
virtual inertia coefficients for motion in an infinite liquid. These calculations are now
extended so as to include the effect of a plane boundary, and are given in a general form
which includes translation and rotation as well as the flexural vibrations.

Consideration is given, in particular, to the vertical and horizontal vibrations of a float-
ing spheroid, half-immersed, in water of given depth. Graphs are obtained for the variation
of the relative increase of inertia coefficient wirn the depth of water. These show how
the variation depends upon the type of vibration, and a result of special interest is the
striking difference between horizontal and vertical vibrations; the relative increase is less for
the horizontal vibrations, and decreases much more rapidly with increasing depth of water.

PART I 2. After a brief summary of the analysis for a spheroid
in an infinite liquid (§ 6), we proceed to the case of

1. In this part we give a general account of the work, finite depth of water. We consider a prolate spheroid,
leaving details of the analysis to Part II. major axis 2 a and transverse axis 2 b, wholly immersed

In calculating the frequencies of the natural flexural in water with its axis horizontal and at a Ieight f above
vibrations of a ship, allowance has to be made for the the bed; in the first place we suppose the water deep
added inertia due to the surrounding water. This is enough so that we can ignore any effect of the upper
usually carried out by a two-dimensional strip method free surface. The surface of the spheroid is given a
which consists in obtaining a suitable expression for an prescribed motion and we calculate the kinetic energy of
elementary transverse section and integrating longitudi- the resulting fluid motion. Naturally, an exact solution
nally; an empirical factor is then added to allow for the is not obtained, and the degree of approximation may
fact that the motion of the water is three-dimensional, be indicated by reference to known simple cases. If a
The only direct three-dimensional calculations which circular cylinder is moved transversely to its length,
have been made are for a prolate spheroid deeply im- either parallel to the boundary or at right angles to it,
mersed, or in an infinite liquid. It was shown by the approximate relative increase in the virtual inertia
Lewis,(" and about the same time independently by coefficient is b2/2 f 2. For a three-dimensional case, the
Lockwood Taylor,( 2) that certain motions of the surtace only known result appears to be the similar approxima-
of the spheroid expressible by spheroidal harmonics are tion given by Stokes for a sphere; if the motion is
approximately the same as for the 2-node and 3-node parallel to the boundary the relative increase is 3 b3/l 6f 3,
flexural vibrations, and so can be used to give an esti- while for motion at right angles to the boundary it is
mate of the increase of kinetic energy due to the 3 b3/8 f 3. We obtain the corresponding approximation
surrounding water, for a prolate spheroid. The analysis is given in general

Recently the influence of depth of water upon the form for motion of the spheroid specified by a harmonic
added inertia has become of interest. Here, again, the cal- of order n, for motion both parallei to the boundary
culations have been made by the two-dimensional method and at right angles to it; particular cases of the solution
extended to allow for finite depth of water: reference include translation and rotation of the spheroid and also
may be made, in particular, to work by Prohaska.(3) 2- and 3-node vibrations.

In the present paper no attempt is made to examine 3. We turn next to the more interesting problem of a
afresh the general theory of the natural vibrations of a floating spheroid, which we suppose to be half immersed
solid which is partially, or wholly, immersed in water, in the water. For a complete theory we should include
although a more complete theory is much to be desired; the surface waves produced by the vibrations, but we
no: is an:, attempt made to deal explicitly with solids of neglect these meantime; having in view application to
ship form. Although the analysis may have wider ship vibrations we adopt what seems to be the appro-
applications, the main object of the paper is to carry priate simplification, the so-called free surface condition
out three-dimensional calculations for a prolate spheroid neglecting gravity. A modification of the previous
so as to include the effect of finite depth of water, and, section gives expressions for the relative increase in
in particular, to examine the vertical and horizontal inertia coefficient for the various types of motion and in
vibtations of a spheroid floating in water of finite depth. § I I we consider the vertical vibrations of the floating
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spheroid. Numerical computations have been made for is nrt a normal ship form, nevertheless it is of interest to
a spheroid whose length 2 a is just over 10 times the note that this formula gives 0.466 b2/f 2, which may
beam 2 b, and the results are shown in Fig. 1; the com- be compared with the approximate values given above.
putations were troublesome, and a high degree of 4. The remaining sections of the work are devoted to
accuracy was not attempted. the similar horizontal vibrations of the floating spheroid,

dealing first with deep water. It is generally known that
if inertia coefficients for horizontal motions are calcu-
lated using the free surface condition, the values are
much less than if the rigid surface condition had been

-. 25 used. If a circular cylinder, half immersed, is oscillating
horizontally at right angles to its axis the inertia coeffi-
cient is 4/7r2 compared with the usual value unity. For a

2 log of square cross-section, Wendel(4) has calculated that
20 the value for horizontal motion is about 0. 33Y/of the value

for vertical motion; for a general account of virtual
inertia coefficients reference may be made here to a

recent paper by Weinblum.(5) Calculations for three-
-Idimensional motion do not seem to have been published,

though no doubt the general nature of the results is
kijown. We give in § 12, general expressions for a

.0 prolate spheroid, half immersed, from which the inertia
014 v coefficients could be found for the various types of

dT/'To horizontal motion we have been considering; these
I • •include translation, rotation, and 2-node and 3-node

-05 vibrations. Approximate calculations have been made
2V for the particular case of a length-beam ratio of 10, and

3V w these indicate that the va!ues are of the order of 0.4 of
_A /the values for a deeply submerged spheroid.

1.0 1.5 Zo 2.s 3o0 3-5 *0 5. The last section deals with the same problem for

FIG. I.-RErt ATIVE INCREASE OF VIRTUAL INERTI?. COEFFICIENT (OT/T0 ) water oA finite depth. Here the mathematical difficulties
FOR RATIO OF DEPTH OF WATER TO DRAFT (f/b), VERTICAL VIBRATIONS are such as to preclude a general form of solution for

(V), HORIZONTAL VIBRATIONS (H). the various types of vibration. However, taking the

The ordinates are the relative increase in inertia simplest type n =- , an approximation is obtained in

coefficient, that is the ratio of the increase to the value (53) for the relative increase in inertia coeff•cient due to

in deep water; the abscissae are the values off/b, or the the finite depth of water; it is considered that this

ratio of depth of water to the maximum draught. The approximation is sufficient to show the essential character

curves in question are those marked V. Those marked of the effect of depth of water. Taking the same

0 V and I V are for translation and rotation respec- particular case of a length/beam ratio of 10, numerical

tively; but we may regard the set of curves as repre- computations have been made from this expression and

senting vertical vibrations specified by the number of the results are shown in the curve labelled 0- in Fig. 1.
nodes, 0, 1, 2, 3, respectively. From tL.s point of view, The two curves to be compared are the curves OV and

it i ofintres tonot th vayin inluece f dpth OH; they are both for the same type of vibration, theit is of interest to note the varying influence of depth former being vertical and the latter horizontal. 1"heaccord ing to the type o f vib ratio n ; it is clea r, fo r p i t o p c a n e e t i h e a k b e d f e e c
instance, that using values derived from pure translation point of special interest is the remarkable differencewoud gve isladig rsuls fr 2 or3-nde ibrtios, between vertical and horizontal vibrations as regardswould give misleading results for 2- or 3-node vibrations. the influence of shallow water. This diff'erence is
The curves V in Fig. I were obtained from the general the influ of w water.Tis viler is
results given in equation (35). These expressions have expr eds if take the ap oxima t vl e
simple approximate forms when the spheroid is very a long spheroid; in that case, it is easily shown that the
long; the values are 0.658, 0.470, 0.439, 0.429 times expression (53) for horizontal motion is of the ordert ofb2jzfor n •I, 2, 3, 4 respectively. In the present (b/jf)4, while we have already seen that for vertical
bf 2  f motion the approximation is of order (blf)2 . This may
ýase, for which the length-beam iatio is 10, the curvesapproximate fairly closely to these walucs fo~r small depth be confirmed by working out a simple two-dimensional
of water. As regards actual measurements, there are case, a circular cylinder half-immersed. In this case the
no experimental results which are strictly comparable, conditions of the problem may be satisfied to any
Prohaskae n results wc areul srCtdly, coerabeCa required degree of accuracy in the ratio b/f; it may be

Proask~ 31 has given a formula 2 CB d2 /f2 , where CB IS sfiin osaeterslshr.I h oin
the block coefficient and d is the mean draught. As the sufficient to state the results here. if the motion is
form indicates, this is based on two-dimensional theory, vertical, the inertia coefficient in deep water is unity; the
with the coefficient chosen to agree as well as possible with relative increase in shallow water is given by
results from actual ship forms. The prolate spheroid 0.8225(b/f)2 -I 0'3382(bWf)4 + 0'1391(b/f) 6 +
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If the motion is horizontal the inertia coefficient in deep with n = 3 the nodes of the vibration are given by
water is 4/1r2, and the relative increase in shallow water xla ± -V3, while for n - 4 we have a 3-node
is given by 0.6314(Wf) 4 -0, 2190(b/f) 6 + ... If we vibration with nodes at x/a = 0, ± V\377. It is
graph these two expressions we obtain curves of the possible to improve this approximation to the natural
same character as the curves OV and OH in Fig. 1. vibrations, as pointed oui by Lewis(') and by Lockwood

As regards observed results for actual ship vibrations, Taylor,(2) by taking combinations of spheroidal harmonics
it has been stated that there is no measurable change of or by other refinements. But the additional c-implica-
frequency of horizontal vibrations in shallow water, in tion is not worth while for the present purpose; we are
striking contrast to the observations on vertical vibra- concerned not so much with the absolute value of the
tions. If that should prove to be the case, it would inertia coefficient as with its relative increase in shallow
confirm the assumptions underlying the present analysis; water.
however, it would be of value to have a direct examina- From (2) and (3) we obtain the kinetic energy of the
tion of the problem under conditions which would allow fluid by integrating over the surface of the spheroid; and
both of theoretical calculation and of precise experi- we have
mental determination. W - 140(bj v)dS (4)

PART H -- - p pa(l - e2)/e. [n(n -- 1)/(2n + 1)]
C2 Qn, (W) Q;,(40) cos2 a t . (5)

Infinite Liquid The kinetic energy of the spheroid can be obtained from

6. Consider a prolate spheroid, of semi-axes a, b and the corresponding velocity distribution in the solid, and
eccentricity e, in an infinite liquid. We take axes with 0 hence the virtual inertia coefficient, but these results arc
at the centre, Ox along the axis of the spheroid, Oy already known.
transversely, and Oz vertically downwards. We shall
use non-dimensional space-co-ordinates, giving the ratio Semi-Infiniie L:uid, with Rigid Boundary
of any distance to the length a e. We have then 7. Let the axis of the spheroid be parallel to a plane
spheroidal co-ordinates (i, w w) with rigid boundary given by z ==fla e. If T0 is the kinetic

x p g; y = (1 -- l2),( 2 _ 1)j cos W; energy of the fluid for a given type of motion when the
Z= (I -

2)j(42 __ l)i sin w . (1) sphrioid is in an infinite liquid, and 8 T is the increase
in Kinetic energy due to the boundary, we are concerned

The spheroid is given in these co-ordinates by 4 ý ýo with the ratio 8 T/T0 , which is, of course, the relative
= lie. Consider the fluid motion given by the velocity increase in the corresponding virtual inertia coefficient.
potential If we imagine this quantity expressed in powers of the

4, C P• )Q'(ý) sin w cos at (2) ratio blj, the approximation at which we aim is theleading term in such an expression. This can be
This motion would be produced by a distribution of obtained in the following way. Let ,0 give the motion
normal velocity over the surface of the spheroid given by in an infinite liquid with the given normal velocity over
-- 41bav - (Clae)[(- e2)/(1- e2p2)11 the spheroid. Let 01 be the image of this in the

(a (l sin -&2  a . 3 boundary, giving zero normal velocity over the boundary;

Pn(is)Q(o) sin , cos at (3) and let 02 be the image of 01 in the spheroid, so that the

where the dot denotes differentiation, a notation we normal velocity over the spheroid is unaltered. Then,
shall use throughout. We make the usual approxima- using 0 1 | + 4 2 in the usual surface integral for the
tion for vibrations of the spheroid of small amplitude, kinetic energy, we obtain this approximation.
assuming this to be equivalent to a distribution of normal It is convenient to give here some formulae which are
velocity given over the spheroid in its mean position. used throughout the analysis.

It is well known that, with suitable values of the We require the expansion of the inverse distance
constant C, for n -- I or n ý 2 the fluid motion given between two po~nts whose spheroidal co-ordinates are
by (2) can be produced by motion of the spheroid as a (tk. w) and (jk1 ýj - 1): this is (Hobson(6))
rigid bo1A ; if n = I, this motion is translation parallel
to Oz, while if n i 2 it is rotation round Oy (e.g. r 11'(2 n 1) P. (p I) Q,. (1) P,, (I) P,(.)
Lamb, Hydrodynamics, p. !41). For higher orders of 0 1
harmonics, deformation of the spheroid is necessary 2 (2n , 1) s (-- (n -- ")!
The present application is, chiefly, to the transverse - .(n • s)t

flexural vibrations of a spheroid of large ratio of length P,, (/') Q, I') P' (1A) P' (ý) cos s (w, -w) (6)
to beam. We may then regard the deformation as a
simple shear of transverse sections of the spheroid. It We also need the relation
can be shown that the normal velocity (3) is produced
by such a transverse motion with the velocity distribution P, (• Q, (GO - P, (0) Q, (G)
along the axis proportional to P(x/a). For instance. (-I )s ' [(n , s) !/(n - s)11110 - I) (7)

3
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0

Another relation, given by the present writerM7 > is largely Further, the expansion is valid in th, neighbourhood of
the basis of the following calculations; it is, in -he the spheroid, since Cl > Co.
present notation, We substitute this expansion for the denominator in

(13), and BI is the coefficient of the term PI (4') P•(C) sin w.
P', (W) Q (4)e"'- ] - i + -) Hence, from (6) and (13) we have

I h2)( I P6 (h) d h 13 2n I

J(x - h) 2 + y 2 + z2]* (8) n.. n1 (n 1)2 b q
-- (I1-- k2)l p t (k) P,, (/A,) Q' (tj) sin oil d k (14)

This result expresses the spheroidal harmonic as a line n

distribution of multi-poles along the axis of the spheroid Wsrb
between the two foci. We may put this into a symmetrical form by noting that

P, (tL-) Q.1 (Cw) sin -u, is the value of this spheroidalharmonic at the point (k o q) ;hence, from (8)
Transverse Motion at Right Angles to the Boundary

8. We begin with the form for an infinite liquid, I , 2 '(I --h2)jp(

0= P (1A) Q1 (4)sin co (9) n 2 (ý) sk - h) 2 + q2]j (15)

For convenience, we omit the time factor and the con- This gives
stant C. Take parallel axes O'(x', y', z') with the
origin 0' at the point x .= 0, y = 0, z = 2f/n e; and let - 2n 4- 1 b2

IA', c', o' be spheroidal co-ordinates referred to these new B n2 (n + 1)2 d q2

axes. It is easily seen that to maintain zero normal
velocity cver the plane z =f/a e, we must take F Fi - h2)1 (1 - k2)j Pnl (h) P, (k)

=- P! () Q (0') sinW . . (10) J_,J_ [(k h)2 + q1]½ dhdk (16)

Totan4 we expand [(k) in te neighburho(16)
To obtain (!0) in the neighbourhood of To calculate the kinetic energy, we see that ý0/ýt on
the spheroid t to in the form the spheroid is P,' (it) 0' (to) sin w; and from (9), (11),

W , cos '.a 4 B• sin sw) Pst ()P (! ) (12) the corresponding term in the value of 0 on the
,,-0 % ( spheroid is

Then 02 is given by [Q' (-o) - B' PI (to) - B, , (.0 ) Q• (4o)]I

'2 -Q Q(to) . P,, (1A) sin co
X (As cossoj + B;, sin s w) P ( P (.o)/Q, (QQ) or using (7)

(12) [1 - n (n + I) B1/(4 o - 1) Q ' (4o) Q, n (4o)]

General expressions for the coefficients could be obtained;

but it is easily seen that in order to calculate the kinetic Q (4o)P, (p)sin . (17)
energy we only need the coefficient B.1, noting that the It is obvious that the kinetic energy is increased by the
normal velocity on the spheroid is unaltered and also factor within square brackets in (17); hence from (16)
using the orthogonal properties of the functions. From and (I 7), the relative increase in kinetic energy, or in
(8) we have the inertia coefficient is given by

o. 1 3 0 (.--k0) P(k) dk 8 T/To: -(n I) D./

P,'(t') Q' (4')sin w' 2~ Fj .2-2 1  1~~k ~ / 0  -?2 [j[(x'_ k) 2 
.1,2 .. ,2]j 2n(, 4 [)(2- )Qn(to) Q (to) (18)

iP(k)dk with
"- 2 [' (z) I - hq'2 ( (I - k2 )i PI (h) P,' (k)

D2 J I- [(k--h) D!Kq-] - dhdk
(13) qJ [(k -h) 2  (19)

with q 2jla e. If the point (x 'y :) is (It 4 w) and the

point (k o q) is (It, 4, w,) in the same spheroidal co-
ordinates, we have in (6) the expansion of the inverse Transverse Motion Parallel to the Boundary
distance between these two points, with 9. When the vibrations are parallel to the boundary, we

k - t1, 4•, 0 (I - 1 )20 (6 - W) cos ta; begin with
q (I - 1,210 (4j - W)" sin w, #0 PI Q.1(4) cosw• . (20)

4
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In this case, we have with

- p' (A'" Q! (c') cos (l I r,' 2) (I - 2 )

(I - k1)t P'(k) ,tk j [(k -- h) (1= ½ lira -|[ x -- k )2 ]-(j y---p) 2 z - q) 2] i ( 21) -1 2lg [
p ' (log [2 - (4 q q )/

Using the expansion (6) in (21), with the point (1c p q) 2 5 4 1, q2 ) (4 q

being (ILI C, wi) in spheroidal co-ordinates, we obtain -- q - 4 , q (29)
the coefficient of p t (/i) pt (4) cos wo as It is readily verified that as q - - x, or e - - 0, we recover

2n + I the known results for a sphere, namely 3 b318f 3 and
n2 ( ? + 1)2 ý-p 3b3/16f 3 respectively. We may also find the limiting

I values for a long spheroid with bla small, by making
(I -k 2)1 P, (k) P) (t) Q' (I) cos u) ak (22) e -- I, a --* o-, while retaining b2 --- a2 (I - e2). The

limiting values are the same for the two types of motion,
Further, we have as is the case for a circular cylinder; but the value ofthe ratio is 2b 215f 2 instead of b2/2f 2. Thus in this respect

tI| (1 - /12) pl (h) dh the circtlar cylinder is not the limit of a long spheroid.
Pf (in) QQ (W•)cos 4J, ý 2 ýp -p [(k•-•h) 2  2 -q,] (23) This value can also be obtained directly by the two-

dimensional strip method. For this purpose we con-
sider a circular section of the spheroid of radius v; takeTaking the limit of •2/Zbp 2 as p --- 0, this leads to a its contribution to the kinetic energy of the fluid motion

fractional increase of kineti.; energy, or of the inertia as poportion to th ki er of theand uintegrte on
coeficint, ive byas proportional to y2 (I +.v:'2f'), and integrate along

coefficient, given by the axis of the spheroid.

8 T/r 0  n -- 2. Considering only motion in a vertical plane

- (2 n + 1) E,/2 ,, (n I) (2 -_ I) Q1 ( (.) (24) (18) and (19) give

with S T/To -15 A/4(- 1) Q,-) 0  (0)

with
En =-•r (I - h 2 )i (I k2 )i P.' (hi) P,, (k) , ,

S [(k- q22 h (I -h-)(I -k 2 )hk

A q2fJ [(k - ~ - 1 d h dk (30)

These integrals can, of course, be evaluated explicitly in q
closed expressions for any given value of n. However, It 3. For a 2-node vertical vibration
the expressions become very lengthy for the higher
orders and we shall not reproduce them here in general. 8 T/To - 21 A/32 (., -
For numerical computation it proved somtewhat better with
to express the double integrals in terms of subsidiary ,
single integrals. Also one can obtain, either from the A -2 0 - 1h2) (5 h I 1) (i1 k2) (5 k2  I J
double integrals or from the explicit expressions, approxi- k) qzj [(k hI, 2 ; q 2p

mate forms suitable for q large or q small. J • (31)
10. We give now the results for some special cases.
n =- 1. For motion at right angles to the boundary, It 4. For a 3-node vertical vibration,

(18) and (19) give 8 T/To -45 A/32 (o - !) Q,' (.o) Q• (o)

8T/To -43 D/(o - I) Q, (-) Q (o) (26) with

with A

D 2r ( - h2 ) (I -k d) A

D ~qjJ[(k h).,)2 I h 7 I -' - 3)h7/(I - k ... .)..7kA..) i/lk ,k

log ([2 (4 q2)l/q} ( I 32)

, (12 q 2 - 41-- 19 q2- 2 q4)14 q2) For a long spheroid the limiting values of these expres-

'q q 1 . (27) sions are b2/. ;, 1,'2f. for n - 2, 3. 4 respectively.

For motion parallel to the boundary. (24) and (25) give These can also be obtained by the two-dimensional strip
method, taking into account the distribution of' trans-

8 T/T0  -/ E/(` - I) Qi (G0) Qi (•0) (28) verse %elocity along the axis of the spheroid.

5
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Vertical Oscillations of a Floating Spheroid Horizontal Vibrations of Floating Spheroid

II. We suppose the spheroid to be floating with one- 12. Deep water. If we retain the same condition at
half immersed. As before, 0 is at the centre of the the free surface, the horizontal vibrations are a more
spheroid, and Oz vertically downwards; the free surface difficult problem. With the given normal velocity on
of the water is the plane z = 0, while the bed is the plane the immersed half of the spheroid, the conditions are
z =f/a e. We have now to consider the condition at now
the free surface. For simple harmonic motion of Q 0 P" (p1) cos w; ý 0; 0 < 1w -r

frequency a we have the usual linearized condition
0 A(g/o') Z i/b z 0 0. Using this condition we should -o 0; 0 = 0 . . . . (37)
have to take into account the wave motion of the free This is equivalent to considering the complete spheroid
surface, but that is beyond the scope of the present in an infinite liquid with the conditions
work. There are two limiting simplifications which may
be made according to the conditions of the particular b '0/ý 4 P O(J) cos W; 0 W 7r

problem; we may take 0 ý 0, the free surface condition oI 4o - P! (64) cos co; -- w K L K 0
neglecting gravity, or we may take b 0/1 z = 0. the rigid 0 0; cu w 0 . . . . (38)
surface condition. Taking into account the frequency
of ship vibrations, the appropriate alternative seems to be To satisfy these conditions, we express the value of
S= 0; the measure of agreement between calculated and b /01/b in a suitable infinite series of Legendre functions,
observed frequencies justifies this assumption as a working of the form
hypothesis. Z Z A', P (/A) sinsw . . . (39)

The conditions for the velocity potential are now m

(i) the given normal velocity over the submerged half of Forming the series by the usual methods, it is seen
the spheroid, (ii) b 0b/1 z = 0 for z - f/a e, (iii) 0 = 0 that s must be even, and the coefficients are given by
for z = 0. This is the same as considering the complete 2 (

spheroid in water contained between two parallel planes 2 ( -_•)- 4 - P, •/.) s)A,, (pP ) d 1A (40)
z ±ýfla e, with the normal velocity given over the 2m I (m s+, sI-.J
whole surface. For a vertical vibration we begin, as It follows that if n is even, the coefficients are onty
before, with different from zero if m is odd; while if n is odd, in

o -= PH (/A) Qn, (ý) sin w . . . (33) must be even. The velocity potential is then given by

In order to satisfy conditions (ii) and (iii) we now have Z Z • /2 A,,IQ (o) . Pý, (/A) Q, (4) sin s - (41)
ani infinite series of image systems alternatively positive I S
aid negative, associated with the points z - 2 sf/a e. This form of solution gives the assigned normal velocity

Hence we have on the spheroid for all points other than those for which a)
is actually zero, that is for points not actually on the water

2 1 (- I)' ` Pt (t) Qn' (•) sin cu, (34) line. There is, in fact, a discontinuity in the normal
velocity on crossing the water line; there will be a

We have obtained in the previous sections, the value of corresponding infinity in the tangential velocity at these
07, for any one of these image systems, and also its points. However, as in similar problems involvingcontribution to fT/To. Hence for the, vertical vibra- what is effectively flow round a sharp edge, the usual
tions we have surface integrals for the kinelic energy lead to a finite

result.

From (38) and (41) we may obtain the kinetic energy,8 T/To ... -(2 n -4- I) (-- I ' D•, and if we introduce the suitable factor according to the

motion of the solid, the corresponding inertia coefficient
l (i F- I) (• -- 1) Q•, (t0) Q• (/0) .(35) can be calculated.

13. Water of Finite Depth.-lf the water is of finite
with D,, given by (19) with q =: 2sf/ae. depth we should have, as in § I1, an infinite series of

For instance, for n - 1, 8 T/To is given by (26) with image systems in subsidiary spheroidal co-ordinates, each
system being an infinite series of terms. Further,

D 2 1 (-- I)' 'D, . . . (36) expanding any one term so as to obtain the image in the
I spheroid would involve infinite series. Finally, in con-

with D, given by (27) with q : 2 sfla e. trast to the conditions for vertical motion, from the
The Limiting form of this result for a long spheroid is form of the conditions all the terms in the series con-

(2 b2/5i12) (- Iy- IS-2, or 7r
2 

hb/30f
2 . tribute to the kinetic energy. Thus, in general, the

For any given case, having computed and graphed the method becomes much too complicated.
double integral involved as a function of the parameter q, However, when we form the expression for the kinetic
it is a simple matter to obtain from the graph the energy for cases with which we are dealing, it appears
summation with respect to s. that the first few terms of the series account for much

6
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the greater part, and a useful approximation is obtained term using the expansion (6), giving for K'Ae coefficient of
by taking only one or two terms. For instance, if we PI (p) Qj (4) sin 2 - the expression
take the simplest case n =: 1, representing a transverse
vibration with no node, we have, omitting the time 5 "2  ') P'(k) Pj,)Q2 isin2wk"'••|(I - k' I•()P /, ' (•)sn2t,
factor and any constant multiplier 288 bp P . . (47)

A2/Q2 (Wo). P' @)Q2 () ) sin 2 a, Further we have

A4Q, (4) P4 4 (4) sin 2 4- ... (42) 2(- h)p2(h d]pj~~~ ~ (h)) Q2d1hp

the coefficients being given by (40) with n- 1. This ps q[(k - h)2 q

gives A' •-- 5/16, A2 - 1/64, . . . (48)

For the kinetic energy for the complete spheroid in
an infinite liquid, we have the usual surface integral (4), Putting this into (46), and taking the limit as p --> 0, the
in which ? k/ 4 1 P'- (p) cos w according as & is contribution from a typical :erm may be written as
positive or negative. We obtain - - B,, with
T- -- 7Tr p a 1--e2)le . [11-6 Q' (ýo)/ ý, •'f"(1 -h2)2 (I - k2)2 d h t~k

Q, (40) + A Q2 (4o)0/Q (4o) 4-...] (43)B -- qjj [(k-h)2  -q21(

For the case we have been using for numerical com-
putation, a e ý 10 b, the terms in the square brackets in and the required term in the expansion is
(43) are 0.9375 + 0.0195 -- .. . Although the rest of -2
the series converges rather slowly, much the greater part ,2 0 2(-- )'Bp2( 1 i)p (4)sin2 . (50)
is given by the first term. S~l

Consider now the same problem in water of depth f. to which, in order to maintain the normal velocity on
"10 avoid prohibitive complications, we shall take only the spheroid, we add
the first term. Although this leaves somewhat uncertain
the degree of approximation, yet, as we are concerned 16 ( Bp 2 (40)/Q(2 G0 ) • P2 (2 2) Q ) () sin 2 w
more with relative increase than with absolute value, we
may expect to get a: least the main character of the (51)
variation with depth of water. Omitting unnecessary
factors, we begin, in the notation of previous sections, Finally, after using (7), the value of i on the spheroid,

with to this approximation, is

p2 (/.) Q2 (4) sin 2 u, (44) Q2 (4o) [l - 15 1 (- 1)`' B5/

and suppose the bed to be given by : =--.fla e. 2 (ý20 - 1) Q2 ( Q)Q ((O)] P2 (p.) sin 2 w . (52)

We now have an infinite series of image systems Since the va!ue of ý c/Z 4 on the spheroid is unaltered,
associated with the points: : 2 sf/a e, and we have the kinetic energy is increased by the factor in square

M orackets in (52). Hence the relative increase in kinetic
2,) sin 2 , (45) energy, or in the inertia coefficient is given by

To expand a typical system associated with z q, we 8 T/To 15 1)- l 3,12 (40 - ) W) (40)
have, from (8), (53)

P2 (,,) Q2( sin 2 co, with B, given by (49) in which q - 2 sf/a e.
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THE FORCES ON A SUBMERGED BODY MOVING UNDER WAVES

By PROFESSOR SIR THOMAS H. HAVELOCK, M.A., D.Sc., F.R.S. (tlonorart' Member and Associate Member of Council)

PART I. MOTION NORMAL TO THE WAVE CRESTS

Summary

A theoretical investigation of the forces and moments on a submerged spheroid moving
close to the surface under waves. Expressions are obtained for the surging force, heaving
force and pitching moment taking into account the speed of advance and also the disturbance
of the wave train by the solid; graphs are given to show the variation of these quantities with
the speed of advance and with the wavelength.

1. Introduction 0 v transversely, and 0 : vertically upwards. We begin

The theory of the forces on a submerged spheroid with the velocity potential for a spheroid in a uniform

moving tbrough smooth water was examined in a stream (as given for instance in Ref. 3),
previous paper (Ref. 1), and has been discussed in detail 0 = V x - a e V P1 (t,) Q, (')/Q 1 (4 0 ) 1 (1)
recently by Wigley in these TRANSACTIONS (Ref. 2). An when the dot denotes differentiation, and the spheroidal
interesting and important extension is the same problem co-ordinates are given by
when the spheroid is moving steadily either with or

against a regular train of transverse waves. In con- x a e 1

sidering the similar problem for a surface ship it is usual y a e (I I)!2)I ( 2  -). sin wo;

to assume the pressure on the ship to be that due to " a e (I - -)- ( I)cos n .o . (2)
the undisturbed wave train, as, for example, in the In these co-ordinates the spheroid is given by
so-called "Smith effect" or as in the classical theory of - ýo le. We add the velocity potential 0 giving
the motion of ships among waves as developed by the assigned train of waves moving in the negative
Froude, Kriloff and others; broadly speaking, this is direction of Ox on the surface of the stream; it is easily
equivalent to neglecting the various virtual inertia verified that
coefficients of the ship. Moreover, the effect of the
speed of advance of the ship is assumed to be simply hi .... ce " COS (K X- at-j U ) . (3)

an alteration of the frequency of encounter with the with a an arbitrary phase angle, gives a wave train on
waves. A more adequate theory for surface ships the surface with elevation
presents great difficulties; however, for various reasons,
it is possible to carry the theory further for a wholly Ii sin (K x - at -- •) (4)
submerged body under certain conditions, and the provided
present paper deals with the motion of a submerged o K (V c); c g
prolate spheroid. The mathematical analysis is given We now take
in Sections 2, 3, 4, ant1 ite notation and main results
are summarized in Sectioi 5. General remarks are made Vx -- U¢ VP1 (i4Qi (•)IQi (co) i • (5)
in Section 6, together with graphs for the force and the with 01 given by (3). 02 represents the disturbance of
moment coefficients; a point of special interest is the the wave-train by the spheroid, and is to be determined

effect of speed of advance and the difference between so that the normal fluid velocity is zero over the spheroid:

moving against the waves or with the waves. thus we must hav,:

2. Velocity Potential We should also add a further term to (5) to represent

A prolate spheroid, of major axis 2 a and eccentricity e, the steady wave pattern produced b) the spheroid
is moving axially under water with velocity V parallel itself. which would be determined as in Ref. I for motion
to the surface and there is a regular train of transverse through smooth water; to a first approximation the forces
waves, of wavelength 2 7r/K and wave velocity c, moving due to the transverse waves would he simply additive.
in the opposite direction; the axis is at a depth d below Meantime we shall assume the conditions to be such
the surface. It is fonvenient to reduce the spheroid to that the former forcc, are simall compared with the
relati6e rest by superposing a uniform stream V in the latter, an assumption which can be checked by :alcula-
opposite direction. We now take fixed axes with the tion from the results given here in Section 5 and those
origin 0 at the centre of the spheroid, Ox axially, given in Refs. I and 2.

1
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To determine (1,2 we have to expand 41 in a suitable 3. Pressure Fquation
series of spheroidal harmonics so that condition (61 The \arizblc part of the pre,,sure. omitting the
may be used. We shall take 01 in the form buIoy).el' termn is given b,

I c e - , ... p ........ q2 i7)

where the real part is to be taken.
We first expand exp (K Z K iK.X) on the surface of with q q,. q_, for component \elo6itic, in the three

the spheroid in spherical harmonics. On 0 I /e, corresponding direction. On the sp'qcroid, the normal
we have x at, h (I ,k2). cos uo, and we assume velocity q- is zero. Also the tangential component q,

comes only from A, ; rb2 and is of' the first order, and
exp [K h (I -- j,

2
)ý COS ) i K aUI] as usual in \ave-theory \\e neglect q1,. So \ e hal'e only

- - • X A' P' ([,) cos s wo (o ) to consider the tangential co)mponent q-, \ihich is, Lgi\en
on the spheroid, using (5), by

By the usual process for determining the coefficients " i 2) .j ( 4,/,)
we have -. I -- 0.- ( (

2n t-,- I (n- (Is
AS .... 2 7r (i s)! a e 0

f cos s cu d e•bl- :PP•"S.. i" JIP (P ) d (9) aVi I--e 9 '(''_] V I I)1 (e7)
it) 

f - I

noting that A,, is given by (9) with s --- 0, but with a The square of the term in V in (17) corresponds to the

factor I. pressure oi a spheroid in steady axial motion in an
Taking the integration in (a first, we have infinite liquid, and the resultant forces and momentsdue to this term are zero. The square of the second

term in (17) is of the second order and is neglected,
exp [K b (I - -)coso -] COS s cu dow and we are left -%ith only the product term. Hence \xe

-. 2 rr l[, b (I --- .)'] (10) necd only consider, on the spheroid,

where I, is the Bessel function of that type. P -P o - 62)

It can also be shown that
pV(l • /k,) I 1

P- (/1) 1[ b (I - /A2)]e'-' d1 / aI 2 d (It .,(I)
(2 r7)i (j)" nP- Pý,(() J,,. (K a e)f(K a e)0 (I%1) shere we have simplified the form by using the fact

J denoting the ordinary Bessel function. that the axial virtual inertia coefficient kA, is given by
Hence we have k, e-Q (t )/Q, (C, ) (19)

(n s)9 Turning to (I5) for the value of' j ,, , on the spheroid,
A, :- (2 77)ý (i)0" (2 n i i) we use the relation

P•,(.) J,,(K i(I )(K ta), (12) P,0, lQ, P, Q;, 0 i)' (i + W!/on. (-! I) (20)

A,, being given by s 0, \kith a factor t. Introducing the coeflicients A from (12) %%e obtain, on

Hence the required expansion i, the spheroid

exp (K: K .V) A, P, A IP-( P,,,ý,) PA(u .cos.l; (h]| 4,2 (2rrlK a )li'h,' ' B c... B

". vwith

C 277(it S)!
4 "1" 1 i, (2n • I t ) .)! B " ()21 ) (ii 1')J,, (K (ac)

J, a ,i) P", (it) P', Z() cos sV 1 ) P,, 1, co, ý ,, ijý 1 1

with a factor k for the terms ', ith s 0. %i ith a factor . for the terms in x 0.
To satisfy (6) \e take for k: a similar series \sith the Thus the effective pressure for calculating the forces

typical term i, given bN

A,, P,,(,)Q0 (() Q [P,,(;,/P.,,.(o )] Q cos ,o (14) p 2 1- t

Hence bi 4,: is given by the real part of - It e)

Q,-h( cv P' ( P, ,Q:( l i B

. A. P,(,' I ( )Q, ((i,) cos .. 1015 i
" GO Qith 1 gi\en by i21). and noting that es .it u %ll \ e

•ith the coefficients A given by (12). take the real part of ;he e\pressions.
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4. Resultant Forces From the expression for the vertical force in (25), we

If p is the fluid pressure at any point of the spheroid, have to evaluate for the general term the integral

(, in, a) the direction-cosines of the normnalý (X, Z) the
resultant forces in the directions O.v, 0-: M the (I - 'J[(5 ,2)] P: ( P (t)dt. (32)
resultant moment round 0Oy, we havernro *This integral is zero if n is odd. If i is even and equal

X f. jjpS: p Z _ p dS to 2 in, it can be shown to have the value

M - p(1: - nv) dS (23) (21.) (ý - 1)312 Q' (/ ) (33)M .f(From (21) and (25) we obtain
taken over the surface of the spheroid. In the spheroidal (2 e) p c
co-.ordinates (2) we have Z (2)0-2 a b (K a p

• , ,, [ iJ~l](.o I112 iV (ae)-I(I i-ki) (ýo--I )i

a m ,2 . ,( - I) (4 i ! I)J1J,,e, . . . (34)11 ý(l 0I 11")i Cos o(_"A 2 1"2V)i. "

dI S a2 
('2 (0 I )! ( o /L-- d L dw (24) the argutment of the J functions being K a e, and that

c we av ý 4 4) of Q being 4(o.
FHence we have The series in (33) sums as in the previous case: further

if k2 is the virtual inertia coefficient for transverse

x a, C2 G(2) P P,1 /0 a(IL d cuo motion of the spheroid, we have
k,= -- 4(oQ! (0o)I(4 - 1)QI (1o) Q (35)

Z a 2 2 t"0 () G-.o I Cos o) pP: (I d pLdo from which we can deduce
(4'o -- I)l (I - k,) -- 2/t .o - 1) Q11 •o (36)

M 1 a3 e3r(-7 r 'oS 1 pP1(I t tw Thus the quantity in square brackets in (34) has Jýn as
0 asa factor, and another factor is

(25) (I fk 2 )(V I c) - (I +iki)V
ehorizontal force X, taking Collecting these results we obtain finally

For the hoiotlfreX aigaccount of the
integration in the angular co-ordinate w, we see that Z -- (2 7r)312 g p b 2 h e - (K a e3)

we only need the terms in B independent of o: and for [I k2 (k 2 -- k1 )V/c] J.v2(Kae) sin (at -- e) . (37)
the general term from the second part of (22) we require Similarly, for the moment M from (21) and (25) we
the ,alue of the integral have to evaluate the integral

1),I )1P , ) dt . (26)I
,,',] P',,, (t,,t) 0,,Q )d t . (8)

It is easily seen that (26) is zero if n is odd: and if it is In this case, (38) is zero when n is even. When n is
-.ven, and equal to 2 m, it can be shown that the value odd and equal to 2 in I it has the value
of (26) is . 6 " 1 (/ . . . (39)2( .0 I . .:, .•) (27) 6 0• I) -Q ..

Ilence f'rom (2'I and (25) we have for all values of in except in 0: when ti 0, (38) has

the special value
X (2 )3 a:,"(0 l)ph c ) . 6(•o -- l)0` 12 Q(•) -- 8 . . . (40)

[,J,/(. I)Q, (00 ,) (I ki)(Vfat.2) With these values in (21) and (25) we have

1,,- 4)" m . l) J,,,, t','' (28) NI 0 7T112a
3 el(Kae) I(i- h) chce-d

Ml I)Q (I 0 k)IVlae-)

the argument of the Bess,,,vl functions being #c a e. ) (

F-rom the properties of these functions, the sum of 4 J31 ./(,•o- I) QI (C2 -1)

the series in (28) is simply (K a t') J31  (K (I V().

Using properties of the spheroidal harmonics such 0 ( " I)" (4 i 3) J:,,, . (, (
as (201 it can he deduced from (19) that The series of Bessel functions has the sum K a e Jj (K a e).

I I/ A, (i( I) Q1 (G10 (29) Also we substitute from (36) for Q, in terms of k.,. We

Thus the qiiant it> in Square brackets in (28) redu:es to may also introduce the virtual inertia coefficient for
rotation: k' is dcfined as the relative increase in moment

I, [ ',1 K V (I k1 J J/. (• ii V) (130) of inertia of the spheroid rotating like a solid of density p.

Noting that ,a #K (V t). this simplifies further: and It can be shon that

%%e obtain, taking the real part. V Q'(G 0)/4o(42 -- I) 0 ;2 I)Q1(•o) (42)

X 1&2  p,' b hz/i v I A ,) (K a a, ) jUsing (20) and the expressions for P1 and P• we deduce

J/,, (K i ') cOS, ,1 (31) 2(-- )Q, w )[ I (2 • -- I)Ak'] (43)

3
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We also replace J312  in (41) in terms of Ji,, and J512  , 3 ,'2 (A)\31 I[1 I (kre Le
and after sonic reduction we obtain, after putting 4 4,-e!2 \L iL - I k
U K (V t- c), the form (217~ F 4

M (2 ,r) 1 2 gp a h2 Ie d (K (ae) 1)"kA I (fp -

-'' f- • )'(I k:)(I -- k 2)]j/ y ((4eL

S(I "i kj) (I ý- k_,)] J-•-/ 4 (I + ki)A( 9

- lIk 1)J(l cok2 )]J t -i•) .... ) (44)-i ~( -2 2 i 1 2 'jL)} (

(0 2k2 ) cos (ot 4- . . 6. General Discussion
-• The phase relations between the waves and the forces

where the argument of the J functions is K a e, and can be seen from a comparison of (4) with (45). It is
length-beam ratio alh. of interest that these relations are unaltered by the

improved theory: there is, for instance, a difference of
5. Summary of Notation and Results phase of 90 deg. between the heaving forte and the

". m pitching moment. It is also confirmed that the period
We may express these results more conveniently in the of the forces and moment is the period of encounter

followig notation, in which we also define suitable force with the waves.
and moment coefficients. From (46•) xe have the unexpected result that the

L = Length of spheroid -... 2 a. surging force coefficient is independent of the speed of
e = Eccentricity (I--b 2/a-2). advance. The coefficient is small and oscillating inEcength ricity i -- uvalue for small values of AlL: for a long spheroid, the

--. Leiigth-beainlrti 0/b. highest zero position is at about AlL 0.7. Thc gi .ph
D - Displacement - - 7r g p a h-. of C.,, except for a scale-factor, is the same as the curve

kI, k2, k' - Axial, transverse, rotational virtual inertia labelled f - 0 in Fig. I. For large values of A/L, the
coefficients, as defined and evaluated, for surging force X approximates to
instance, in Ref. 3. -- (I ;- ki) D 1cos (a t 7- o)

V - Speed of advance (positive against the waves). assuming the wave slope to be kept constant.
f Froude number --- V/A L)f. Similarly from (47), the heaving force Z approximates
d it Depth of axis below the surface. to -(I ; k2) l) 0 sin (a t '- %) for large values of A/L.
h - Amplitude of waves - half wave height. In general C. varies with the speed of advance due to
A - Wavelength 2 n/K. the difference between k, and k2 . We take for illustra-
c Wave velocity (glK)i. tion the case of a long spheroid with e approximatLly

2 7rra Period of encounter. unity and ki, k2 approximately 0, 1 respectively. Fig. I
a K (V -c). shows C. on a base of A/L for zero speed and for
0 2 7y (/,/A) e - Maximum effective wave f- 0-5 and - 0. 5; we note that f positive is for motion

slope at depth of axis. against the waves and f negative for motion with tle
X, Z Resultant forces in directions 0 x, 0 z. waves.

M Resultant moment about Oi. 2.5

C, Surging force coefficient - X (max)/D 0.
C. Heaving force coefficient - Z (max)/D 0. 2.0

C,, Pitching moment coefficient
M (max)/D L 0. .5s

In this notation, the results obtained are
1-0

X - -3) AC, cos(aI f a): Z D I)AC. sin(t ( i);

M D DLAC,.,.cos(at ' %) (45) 0.s

C, L-l k) Jnl . (46) 0

-0L16 0.6 10 12 14 1ý6 IS 20 22 24

"C. I k2 . f (k2  FKi. I.--ILAV iNG i1 ('t) (74*tti•- ii%1 lh tull ý ,Afts% k[ ,t.; " T
A )2  I A .AiNSI WVA.i '% ,A11,t %1,114 %%A%$%

(I)"-' (4e L) There are several points of interest in the pitching
L , .4 moment coefficient (48). In passing, it mnay bx remarked

4
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THE FORCES ON A SUBMERGED BODY MOVING UNDER WAVES

that it reduces to zero for a sphere, as should he the advance on the pitching momrent, with or against the
case. The variation with the kength-bearn ratio is shown waves, dilfers according to the value of A/L. The samne
by the quantity in square brackets in (48): for instance, result is also shown in Fi.3 which gives ('.on a
taking the corresponding value,, of the inertia coeffcients base/for given wavelengths. As this is a linear relation,
this quantity reduces to the graphs are straight lines: those for A/L 0-53, 1.15

1.823 J52 (2 irL/A)'fj(0-485 J,/ -- 0-279 J,/); 5 aire parallel to the base line.
10 0"5 ----- -

I -883 J512 '(27TL/A),/'(0 -549J,/, - 0 -33JI2) ; - I0

2 J5/2 -d- (2 7r L/AM./f( (0666 .11/ - 0 -333 .1112) o- 0-4

We choose the last case for numcrical calculation: that
is, we consider a long solid of revolution for which 0-3
ki, k2, k' are approximately 0, 1, respectively, and
w.e obtain C, from (48) with these values, It is inter-XL=.
esting that there are values of A/L for wkhich the pitching 0-2
moment is independent of' thle speed of advance; for y
this case, these are the roots of the equation 0 A-I ýL

2 J512 (,r L/A) -J,/2 (, L/A) 0 .(49)

The two highest roots are approximately A/L 0-53 _____=0__5_3

and A/L - -1-5 1.
This point is brought out in Fig. 2. which showNs O2011b 0

C,, on a base A/L for zero speed and for f V 05, FIG. .3. -P11CIilN'G MOMEFNT ('OFFI-IClINT IFOR (OvEN A/.vARyiN.,'
f 0-50' the curves show how the effect of speed of SKIED OF Ai)VAN.(i

.45 1 IThe results which have been given in this paper were
-40 obtained oy direct calculation for a spheroid of any

ratio of length to beam:; nevertheless, in the form in
.35 .0.5 which they are given in Section 5, they are probably a

good approximation for any fairly long solid of revulIu-
-30 0tion. The conclusions are not directly applicaible to

-25 surface ships: however, they may possibly, indicitte the
nature of the difference to be exp.-cted when speed of

'20 advance and other factors are taken into account.
C The present analysis can be extended to include

motion of the submerged solid obliquely to a train of
waves, and it is hoped to examnine the various forces

.10 and momnents in s~ubsequenit work.

0 5ýýRefere~nces
0L__ (1) 111AVELOCIC, T. K.: (Quart. Journ. %tIech. App. Mfath.,P4 6 I.2 It 1;8 2'0 2; 2 4 .6V,1952, p. 129. p.11 3 6het

IFIi,. I. -Piii(iMV. WIlI% l 1(1S 1k %AKNIt A/ .jt.: (2) WIGLEY, W. C. S. TRA-4-. 1. N.A., 1953, p. 168,

tin(1932)].

PAR 11 NOTIN BLIUE TOTHEWAVE CRE STS

1l-.presIons are obtaintd ltor the forces avd moment% On aI submerged spheroid mos ing
mnder t,.mes it an' angle ol'attick. Giraph-, are jpsen to shos hoss th~sc .4wntineie dcpl.nd
upon1 the %%4%CIlength and Uptin the speed aind dirvsaion o: ads ance of the ho'ts .it appitars
that, %%hten~ 3CCOUnt is taken ofI the spwý:d, pitching an]l yass ing momnents are des eloped %%hen
the Kid% Is. rios ing parallel to the s'a'ec crests.

1.The results gisen in Part I '%%hich Ac~ ,hall refler wacs.s s' hile il' it is btxt.kcen 90 deg. and 1,40 (Leg. the
lo as 1) .%in tv e'.tcnded to cover mnotion in an'. dirtx- motion is with fo0l~os'.ing %%a'.es.
tion. As the anals sis- is carried out b% the samne We ha'. e equation 115) as before: Lnd it is readily
steps as in 1. %kc need tink indicate th neccessar% %erilied that %%c hase no'.%

mttiictojs.Te solid mlo'.es in the dir. ction () h.os.K(Vcs il3
and the 5% .i.' train inosCs at all angle -,, to 0 %s . sith i 1£' Cs c I.il) '7 2

;'belt'.'eei I deg, and 'A) deg, the motion is against the . . . . (I)

594



THE FORCES ON A SUBNIERGEI) BODY MOVING UNDER WAVES

giving a surface elevation Thetc relations give the connec' ion het\%ucni the phases

Iij sin [K (.V COS I' Sill -1 U 1 I X (2) of thle Com"pot ents and the phiase of thle ,urfflre uvc '"sý
provide U K ( V COS '4% 31 if in ý aryi ng the angle of attack y F'rom t) dvg. to 1ISO deg.

/ ' any .'eflicicnt C passes throngh /er() and changes Sign,TO obtain (12 we have now to expand the corresponding force or moment cha n-,s in phase
CAP K [z! i (V Cos 7 y vSill Y] by 18~0 deg.

in a series of' spheroidal harmonics. I t is fouLnd thait The f'orce and moment coefficients are given by
insteadl -'f 1(10) we req~ire the two integrals 3N A-)i/

hO OSS ) 1(~,C', : (sin
a=27r C, I[,P 1) /L2,ý COS4 (4) Cz 3 \/2 A

ar~d the same integral with ,in s wfor cos s o.i, equaml to 2 77('
3

/
2 

Gi Cos

in which S., 1,~ [K I, 1'.1 ) cos j .(5ýý) I ! 2  27-,L)Jco.s(A, ki] J3/2 ( -Tel COS
C, '[( [ sin,) (I sin 7),)/cost -, (6 C', 1'

S; k [(I -i sin y), ( (I sin -/)']/Cos, , " '() C- C l

Proceeding as in I Section 2. thle only alteration required CIt / A )/ /3
is to reCplace K a t, by ra e' cos -, and A;,"eoss o) by 4 -ITVP L.(Us )1 [
A' (C, cos s w i iS, sin s (,). /, e 2 -TL~

Thus, as in I Section 3, s'ýe have for the effective part cos CO (1 co~s ,

of the pre'ssure ACI A A

p h (/t3L2 k) I( ; k i)(l k 2)] J ./2

i r 2-)V -- /(2) B1 i(*It (7) ' 1 kj)( -2k 2 )iI,z(\csy

(3 (2 co 1)'0) 3. We note that the surging foceis Indpneto
-0 ~2 1) )Qn,(GO) the speed of advýance except, of course, for thle alteratiOnl

P,\, (14 Wt Coss u) i S, sills .u ) (8) ill tile period. Except for the surging force, all the
w~ ith a factor 1,for tile tei ill, %\ .ts 0. comlponents call be derived from thle expre~siotns in

The f'orces X, Z and the pitching mloilleilt M are I Section 5 by replacing the wavelength A by A/cos y
giken by 11(25): and, Owsing' to thle presence of termns ilnlh sed/ b csy FUrther, the coeflicients

si, and C.. dife aro Cz aand C,, resp.-cti~cly Onlly byinwweha~e asw~a~ing force Y and a aing fC an C. ifrfrmC n
nlomnent NJ' given bN a actor sin -y. Pu~ttingl I t()deg. yfor ,, inl the expres-

I ,tsons i00), beu teehat at zero spetcd C, and C are
azt2 (2 1C Fsymmietrical aothemdlpsiony 90deg.,

sin ~ (/) P(I Uwh ile C,,. C,, and (C are amti-svnlmetrical. 'faking

2- accounti of' the speed of' ad\ ance remo, es this ,eiemcnt
K~ P sil i ~ /of's mmetry, for the effect is different according as thle

J! u3 P, ip dII/o)wves are from ahead or from asterin.
(9) When ,, 90 deg. the Solid is mioving. parzillel ito the

wsave crests and this case is of some interest. 'Tile resultsThe evaluation of" , he fokrces and momlents fol lo\'ýs as Carn be obtai; ted by taki ng thle limliting uafues (11 (11)
il I Sect ion 4, no0' i1l t hat \% e inust imitr 'duke the its -,i'aee i to 90 deg.. or canl be ý\orkedou
appropriate %a Ilies ,I thle co eficient's 6%~en inl (6) and , ,indepe dently. l~

alsotha 'i A (\c'- ).We bi'.e for '' 90 dov
2. We add to tile notaltion specified inl I Section5 C, 0: C :C I A
(* " \%ayin~g for~e Coefliicent Y (max I/I 0'

C.., yos% ing mlolll:nt coefficient M, ( moax)/l ) 0 .Aj 2A 1)

The components are gi'~en h%
X I) t; C. COS ((i I ~)In this position the forces, ire independent ofi the speed

Y ) D0C, Co., (a I ) ofit ad~ance. As might he expected, the iounwmts airc
z I) to C. sinl (a 1 , ero at zero speed: butl it is speciall\ nterv't in, lthat
MI 1) 1. 1) ",~ Cos (U r 1 pitching andt \ awing moments are de~ eloped \Oen the

NI' 1) 1 0 U... sinl (ty t (10) solid is ad~ ancing parallel to the wsa~ e Crests. No tit wuht

6
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THE FORCES ON A SUBMERGED BODY MOVING UND)ER WAVES

this arises because when account is taken of the speed, waves at any angle to the direction of advance. In each
the pressure distribution on the solid is altered anJ is case thie results are Shown for three dif1'erent raitios
no longer symmetrical fore and aft, of A/ll_ The continuous curves are for zero speed ý and,

The general character of the results in (11) can he in order to bring out the difference, the dotted curves
shown best by diagrams, and for this purpose wve take are for a speed of advance given by the Froude number
thle case of a fairly long spheroid for which NYe assumle J 0-5. The curves give somneindication of the manner
the approximate values e 1, ki 0, As2 - - I' . Figs. in which these quantities depend upon the ratio A/L,
4, 5. and 6 show curves of the coefficients of' heaving upon the speed and direction of attack, and upon
force, pitching moment, and yawing moment for the whether the waves are from ahead or from astern.

04.0

2-0- 02 10 \
2-0

02

0/0
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THE COUPLING OF HEAVE AND PITCH DUE TO SPEED OF ADVANCE

By PROI-ESSOR SiR Tiiosis H. Hs,\vLOCK, M.A., D.Sc., F.R.S. (itonorarY Menther and Associate
Memher Of Council)

Summary

The object of the note is to discuss a particular type of coupling and to estimate its
probable magnitude. The coupling effect is isclated by considering a specially simplified
problem, namely a spheroid floating half-submerged in a uniform stream with surface
conditions whicn preclude wave formation and without damping. This problem is solved
completely; numerical calculations indicate that the alteration in resonance frequencies due
to the coupling is likely to be negligible in ship problems,

I. The chief cause of coupling between heave and the linearized free surface condition is inI general a good
pitch is lack of symmetry of the ship fore and aft, as approximation for ships of small beam/length ratio, and
for instance in the well-kno\kn hydrostatic coupling or this remark applies even when the beam/draught ratio
in that due to damping. There is one type, which may is not also small. But in attempting further approxima-
be called hydrodynamic coupling due to speed of tions it is difficult to knov: how far one may go ,jthout
advance, which seems to exist even if the ship is sym- amending the free surface condition by including some
metrical fore and aft. This effect was introduced into approximation to finite waie theory.
the equations of motion of the ship by ttaskind.0) In On the other hand, conider heaving and pitching of a
that work Haskind replaced the ship by the approxima- ship at zero speed of ad vance. Here we do not need
tion used in wave resistance theory, namely a source to restrict the relative d.niensions (i f the ship, either th'e
distribution over the longitudinal vertical section: beamllength or the beam/draught ratio: the linearized
further, the expressions were left in a complicated form free surface condition is adequate: for a good first
and no indication was given of the relative importance approximation, except no doubt for exceptionally large
of the terms in the equations. Recently Stoker and motions.
Peters'2- have made a systematic study of the general Turning to heaving and pitching in waves with the
problem of the motion of a ship in a seaway, developing ship advancing, one can see the difliculty of combining
the equations in terms of a single parameter, namely the the 4eneral problem in a single calculation which w;11
ratio of beam to length. In the equations of motion give useful results ':or the ship problem. The present
to the first order, they do not obtain any coupling terms unsatisfactory theory consists more or less in simply
of the type in question for a symmetrical ship. This superposing the two sets of calculations: or if it is rather
might be expected as in their work the ratio of beam to better than that, we are still left in doubt as to the
draught is also supposed small- in fact their model validity and relative importance of the various terms in
approximates to a thin flat disc. Haskind's work is also the equations of motion. On the other hand, if we limit

criticized as implying damped oscillations since the ourselves to a rigorous development based on, say, a
coupling terms occur as first order derivatives: but we thin disc form, we may miss the important effects for
shall see later that this criticism is unfounded as far as the ship problem as regards heaving and pitching.
the coupling terms are concerned. This type of coupling However, the present note makes no attempt whatever
has been the subiect of discussion recently, for instance on the general problem. The object is to isolate the
Weinblum,(`n and it seemed of sufficient interest to particular type of coupling and if possible to estimate
attempt to estimate its importance or otherwise. It is its importance. For this purpose we consider a specially
easy to see on general grounds that the coupling exists. simplified problem. It may be regarded as the opposite
If a floating solid, symmetrical fore and aft, is made to of the work just referred to: instead of taking . thin
oscillate vertically in a uniform stream, the alteration in disc and including the wave motion, we consider a form
pressure is anti-symmetrical and so we get a couple more like a ship but we exclude the wave motion corn-
acting on the solid: if it is given pitching oscillations pletely. The conditions may be visualized in this way,
the alteration in pressure is symmetrical and we get a Imagine a solid floating in water and suppose the free
heaving force. It also seems likely that the effect will water surface covered by a smooth rigid plane; the solid
be small, and that is confirmed by the prescnt calcula- being assumed free to heave and pitch in a hole io this
tions. plane, the pcriods can be calculated. If there is a

In the theory of wave resistance for a ship advancing loagitudinal uniform stream in the water, the oscilla-
steadily iii still water, a first approximatioii based on tions are coupled and the periods can be obtained. The
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results may be comparable with those for a ship model its it definite example, that is, a -8 ft.. the

advancing at slow speed• but in any case it seems likely equations of motion are

that the coupling effects in the actual problem will be 7.f 1  17657h =.0
less than in this siniplified case. The form of solid we /

consider is a prolate spheroid floating half-submerged" + 0.404 fit 30, 187 d, = 0

for this case the problem can be solved completely and and the frequency equation is
the analysis is given in the Appendix.

2. If h is the heave and 4, the pitch, and U the stream P4  (47.844 . 3- 111 2 )p2 - 5330O1 0

velocity parallel to the axis of the spheroid, the equa- The periods of uncoupled heave and pitch aire
tions of motion for free oscillations are obtained in the 1.495 sec. and 1 144 sec. respectively. For I 0.2,
formti (25), the coupled periods are I 503 sec. and I • 138 sec. Even

14 M pM U gpSh-0 at a high speed 1 0.5, the periods are only altered to
1.537 sec. and I.II2 sec, The curves in Fig. I shovm

(I -- k) I k'.' - q NM U it M N g in i V - 0 the variation in the coupled periods with increasing

The tirst and third terms are in the usual rnotation for speed. At iero speed, the uipper curve gives the period

uncoupled heav~e and pitch: the second terms give the of uncoupled heave and the lovver curve that of un-

coupling effect. k, and k are the virtual inertia coefli- coupled pitch. The variation vsith increasing speed only

cients under the assumed mv-ter surftice condition. becomes appreciable at very high speeds.

k 2, k. p and q are positive numerical coefficients depend- _ _ _

ilig oilly upoun the iengthjbeaii ratio of' the spheroid: -
explicit expressions are given in (181, (20), (22), and (23).
from which numerical values can be calculated.

If we write these equations in the form

iI" J it n 2
1h 0

, i:3 it 2, q, 0

nl and n2 atre the frequencies for uncoupled heaving and
pitching, taking into account the virtual inertia. If we
assume a periodic coupled oscillation of frequency p,
we have

p4  .- (,t" it U2)p2  n2n n 100 .2 .4 0 .6 a 1.0 1

Both roots of this equation in p 2 are real and positive,
and we have two simple undamped oscillations ol: say, FIG. I -VARIA IoN Hi RISO"ANI'I HIRIt)) V,111 SPi-|I)

frequencies p, and p2. In each mode the heave and

pitch differ in phase by 90 deg., and the motion alter- 4. Although the surfaice condition t ck,. 0 is a
nates between heaving and pitching. Further, if' n 2 a severe limitation as regards application to the ship

and p, - P2, then we ha\e pi ni and p! - ni2: thus problem, it vvas thougiit preferable to work out the
the coupling increases 'he separation between the reso- simplified problem consistently on this basis. In the
nance frequencies. This is a general effect of coupling last section of the Appendix comparison is made with
terms: incidentally it may be remarked that for the te work of' Haskind. It appears that it we ose tenta-
coupling caused by damping, Korvin-Kroukovsky and tively rather mixed conditions with the oscilration
Lewis(4) obser\ed that the resonance period for heaving potentials satisfying the condition & 0 at the surface,
was increased while that for pitching was diminished, then the coefficients of the coupling terms approach

numerical equIlity for a long spheroid for wvhich h/a is
3. To estimate the magnitude of the effect we take a small: the coupling terms approximate to the values

numerical example. We choose a spheroid of length/ I M U 41 and , M 1 h. For another numerical
beam ratio equal to 10. The numerical values of the 2 a

various coefficients were calculated wsith sufficient example, take k2 and k' at their limiting values of unity

approximation for the present purpose. F rom (18) e for this surface condition and the equations (29) approxi-

find k2 2.42. 'This meanis an increase of about mate to

80 per cent in the heaming period ais found \%ithout the 2 M t; M UtJ , S h 0
added mass: no doubt this i% rather large, but vse have I t M U Mg ni, 0
taken the extreme condition of' a rigid vsater surfai.e.
Similarly from (20) vse find A' I 5. gi\ing a corre- lor the 16-ft, model of the previous calculations these

sponding increase of aboout 60 per cent over the hasic give a frequency equation
pitching period. Front (22) and (23) we obtain, appioxi- p4  (67.92 - 2. 514)'2) p2  1139 0
mate's, p - 1.16. q 0.57. With / as the Froude
numnber, %e has\e t! f12 i)'. and ,aking a 16-1t. For 1 0, the uncoupled periods of heave !nd pitch

2
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are 1 144 sec. and 1.023 sec. respectively. For I-.. 0-2, Putting the expressions (3) in (4) and determining the
the coupled periods are I 151 sec. and 1 017 sec.: while coefficients in the usual wai.

for./ 0 5, they are 1 181 sec. and 0.991 sec. 2A 1e1 0 2n I n . C, (5)

5. To sum up the discussion, it seems that the coupling 7o Y2 ! : t, 7 1 -1,A

terms are of the form - p M U t/i and , q M U /, \Aith 2 a - 2 n it (n .d! D, (6)
p and q numerical coefficients approximately between B.1, 3 77-(" 10 s2 I (n s)! Q;,(6 0 )
unity and one-half. From the numerical examples, we

may conclude that the alteration in resonance frequencies with the factors k", D given by
is negligible. It would be of interest to examine forced
oscillations; for instance, with an impressed heaving C;, P! (p) P, (!d t: I):, P1 (t,) P,(t, idp1 (7)
force the response involves pitching as w'ell as heaving, I
and similarly, with an impressed pitching moment. An
effect of this sort seems to have been observed by Griu.( 5 ) It should be noted that in the summations in (4) with (5)

It is, of course, possible that even a small coupling effect and (6) terms with s 0 must be taken with a factor i.

might be magnified into something appreciable at ov FaFrther, s is even throughout, while n is even in (5) and is

near resonance. However, any satisfactory examination odd in (6);this follows from the fact that the integrals in (7)
are only different from zero under these conditions.

of this would involve introducing suitable damping terms
and that is beyond the scope of the present note, the 7. The pressure is given by
purpose of which was to isolate the coupling effect in p g pR: • p 0 00'' p U2  lpq.-. (8)
its simplest form, together with the consequent change with 612  4)p V".,)2  (Z 4/b - ¥S)2 . (, 4)/, .¥, . (9)
in the resonance frequencies.

On the spheroid the last two terms in (9) come only from
the last two terms of 0 in (2) and are of the second order.

Appendix Further, on the spheroid. we have the first two terms of
6. We take the origin 0 at the centre of the spheroid, in (2) given by

O x along the axis, 0 z vertically downwards and O y trans-
versely. We use spheroidal co-ordinates given by a U jp[ e Q, (Co)/Qt (ýO)j a U (I -- k) /A . (10)

x a c u; y a e ( /I 2)1 (2 - I)( cos w, where ki is the virtual inertia coefficient for axial motion of
the spheroid; also, on the spheroid,Z a e(I - t4-)l (ý2-• W sin to (I)

,) 1 Q ,. ., [ /i")l/ae (4o -, -) • l - . ( J
The spheroid is given by ( -- lIe, and for the sub- 0

merged half t ranges from 0 to 7.. The spheroid floats Hence, to first order terms in A; and 4), we have on the
half immersed in water, and there is a uniform stream U in spheroid
the negative direction of Ox; the solid makes small oscilla-
tions, in which the heaving velocity at any instant is/i upwards, q a2 e2 ... r2 2 Ua'- ( k1 ) 2  aU(I k1 )
and the angular pitching velocity is i in the positive direction 02 e- ( U
round O y. If 4 is the velocity potential, we assume the ( - 4 ) F/14. • 0 F2/1 .)] (12)
condition ý OP/b 0 at the upper surface of the water. if Z is the upward resultant of the fluid pressures, and
For small oscillations we assume the condition at the M is the m enabout we he
immersed surface of the solid to hold at the mean equilibrium M is the moment about O y, we have

position; thus, in the subsequent work, we neglect the square
of the fluid velocit, due to the oscillations. ", [ pfldS

We take for the velocity potential 
f n

4) Ux a aeU Pi((i) Qi(60/6(W a, e2 o0g 4 ),[sino w da) pPI (p) d (13)

- i F, (i. , w) / F,(/, Q , w) . (2)

with F, 4 A,' P,.l(Q1(0cos sto M (I: it vx)pdS
ii,• o . . (3) l i

F 01 0 1. a el Sl W dc( P~j(V)d.i (14)
S0 I

The expression (2) satisfies the condition ' O)P 0 at the 8 We shall consider separately the contributions of the
upper surface of the water. The first two terms represent
the spheroid in a un;orm stream and give zero normal various terms in the pressure defined by (8) and (12). The

velocity over the immersed surface; hence, as for instance in term A- p : gives the hydrostatic vertical force, and moment.

Lamb's Hydrodynamics. p. 142, we must have leading to the usual expressions for the restoring force pro-
"portional to the heaving displacement h. and restoring

,N F1/I ý a e 41 (ý I) 1 Ip) sin to I moment proportional to the pitching angle th. Then there
SF4/ .• - a c-. I1 }Pl ( n (4) is a steady vertical force arising from the terms in U2, and

2 corresponding to the bodily sinkage of a ship in motion.
for • •: 0 u 7r. We obtain this by using for p in (13) the terms

3
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Sp U2 j p U2(I • k)l2 (I L)p/e2(2 - t42) (15) expressions lor F, and F2 and carrying out the integration:;,0 the results can be expressed as an U~pward vertical force
The integrals can be evaluated, and the result for this vertical t r U b r arl
force can be reduced to the simple form p M U • with

7nrpabU
2 [(0 A1 )2 ata i- 2h)l(a J b)' - . (16) 2 (1 f A- n 2  (ii s)!

P 7r-2 ,, V1: l 2
This result was given in an equivalent form in a previous

paper,(6) which dealt with the sinkage of a general ellipsoidal Q•, (Do7
form at low speeds. To estimate the magnitude of this (r2 I D"E; ) (22)
effect we may equate (15) to 7Tgpabs, and call s the ý 0(

equivalent sinkage. If, for instance, alb 10, we find and a moment q M U I,, with
s - 0'0157 U2/g 0"314/' 2 b, withfas the Froude number.

The effect in the present problem means simply an aiteration q .2 -- .I
of the origin 0; but, as it is small except for high speeds. 7T e ,, 2 2 (12 (, V

we shall neglect it in what follows. Q, (0o)
9. Turning now to the term p 6 O1Z I in the pressure, it q! ) "Q,,() CF (23)

is -asily seen from the ,arious expressions which have been 0

given, that the term from F 2 gives no contribution to the where we have written
vertical force; and we have for this part of the vertical force II IEt1

0,-.
aZ e2 °( -- 10 p"" sin w° d u) f IP1, (p)T F, (ft, ý°" w) d ju' 0 fl

(17)
Substituting for F, from (3) and carrying cut the integrations Fl I f P 1 •) (,u) d j,. (24)
we can express this vertical force upwards as k 2 M h, 2 0

where M - ir p a b2  mass of spheroid and Summing up these results we get the equations of motion
6 2 n I (n s)! Qk (cO) of the spheroid, with In as the metacentric height,

k 2  7 e S2 102(n S)! •* 2 . O, )e 0 (Pe .)....... (I k,) M h pM U0 .- rgpahh 0 (
.. .(18) I;/'1• q~l g • (25)

(I Ak) I i q M U/ Mg in 00
This expression is essentially positive, and k. is the virtual where kA, k', p, q are positive coefficients given by (18), (20),
inertia coefficient for broadside motion of the submerged (22), and (23). It should be noted again that in these
spheroid under the assumed condition of a rigid water expressions s is even, the terms in s 0 having a factor 1,
surface. further, in expressions involving the coefficients C and F,

Similarly, putting the pressure term p 3 OP t in (14), we it is even, in those with D and E, n is odd.
rind that F, gives no contribution to the moment, and we
have for this part of the moment II. In the coupling terms in (25) the coefficients p and q

are, in general, of unequal value numerically, but in thej.a 3 Q corresponding terms in Haskind's equations they arc equal.
spa

3 e3 (o -u 1)d (w fdo (P4) F2 (IQo, w) d . Haskind denotes these terms by cU/ and I- cUh,
-1 iwith c defined by a double surface integral. On examination

(19) it appears that this expression for c does not involve the
wave motion, but involves only the velocity potential due to

The moment of inertia of the spheroid about 0 y es the oscllations determined as if the free surface coihdition
I = -•'irtpab2 (a2 !b 2). We find that (19) can be ex- were 0 0. Further, it is based on -eplacing the solid by
pressed as - k' I ., with a source distribution over the surface of density a where

10 a2 e 3  2 n - I (n- s)! 4 7r a equals the normal surface velocity, and this is then
- 2 a2 -1 b2) ( 1)2 ( - contracted to a distribution over the vertical plane section,1 (s2  ) s) this is a simplification which is appropriate when the form

Qy ((?) approximates to a thin disc."0 -t (20) Turning to equation (2) the functions F, and F2 were
C2 ~(G) determined to satisfy the surface condition i) 0/ z 0.

k' is the virtual inertia coefficient for rotation about Oy Suppose, for a moment, that we determine F, and F2 from
under the assumed surface condition. the surface condition 0 0; then we should have

10. Lastly, from (8) and (12), the remaining terms in the .U . e . P, (p() 0 1 (Q o)
pressure are

p Iýk)U -1 2  h )F/ A Z 2 )a e 40 PI()Q1 snc
a2~~~ e2. ((21) (5 11 0

a2 2 ezWith this in (13) and (14,, it is seen that the only contribu- PI2- (I Qj () sin w . (26)
theony onriu-3 (Q2 -- 1)1' (ý

tion to Z comes ftom the term in F,. and the only con- 0
tribution to M from the term in Ft. Putting in the To make this velocity potential cnnsistcnt and %atisfying,

4
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say, the linearized free surf:we con ,ition. there ,%ould ht nearly equal. I can ealily he shov,11 that a, . I, we

additional terms expres ig the effect of the snilface dis- ha.-c

turhance. Meantime we shall simply assutmc that these 1 01 )( I -, ;

tcirms are small, or at least that theiCy dto not affect appreciably

the oupling effect ,, hich is, under consideration. l'aking 0 1

(26) as it stands and calculating / and %4 as in the pre\iotis Ilhus for a long spheroid. w ith b/a small, the CtltiatOlsn

sect ions, the aiues ofA(i and A' \ill now be the usual \alicS approsimate to

as if' for nmotions in an infinite liquid. I or the coupling

terms, using (211) with (26), the \,erlical IoicC UpwKards is (I N N h I (! A1 M, U iii ' k S /1 0

<t, 7-pa e(I . At) U t/,[Q!(;,)/Q!(.n)] (I ,A) ,I,'. A,1  ( lM t;I. I; , d, O .
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Rpripttt'I ttithoou chintge of pagineitionf fr,-m the

Prcvij- o'f*fit, floyal -iol Y, A, rolume 2:31, pp. I --7, 111-~55

Wnvesdue to aflo8 ti r&, sphere making periodic

hieaiil" hgoscillatiOnls

iiyi sIR JH( ) A \ JAVE)K, F.lP.S.

( Irc."il-cd 1)It" (-1rlalrq!I 19,55)

Thepae W~tivei stOti a i d i tsc s ion tof Sthell I id~' 116L' (111'- is h) it upl t-o tloi lV hi tit Ii mmerse ( i nt~li

virt Aid inetrtiiL cooflicjutit anti (of' tilu~t, cfilix id'tilt paralli tc t (T.tl

1. '\Vlen a float ing, Solid1 is lua~le to dI(escri be periodlic oscillal ions wave I lmtkni91 is

produced, atnd it is req1uiredi to dietermine tI lie resil I ta lIIt press I Ire mtI thle Solid anl the
energy radliated1 out wardIs ill t 1we waxt* 1i( It it 1. The prlobleml has Ibe(ll ~tut]i (lo in
general forni by *John 0 950), eIspeciallY as, regardis the nlecessal*v condititn ui or. the
uniqueness of the solut ion of' the potential pro~blemn. The only vCases wh ich1, to miy
knowledge, have been wotrkedi out in any detail are two-dimeniiionlal probilems. Inl
particular, LUrsell ( 1949. 19-53) hlas examnijed fully tile heaving mlotion ol a circullar'

cylinder llalf-jinimerse( in water. Simnilar work has been carried outit by G riln (1953)
for cylindeIrs with v'ariotis f rills ol' cross -sect ion, more especially withl a view to
application to s liij lp l hl(1cu5 ill eStill111t'l~ \i ng ii al inel-t a a-ndl (lainilil jung oefhe~ients
for heaving mfot ion. I if all I Jose cases t lbe v'irt ual inertia coelficient, approaches an
infinlite value aIS the freq uenlcv becomtes si na-li: this is no dobt h connjected wit-h t he
fact that the condition at the( free-water surface then aplproximiates to thlat for
a rigidl boundary, anrd the two-dimensional potential p~roblemi with that boundar 'y
condlition is indeterminate. This (foes; not arise for three-dimensional illot ion; tilt
general case approximates to (determlinate p~otential problemis in the two limits as
the, frequency appiroachies zero or infinity. plho linit of Special interest is the
v'ariation of the v'irt ual inertia coefficient with1 froquency biet ween tIliese I 111iii tjg

values. The( general character of th li,%ariat-ion. has been sulrmnised . hidt i ere( do ntti

seem to have been any' act imi calcuilations. ili thiiis piaper we considler the simnplest
case, at sphere half-hi li]nersce and making, sinaI! vertical oscillat i ns. Thew ca Vttla-
li ons show that the v-irtitual inertia coefficient- rises to a mlaximumili withi i tireaiing
f'requency, falls to a minimum and then presumably rises gradually to its finla
limiting, value. The variation of the equiv~alent, daminplg coefficient is also obtained.
A solidl if ship form would coIniC betw~'een the two) extremes of an infinite, cylinder
andI a sphere. and could be represented better hy, say, a sphieroid. The limiting
v'alue., 14 11ie vi-li a I inertia, coefficient for at sphieroid can readily lbe c'alcuilated.
but flit, genivrml solustion, for aimY frequency leads to expressions too complicated for
Coilliptiat 1Mll.

2. Wt, IA Li I lbe origin 0) in tilt- undist imbed water surf'ace. withI 0:- %ierticti ly
downwards. lfif' %%atetr is assmiitied incompressible10 and frict ionlelss and het( motion is
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syIN iietriieal ' with Ireslp ct 1() Z:. II iiolif i tutuicl 11 ti fl lllV T hIliI ljz((l

cOIdlititim f10 the Vclth ity I iteli ial itl the f'rce suffiae is
- I

('Z

with i', = ,rT2 If' th(er is j ]),ri)(. singiularit y of order n at lh p)ito 01 f) in'

the wael(l. \ v( ý lit the kiiown s()iutli0n

1P, Q, 1) ( - I)" 1"• K K 0
I' 5 7•os '/- ., :.Ksrr. - KIIJ(, (Kr " dIK. (2)

valid for 0 - 0. The prin.iiial vai ,e, tlhe intelgra l il (2) is to he taken. andl we
have put ? Xc2  .2+ (2 ) f 2.

(' u-( i'dinates ri'er''ed to I le inage point (o, ,. - 1f, t it shlt i( ,1 ( 2) tcan I)ie expa( ledl

in the form

cos -t • - -/ 12) In r(P2 ) ,'. .

1- _'- .. . . e 1" ,/. (3

"P .0 K-Ko
The principal v'alue of the integral in (3) is

_) ., _2 KO cos '(z +J)+ sin ( +_f)
IF Ir0 K TU ) elo~I -"' KosKrz7f ±K (4)IT0 K2+ K5•

with the usual notation for the 1'34ssel functions. We superpose on the motion given
by (3) free symmetrical oscillations of frequency ar so that a.; ru ->-ý the motion
"approximates to circular waves travelling outwards. For this purpose we add to
(3) the term )n +I )KO(±f(.>(- 1 TK ) Jrr o( Ko ) e- ('lsin o-1. (,5)

The motion as m ->x, then approximates to

2-7 2 "/'h'*(•••-- ( 2-2°• sin (01t- KOM -t In). (6)

In general as r n-->. o- is of order m- 1 : but from the expressions given in (2) and (3)
it, is possible to construict. solutions in which 0 is of order m 2-" or of higher order.
These combinations of periodic .ingularities might be called wave-five singularities.
They are given by

K O K, O P , , ( P 2) 1 ", 1 1, Pg) !) • i--r{+• - ri+. -( -1 ..... ..n , "+' ( - 1" r'+• !cosc tr . (7)
1i r1I+1 + n + 1, r~ 1  r +2

For instance. taking n = 1, the singularity {AKt, -P1 (/t)+ rj P,,t)}eosot at the
point (0.0.f) gives a surface eleviit ion proportional to (M2- 2f 2 ) sin 7rI.,(M2 +f2)l.

For the particular application which is in view a+ present, we require the results
when f is made(l zero. Thus fromi (7) we have wayv--free solutions given by

12 2, /) 1, I Cos It.I

with the origio 0i in the free surface.
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3. WVe supl)p)ose a sphere, hialf-immersei in water, to be given smnll periodic
)5(1iliit i n.1, ile vcl(teity of thlie ccitIle 1en r ei ( 1cos5 (t \Ve take the, boo tdary condition

oti tile sphlere lto b) Satisfied at itle I iea ll positiol. thuts, for all L

C6 = 0T")('(11 (r 0: ((I 17T). (9)

\Ve shall assni mie that t tie velocity potent al (cin be expressed in terms of a series of
functions (S) togetiher with a suitalile periodic source at the origin. Hence we take

2K - illKZ- t-Ko OSK -
= -" 2Ki21 )M_,, (KI,) -eI

77 0

X ((C COS ort + !)Sill (It) + 7rK0(12./0(K,0 r,) e, K0-"((S •in orf - D Cos o01)

0o__ 0 2, (2 Ko P21:, ,(/I) tP,,,(1 ) I
1 O 2 •i r." + .1 (-A ,o.; t-+ B,, sinlot). (10)

This expression satisfies the boundary condition (1) and also reduces to outward
circular waves as mn -. -. After Some reduction, we obtain (9) in the form

L('cos ot + 1) sin ot) + M(C sin a-t - D cos ort)

+ •2 {/IW,,_-l(/) +(2n + 1) JP,,(/p)( (A,, coso-t + B,, sinat) = P1 (/i) cos 0t, (11)
1

for all of and for 0 4ý 0.1n. In (11) we have put 3 = K0 a = o'2a/. and

L =- T12 {eos())'(fl sin 0) 4- sin 0}Y((/ sin 0)} e,-fs 0

77 0+ -11)2  JC0(/Ju sin 0) du, (12).,-|J 2u... ...sin (/IucosO)±+(1 -u) cos (flu eos0)Ko[, in0d, ()

M = 7r/#{cos OJo(/Isin 0) + sin OJd(/Ysin 0)} e-JJC°d. (13)

The coefficients ('C, . A ,. B,, are to be determined from ( 1). The functions defined
by (S) are not orthogonal, but it turns out to be convenient to follow the usual
procedure wit i (i1) to give aul infinite set of equations for the coeflicients. Thus we
multiply both sides of(l 1) by fl1:,,,_1 (ti)+ (2m + 1) P2,,(p) anti integrate wit h respect
to It from 0 to I ; we take, Po(p) for tile case m = 0.

We use the notation, with L given by (12),

1 '1
L(= Ldp. L,,, -- /1"2,, 1 -1(I + (2m + I) 11,,,(14)1 Ldp, (14)

with a Similar notation for 3J,,, d.,rived from (13). Taking the terms in coso-t and
Sill (TI Separattely. we obtain if) this wiay at Set of equatlions of which the first eight are

LOU - M,,/) + . k/ . 1,- 4gtA + ?llJ A r+ . . .

/.1 (' .1,u /)+ ( +3/1 +•i•+2 ).4, + '.J+A 2 1 .. /'1.4,)

1.t .) 4- 1-• 32.5 4' :5 1 (60

I~~~~~ ~~ I •P -4[. 1-Il 3)' +...

(S•imilar v.puttimi.t in D. C(, B• 1 f. U... ) (16)
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It may be noted t hat it is only the sceon • eq at ion in (15) which includes a term in
13 on the right.

4. For large value.. (dI the freiqency pawamm.ter, that is z, -- we mi iav exewct

the solution to approach that appropriate t t li free sirtte, coidit jun $ = I. na iuely,

2= , P, 01 ( t, . (17)

rthe eqtuations (I ) are c ,nsisten e it 1i1his if( 'S I) a rxi mate t 'Z I-(r, .1 .1 .
being of order 1P2 am! )A,L 1 ajpwroximiat ine tn nl ' v. l,•iwever, here ire ,litlie.lt ies
in evaliating sonie of the hit e._raIs iilw vedl for laItLc valIues of /,'. dilie jarl lv to
having taken a col*icelt rrat UI i lit sotlr(c at t he (i6in inn s ad Iita dist iiin •il sin'ce.

\We shall t Iherefore lilit lie caleilla, ils lo Ii•,dheiate values of/1. Ir lai~e values
the prhoble'm is better Ireated sepIll uatvy. possib ly l)y tile nietthld usel Ib• IUtrsell

(1953) for t he sinilar t wo- limensji ma case.

For small values of 11. the Qree surface cuinlit iol approximate,; t o ý(,Z -i ant
the solution is then

ii(12 (1, n 2

.2 + P,,,,(t) Cos o'. (I.)

where( -A),+l (4n + 1) (2n!)w hiere A ,, -- Ji U [ '(/ I) I•.,( /I) d/t = _/;> 5 .. .. ; ... . ,:.( 9

01 0 2W(-- l)(-2n )- -- ) (I )2 (19)

This is given by (15) and (I 6) with )3 = 0. t lie coefficient L0 being then unity and the
other L and M e efficients heing zr! ,. Thie series in (I1,) is convergenlt. We shall

assuwe, in the general vase. t he cullnwe'egen of the solution in (10) with tJwi unknown,
coeffiieents derived froom (I.) and (16).

5. The expression i:,' / giveen in (12) may be put into a more suitable form for
computation. If we write / for the integral in (12) we have

it S (f lu C os 0 ) + Co s h c s f) K ,( flu s in 0 ) d ,1. (2 0 )
( = o ±0 1 + U2•

, K ,1 sin (pI") 4 -c4(s (/" )
Further, if we put = . . (.....)

X reduces to ln2t{11 1(,/) - );)(,1)I ior p 0- qI > 0, where II is the Stru\ve function. Also
we have -

Sa- XN K"1(,1u)ncos (u)(luei 
(22)

S , "
2

( p2- + 120

Froni this we dedu'ev for thie integral iii (21)) the forml
"*1

. ,- ,( S ll, V , ,* It

('sing '23 .I,,I "'.). w ie inil. alter ,-lI1e .,It 'lie toil.

L I - J,'2 - ' V 0.Ow4 " ýi-, 1o( sin,01 • ll Si ll ti) ('(i. N c
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5 Sir Thomas Havelock

with the noat ion

A -10(timnQ + (2) ke'e-Itdt,~ B == (a 2 0 - t,) ep(ý,lOs (it. (25)

1 le intcgral.Is .1 'Inl B ca n reaId l lv c I I ('Iiijpted.cit I hIer by (ua dI llatiii' 1by eXpins-i oil

For dflY giv\eni /. v'aIii(s of' L. weret c(mIiiiite I fri i (:24) at ii tervals of' I.S- froil

0 to 90'~: thelO 1) , 1111iiii'i('a or! gi'aphiivi iiitei'joktioii jill ierilei"te vnilies were

obtalined. Thiese wei' t Ile iised( to cohiiliite the (j1illt it iis hinin) (I I4 by iiiiiv1111wic:1ia

(jiilI'atliie. l'XI1(S.-ie11Sii5 suitilblet ftin. sinmll values ()pif co (). be (htajilevil. We find1

from (24)

I ,/I --p /;2(1 - A(.().-2 
fy :1 i n2 0 4- 2 sin 0I cos 01)

-(/Y2 ( 0 0- p J: (.o.,2 (J) IIo!, .'1/ 2 ~(s() si 2 Ulo ,i i )±. (26)

with In,%, = 0-577 12. 1.siiii, t1is ini 14) we olhtoaii ex pansions t'orthe coeficien-ts L,,,

Thie coeflieienit s .11" 'were eoiiiput ed I(it jicl by (111al I iature oi r finw a power series

in /1 which (,ail he found froni the expansion

n ý (lb-I)j

Vlet urning, to (1.5)) anld (16), once the Land~ J1 coefficients have bven calculated. the
equaitions aire in suitatble formi for approxiimate solutioni to anN' required degr'ee of
aeeiirac *v. at least, fo(r moderate values cof /1.

Accrat coi~ltaton as otbeenat ternjte( . lbut a sni )mewhat crudeI approxi irma-
t ion is suffhcient t (Ilriing out tile generall character of thle results. ( 'lculat ions were

('arIiedl out hn'O OA, 04I. 2. 0'4, 0-'6, O4' 1. I0,) 2 0 aid :11-0. As an example oif time

iiumerieail values, we hind for /1 -44.4

LO= I1*4707, L, ýý-2:Iti , L, ~ - 0-05S2., 0 - 0.054 7,

=10, 02464, M11  0 I4 1400,1 Ji., 0 -042S'i. 3 1., 0-0202.

With these Values we Solve the first four ec-uations fromn (15) and fromn (16) for
eight unknowns. neglecting thle uniknoii w' 16 ngimer ordelr; thi.- gives

C= 04.3029, D) --4)-0-4s(. A] - 0'201 2, A., 0-0352,

A3: 0'4 3 B1 -tiM ) Ro P:1 -L IItI. --(0(1027.

'l'llese iiiaxv hev conimiim I w ith t he 'orresp~onin g v'a Iies fi r the limitiing ease
4d4. 11i11vI. Vud,

0-(45. D) - . .41 - (1-241-S, A., = ~-0-0:75. A-1 = (1-011"). A.1 7-i, B 0).

6. 'Hli res,'ilil~t h1YI1-dimlaimivpessr mi.*~'''o thle sphere is given by

Z --- inpi
2  

s, .ii I (Wd. (8
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IJ~ r ' dF r s (111( to q ,flo .Nti h , h r, . e h ,b r iwJ loot ',t'rtiO , i /

(Ol the sphere we. have

= IL, L'( (c( .O q - I) Sill a ) 7TI/fl.J,( ;Sii U) v sill , r/-- 1) e ' MJl)

a 2 P,( ) (p ) LI cos ,-1 -t- B, sin et), ( 2i)

i 1211 2. -I (

where, after Isuitg (21). (23) and (25),

I.' = I - • t(. ,v 1o20 to ( g i (ni )+ )',(/) I I I v /.I p/•,(,s (3(,)

We obtain Z in the form

Z 7qnor4,(,T sin arr-_ 7rrpa 3 -2h1rrcos C(Tr (31)

with -11,-= L,' - 7t/MI±, D + (Q/I + I-) A, - -!A + 1--..., (32)

== L D + rj i(,' C+(+)B -Q 1 2 + ) .... (33)

In (32) and (33) we have put

L' =f1 L(J '~ M - Jo(flsin&)e-/•'oo• !(/,)h1//. (34)L' f- L'Pj (p) d/i, M;• (34)

Thc velocity of the sphere being cos o-1, the first term in (31) represents an a(ldition
to the effective mass, the virtual inertia coefficient being k as given by (32). The

0'8k

k

0.6

._ iI I I 1 I I I
0 0"4 0 ;2 16 0

or~u y

F'Itl'ljl, 1. Variat ion of virtual illell ia coti li(jJn I k' and ,aIleu ilit l
ptramletuvr 2/ \% ith fr-qquen-,y

second term in (30) being p)roportioaml to the velocity, the quantity h as given by
(33) may be called a damping parameter; it g'.ves sonite estimate of the (lamnpinig
factor if the motion were unforcvd damped periadic relation. We may obtain an
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7 Waves due to a floating 8phere3 making heaving oscillations

alternative expression for h from tnergy considerations. The motion as w-+ co is
given by

qS-7TK~a2 (WXT2I7)~ e-KoJ{C sin (oi ic0OW + f~n) - Dcos (o1 - ,c~tu+ 17T)) (35)

The average rate of flow of energy outwards is rf2pra3(C2 + D2 ); equating this to

hirpo'a3h we have h= -3 ,(C 2 + D2 ). (36)

For numerical evaluation, the L' and M' quantities were computed by methods
similar to those used for the L and M quantities in § 5. As an example, from the values
given above for 8 = 0.4, we find k = 0-656; from (33) we obtain h = 0.174, while
(36) gives h = 0- 177. It will be appreciated that the values for the B coefficients are
more liable to error than for the A coefficients; however, the two values for h were
in fair agreement. Although the numerical computations for k and h were only made
approximately the results were sufficiently consistent to be represented by smooth
curves; theie are shown in figure 1. The virtual inertia coefficient k begins from a
limiting value of 0-828, rises to a maximum of about 0-88, falls to a minimum of 0.38
and it then, presumably, rises slowly to the limiting value of 0.5. In order to use the
same ordinate scale, the damping parameter 2h is shown in figure 1; this rises to
a maximum of about 0.35, the largest values of the damping parameter occurring
in the frequency range in which the virtual inertia coefficient varies most rapidly.
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A Note on Form Friction and Tank Boundary Effect

Sir Th omas H aavelock

The following remarks are concerned with a suggestiou ii n 8v/v. It was shown from model data that this gave reason-
made by Professor Horn many years ago for estimating form able values for the form friction, of the order of 8 per c'Pt.
friction by meaus of the sinkage of the model, and with thepossible application of this method to motion in restricted In a short paper a few years later [2], I examined the tht-c,,c-
water. tical solution for a particular form, namely the general ellip-soid, including the case of a spheroid. The problem was treated

The influence of the walls and bed of the tank can, in usual as the motion of a double model, that is, a complete ellipsoid
circumstances, be conveniently separated into wave effect and moving axially in an infinite liquid: a problem which can be
frictional effect. The underlying theory of the wave effect is solved exactly.
well known; the bed coritributes the so-called shallow water
effect, while the walls may give rise Lo interference effects due Taking the motion along a horizontal axis Ox with the trans-
to the waves reflected from them. It is true that the actual cal- verse axis Oy horizontal and with Oz vertical, an expression
culations are beset with difficulties, such as occur in wave was obtained for the resultant vertical fluid pressure on one-
theory generally; but at least it may be said that the funda- half of the surface of the ellipsoid with respect to the xy-plane.
mental causes can be specified reasonably. The theoretical If we now suppose the ellipsoid to be floating half immersed
aspect of the frictional effect seems to me to be less clear. The and if the velocity is small so that we may neglect the surface
point in question is the difference between the ship form and disturbance of the water, we can define an equivalent sinkage.
a plank. A thorough analysis, theoretical and experimental, If Z is this defect of vertical pressure and S is the area of
seems impracticable in general; though useful and important the water plane section, we take h = Z / g Q S. The results
results are available for completely submerged solids of were compared numerically with Horn's value aA'd also with those
revolution. Assuming the form friction to be small, the usual obtained by Amtsberg [3] for totally submerged spheroids. The
practical method is to use the idea of effective equivalent analytical expressions for the general ellipsoid were given in
velocity; that is, the actual frictional resistance of the ship terms of ellipsoidal coordinates; I quote now the special case
at a given speed is aken as equal to that of a plank at some of a prolate spheroid, where the result can be put into a
slightly higher speed. Failing a complete analysis of the actual simple form.
flow, we can only make some reasonable assumption for defin- The value of Z is given by
ing this equivalent effective speed.

Horn [1] proposed to use the measured sinkage of the model Z = inoab v2 (1 + kl)2 a (a + 2 b) v coabv 2  (3)
for this purpose. If v is the velocity, and h is the sinkage, (a + b)2

he gives for the required effective mean velocity v. the ex- and the sinkage, as defined, is h = Z / a o a b g.
pression

Vm = (v2 + 2gh)1'/, (1) In this, 2 a is the length of the spheroid, 2 b the equatorial

or if vm = v + 6v, the relative increase in velocity is diameter, and k, the virtual inertia coefficient of the spheroid
for axial motion. If, for example, we take a length-beam retio5v,/v = (1 + 2gh/ve)11 -- 1. (2) of 8, we find h = 0.029 v2/g; and assuming n = 1.925, we

If the frictional resistance R is proportional to vn, the r-lative get an increase in frictional resistance of 5.3 per cent, agreing
increase in resistance, or the form friction, is given by 6 R/R fairly well with Amtsberg's values.

6-
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Comparing (3) with Horn's definition of the mean velocity If we write

we see that in this case

v,,, - v (1 + ki)[a (a + 2 b)]'/, / (a -i- b). (4)

For most cases of interest, a/ h is fairly large, say 8 or more, 1 [q - +T - 4)"]

and we have approximately the coefficient rX is gi,'cn by
v. = v (I + k,) (5)

Hence we have the simple, and interesting approximation a ' (log -1 (8)

8v/V =k 1 ; 811/11=nkl. (6) li-- .3

For example, the virtual inertia coefficient for a sphercid where the double summation is taken over all positive and
of length/beam ratio of 8 is 0'.029, and MR/R = 0.053. It negative integral values of rn and n, excluding the pair
might be going too far to apply this to ship forms, where the m 0, n = 0. This summation arises from the doubly infinite
inertia coefficient is itself subject to uncertainty; however, series of images involved in the solution. This result may be
assuming an effective virtual coefficient of 5 per cent would subject to correction if the analysis is carried to a further stage,
give a form friction of about 9 per cent. and the range of applicability is uncertain on that account. As

Of course for a spheroid the velocity distribution is known before, we may simplify the result if b/a is small; we have

exactly and we might take some other suitable definition of approximately, b
the mean velocity. For instance, it might be obtained from vm = v (1 + k1) [1 --- (1 + k1) ot (9)
the mean of the square of the tangential velocity per unit area a 2

of surface. It can easily be shown that this leads to the same
approximation (5) when a/b is large. The point of Horn's and, instead of (6) for unrestricted water, we have
definition is that the sinkage can be determined experimentally.

Coming now to the corresponding problem in restricted wa ier, - k, + -... (1 + k1) 2 a . (10)

the tank boundary effect or the so-called blockage effeci has v a
become important in view of the need for greater accuracy
and certainty in interpreting experimental model results. Numerical computation has been made for a few cases for
Reference may be made, for instance, to two recent papers: the spheroid with a = 8 b. We have taken B = 2 H as a usual
the B.S.R.A. experiments on the Lucy Ashton [4] (Conn, tank ratio and it also simplifies the computation. For B/2b
Lackenby and Walker), and the scale effect in Victory ships equal to 12, 8, 41/2 the approximate values of the coefficient
and models [5] (van Lammere~a, van Manen and Lap). In the ry are 0.065, 0.160, 0.392 respectively. If we define the
discussion on the former paper, Professor Horn referred to blockage coefficient as the ratio of the maximum cross section
his method of using measured sinkages to estimate form fric- of the half-spheriod to the seciional area of the tank, this
tion and suggested that it might be used to determine the coefficient is 0.005, 0.012, 0.024. From (10) the percentage
necessary correction due to the boundaries of the tank. How- form resistances at these values are 5.46, 5.84 and 6.93
ever it seems that, at least for the Lucy Ashton, the diffeiences respectively, the value for unrestricted water being 5.29.
in sinkage were too small to be determined experimentally with
satfficent accuracy. It might be of interest to extend my previous The differences are negligible for small vahles of the
calculations to the similar problem in restricted water. Consider blockage coefficient. It is not worth while attempting any direct
a spheroid half-immersed and moving along a tank of breadth comparison with model results meantime. The calculations
B and depth 11. With the same limitations as for unrestricted were made for a spheroid under the limitations specified;
water, we consider the motion of the complete spheroid in an moreover they refer only to the effLct on form friction and
enclosed rectangular dcannel filled with water, B being the take no account ol surface disturbance or wave effects.
distance between the side walls and 2 H that between the upper
and lower walls. We require to calculate the quantity Z of (3),
that is the resultant vertical force on the lower half of the
spheroid. It is possible to obtain analytical expressions in e References
series of terms involving spheroidal harmonics; but they become
very complicated and it is difficult to assess the degree of [1] F. H o r n, ,Hydromechanische Probleme des Schiffs-
Lpproximation numerically. The particular case of a sphere antriebs", p. 94 (1932). Also ,,Intl. Conf. Ship Tank Supts.",Berlin, p. 20 (lt•7).
can be worked out in more detail, but the spheroid is com-

plicated by the additional parameter of the length-beam ratio. [2] T. H. H a v e I o c k Zeit f. Ang. Math. u. Mech., 19, p. 202
(1939).

Taking only the first step in the approximation I give now

the result obtained for the quantity Z; it is (31 H. A m ts b e r g, Jahrbuch der S.T.G. 38, p. 177 (1937).

Z= in L a b v2I"l -(+ kt) (41 J. F. C. C o n n. H. Lackenby, W. P. Walker, Trans. I. N. A. 95,
V (a + b) 2  p. 350 (1953).

a abg 2 1
~ 14(I + k1) 1- - (7) (51 W. P. A. van Lammeren. J. D. van Manen,

(a b2  J A. J. W. L a p, Trans. I. N.A., 97, p. 167 (1955).
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THE DAMPING OF HEAVE AND PITCH: A COMPARISON OF TWO-DIMENSIONAL AND
THREE-DIMENSIONAL CALCULATIONS

By PROFESSOR SIR THOMAS H-. HAVELOCK, M.A., D.Sc., F.R.S. (Honorary Memhe, and Associate Member of Council)

I. Damping coefficients for heave and pitch are usually derived form, such as a spheroid half immersed, the expressions soon
by calculating the mean rate at which energy travels outwards become very complicated and numerical computation of pro-
in the wave motion produced by the oscillations. The calcula- hibiti~e length. In this paper we deal v,ith the simpler problem
tion is based upon approximate solutions for the two-dimensional of a solid which is wholly immersed in the water, and we obtain
motion due to heaving oscillations of a long cylindrical floating the damping coefficients by the two methods: strip-method and
solid; the application to heaving and pitching for a ship then three-dimensional. Although the separate results would not be
proceeds by the so-called strip method. Each thin section of the applicable to a surface ship, it is thought that the ratios of the
ship is treated as part of an infinite cylinder of the cross- coefficients obtained by the two methods should at least give a
section at that point, sending out two-dimensional waves on useful indication of the sort of difference that might be expected.
either side. The coefficients for the ship are obtained by inte- The calculations are given in the Appendix, zomprising the basic
grating along the length of the ship. Reference may be made to theory, application to a submerged spheroid, approximate
Weinblum and St. Denis( 2 ) for a detailed exposition with cdl- expressions for any elongated solid of revolution, and some
culations. In the York of those authors no allowance was made remarks on the general ellipsoid with unequal axes.
for the difference between the assumed fiuw and the actual 3. We consider now some numerical results for a spheroid
three-dimensional flow; this may be justified to some extent in submerged in water with its axis horizontal. The spheroid is
tnat results in practical cases seem to give reasonable agree- made to describe (i) heaving oscillations, (ii) pitching oscillations.
ment for heaving, but the application to pitching requires more EH is the rate of energy loss for heaving calculated from three-
consideration. dimensiortal flow, EHs from the strip method. The corresponding

In discussing this point, Korvin-Kroukovsky and Lewis( 3) dampinj coefficients in the equations of motion of the solid are
remark that the damping coefficient for heaving may be assumed directly proportional to the energy loss; thus EH/EHs is the ratio
tt be correctly represented by the two-dimensional calculation, of the coefficients by the two methods. Similarly, for pitching
but they adopt an empirical reduction factor of one-half for the Ep/Eps is the required ratio. The general formulae are given
similar calculations for pitching. in (23) and (24). We take a spheroid with a length-beam

In a recent paper Korvin-Kroukovksy(4 ) discusses the matter ratio of 8, as a fair value for comparison with ship models; in
in considerable detail, and expresses the opinion that an important this case e - 0'996, k2 = 0.945, k' = 0-84. With these values
effect of three-dimensional flow may exist. tie estimated the (23) and (24) were computed for integral values of K, a, that is
validity of the two-dimensional calculations by comparing the of a2 afg, up to 10. The results are shown in Fig. I on a base
data with results from towing-tank experiments on two models.
It was found that, at the natural frequencies of the models, the 21
results were in substantial agreement both for heaving and for
pitching within the limits of experimental error, which were I- C -_
admittedly rather wide limits. However, for more extended
ranges of frequencies, it was found necessary to introduce 0.8
empirical correction factors, in one case, for instance, reducing
the damping coefficient for pitching to 75 per cent of the cpi- 0.b 6, Ell
culated va;ue. Korvin-Kroukovsky remarks: "In the case of 0 - ,s
damping in heave, most of the force comes from the middle part 04
of the body where the flow hardly differs from the assumed two- 02
dimensional one. The good agreement in regard to damping in
heave was therefore not surprising. The close agreement in the 0 L I F , -

damping in pitch was aot expected, however, and in fqct was later 0 2 4 6 ILO 12 14 lb I8 20

not confirmed in the application of the calculations to the entire 1/q
set of model motions. Most of the contribution to the moment FIG. I.-RATIOS OF DAMPING COEFICIENTS FOR HEAvING AND FOR
coelficient comes from the ends of the ship, where one logically PITCHING
should expect a large change from the assumed two-dimensional PITCHING
flow to the actual three-dimensional flow." It is clear that the
matter is not in a very satisfactory state, especially as the use of of a2 L/g, where a is the circular frequency of the oscillations
an inclusive empirical factor may hinder recognition of the true and. L the length of the model; this seems to be the suitable
caase of the discrepancy. parameter for comparison with model results.

2. The present work is intended, not as a solution of the The ratio for heaving rises rapidly at first and attains a maxi-
problem, but as a contribution towards elucidating the particular mum of about I" 1, and then, with small alternations, it soon
point of the difference between two- and three-dimensional approaches unity. With the sort of accuracy attainable prac-
calculations. Of course the only really satisfactory method would tically, the ratio may be taken as unity when a2 L/g is greater
be to work out the problem for a floating solid. It is not difficult than about 6. The ratio for pitching rises slowly at first and then
to formulate the mathematical equations; but even for a simple very rapidly up to a maximum of about I 15. In this case it

I
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THE DAMPING OF HEAVE AND PITCH

might, for practical purposes, be taken as unity if a 2 Lg exceeds 2 e-(z+f)KdK

about 8. McsaIZ f ' it+2KJ,2'

In addition to tWs approximation to unity above these I M cos- r--- rK•zf0 d°
respective values of a2 L/g, a specially interesting feature of the 0
curves is the rapid fall in both ratios for smaller values of the -- 2 7rKj M .J0 (K0 U') e-K(Z+f) sin a 1 (1)
parameter. where

It has already been remarked that these results can only be
taken as suggestive when applied to surface ship~s; however, it is rf (x - h)2 + (y - k) 2 + (z - 1)2 = M,2 + (z - j)2

of irterest to see what are the relevant -anges of the parameter r2- Z'2 + (z +1)2; aT2 
= g•o

in such cases, referring in particular to work in which the damping

coefficients have been calculated by the strip method over a The motion as Wo' -- 0o is given by
range of frequencies.

For free oscillations at the natural frequencies, there are data -
2 r K M (2/7r Ko0 &')l12 e-Ko(Z+f) sin (a t - K 0 @' + 7r/4)

in the paper by St. Denis(2) for a ship of length 600 ft. and beam . . .. (2)
81 ft. The values of a for free oscillations are given as 0.706 representing circular waves travelling outwards. For a given
and 0.821 for heaving and pitching respectively. The corre- distribution of vertical dipoles all at the same depth 1; we obtain
sponding values of a 2 L/g are 10 and 12.6 and these both lie the velocity potential from (1) or from (2) by integrating with
within the ranges given above where no correction factor is respect to h and k over the given distribution. The rate of flow
needed. A s'rnilar remark would, no doubt, apply to the experi- of energy outwards through a vertical cylindrical surface of
merits with 5 ft. models used by Korvin-Kroukovsky,(4) although radius Z5 is given by the rate of work of the fluid pressure over
the natural ,requencies do not seem to be given in the paper. this surface, namely
However, the present work may be taken to confirm his experi-
mental result that for natural oscillations the two-dimensional
calculation does not require any appreciable correcting factor z b dO (3)
either for heaving or for pitching. - Z t

For forced oscillations we have a wider range of frequencies.0 0

In work for which data are available, the heaving and pitching Taking the radius of the cylinder large, we only need 0 to the
are produced by driving the model at given speed through order wo-1/2 as Z- - oo.
regular waves of given wavelength. For instance, from St. If in (2) we put
Denis,(2. for a 600-ft. ship moving against waves with AlL =1 -25, x = F cos 0; y = U sin 0;
a ranges from 0.518 at zero speed to 0.77 at 30 knots; thus
U2 Llg ranges from 5 to I1. From the curves in Fig. 1, heaving &,2 j-02 - 2 h Ui cos 0 - 2 k F sin 0 + h2 + k2

may be said to require no correcting factor; but for pitching, the then, to the required order, (2) gives
lower values are well within the critical range where a large
correction is needed and where it changes rapidly. 2 1/2

There are similar data from Korvin-Kroukovskv(4) for 5-ft. -> -- 2 77T02 M( _) e-Ko(Z+f)

models. With one n.jdel and A/L -- I the parameter ranges
from 6.3 to 20, and with another model and A/L --- I5, it ranges sin at- h"0 + + h-
from 4-3 to 12.5. Here again the pitching calculation seems to (a .+
require considerab!e correction at the lower speeds. Hence, for a given distribution, we shall have

It should be noted again that one can only expect general
indications in applying the present results to surface ships. For 7 ( 4)
one thing, a spheroid is not a normal ship form. A more ,-0- '1/2 e1-Ko(z+f)[A sin crt-- & + 4
important point is that the flow round a completely submerged
solid may differ considerably from that round a floating body. d- Bcos (at - K0 to + 7 . (5)
However, it is possible that the strip method and the three- T)j
dimensional calculation might be affected in much the same way; with A, B known functions of 0.
if so, the ratios for the two methods may not be so far astray. Putting this form into (3) and taking the mean value with

Finally, in all calculations for forced oscillations due to respect to the time, we get for the mean rate of flow of energy
advancing th-ough waves, it is assumed that the only effect of outwards
the speed is to alter the frequency of fncounter. But a satis- E p a (A2 + B2) ..... (6)
factory theory of heaving and pit'hing including the effect of
speed of advance, for anything like a normal ship form, is one Finally, inserting the forms for A and B obtained by integrating
of the main outstanding problems. The corresponding theory (4) over the given distribution,
for a wholly submerged body might prove more tractable, and 2-
it may be possible later to extend the present work to a sub- E 2 IF-p a3 e 2

AKof (p2 + Q2) (1 . (7)
merged spheroid which is moving forward while making heaving 0
and pitching oscillations. with P + /Q fr M (h 'k)eI Ku(hcos 0-tkin ()dhdk

APPENDIX In the present work, we shall not need any more general expres-

1. The underlying theory was given in a previous paper() for sions, but an obvious extension would give similar results for any
a source distribution; it is convenient to give now explicit distribution of dipoles not necessarily in a horizontal plane.
expressions for a distribution of vertical dipoles. 2. Considar now a spheroid, of length 2 a and equatorial

Take the origin 0 in the free surface of the water, with 0 x diameter 2 b, immersed with its axis horizontal and at a depth f
and 0 y horizontal and 0 z vertically downwards. If there is below the free surface. Suppose the spheroid made to describe
a vertical dipole of moment M cos a t at the point (h, k, J) in small vertical oscillations, the velocity at any instant being
the water, the velocity potential of the fluid motion is given by V cos a t. It would be possible, theoretically, to proceed ster-
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THE DAMPING OF HEAVE AND PITCH 3

by-step with successive approximations to a solution satisfying (10), we find that 00 is the potential of a line distribution of
both the condition on the surface of the spheroid and that on vertical dipoles along the axis between the foci and of moment
the free surface of the water. We could then, at any stage, per unit length
obtain the fluid pressure on the spheroid and hence the resultant
vertical force. Of this force, the part in phase with the accelera- i/ o(. I) [1 +(2 -) 2 k]•.h(a2 e2 -- h2 )coso. (16)
tion represents a change in virtual inertia, the part in phase with For (8) we require the integral
the velocity is connected directly with the loss of energy in the
wave motion. At present we are concerned only with the latter rue
part of the force, and we adopt the simpler procedure of obtaining h (a2 e2 - h2 ) e i Ko h cos 0 d h . . . (17)
directly the energy loss, taking only two terms in a successive -
approximation to the velocity potential. and this has the value

For the first term we take the exact soiution 00 for the motion 1t2 ,_ (K0 a e cos 0)
of the spheroid iii an infinite liquid. Taking, momentarily, the 4 a 4 e4 (CO i a o)312 .. . (18)
origin 0 at the centre of the spheroid, and the usual spheroidal "2/ (K0 a e
co-ordinates From (7), (8), (16), and (18) we obtain the energy loss for pitching,

x = a eji p; y = a e (I - /,)l/2(ý2 - 1)1/2 cos W; which we denote by a suffix P,

z - ae(I - p2)1/2(2 ( _ i)/ 2 sin w E, = 4 72 p C 3a4 h4 e2  .-.12

we have the known solution, as given in Lamb's Hydrodynamics, [I + (2 •2 -1 1)2 k'1 2 e-2 K,,tf22 /2 K- 5s--) d 0

p. 142, with a slight change of notation. f (K0 a e cos 0)3

0o=- .aV(1i2 - 1)(1 + k2)Pl(tO)Q1Q(4)sinwcos at . (9) . . .. (19)

where = I = (a 2 - b-) -022, and k2 is the virtual inertia 4. We obtain now the corresponding expressions by the two-

coefficient for motion perpeadicular to the axis. For the next dimensional strip method, denoting them by an additional

step we add a potential 01 such that 00o - 0,, satisfies the con- suffix S.

dition at the free surface. For this purpose it is convenient to For a circular cylinder of radius r with its axis at depth f,
express O0 as the poter'tial of an equivalent dipole distribution. making heaing scillations V cos a t, we have the knownUsing the gener-" 'A expression for the energy loss to the same approximation,

(a2e2 _h 2)iI2sp•(h/ae) E 2ir 2 p an, r4 V2 e-2Ko . . . (20)

P4., Jp -Q-es -ae2_h_)2+ P`- /e d per unit length of the cylinder.
+Y 2 .Z For the spheroid, this result is assumed to hold for each thin

(10) disc of width dh; in fact, we might picture the method by

and taking the particular case in (9), we see that Ao is the potential assumizi? titin partitions transverse to the axis, separating the
of a line distribution of vertical dipoles along the axis of the elementary discs and making the fluid motion purely two-spheroid between the two foci and of moment per unit length dimensional for each disc. Integrating along the axis, we obtainby this method

1 1 - - e 2 ( I +C
-4 e3--( 2-k2)(a 2 e 2 

-h / 2)Vcos' . ) 27?2p aK V 2 e_2Kof b 4 (I - h2 /a 2 ) 2 dh

We could now obtain 01 by integrating (1) with respect to h. 32
For our purpose we proceed directly to the energy loss from - 2 pKia MA V2e-2Ko... ...... (21)
(7) and (8). We require the integral 15J For pitching oscillations by this method, we simply si2sti* i,

(a 2 e2 -- e eiKohCosOdi (12) dhh for V; hence

-a
and this has the va'lue Eps: 2 ;72p P Cr K12e-2 o(Mh (I __ h2[a2)2 d h

(71) 1/2 J3/ 2 (K 0a e cos) 32

2) (Koa e cos 0)3!2 10(13) 1- - . . . . (22)

Collecting thd various factors from (7). (8), (11), and (13). we 5. The particular point in question is the ratio of the dampijig
obtain the energy loss for heaving, which we shall denote by a coefficients obtained by the two methods, which we take as equal
suffix H, namely to the ratio of the Lorresponding energ> loss.

From (14) and (21) we have for heaving
Eli =4fr 2 p 90a 2 bt(l d- k2)-V2e -: J 12(Koae COS ) dO SEH = 1'oa(I + k2)2 ^ (Koaecos)- ) (23)

(14) l k (K0 aecob,6

3. Suppose the spheroid to be making rotational oscillations Fiom (19) and (22) we have for pitching
about the transverse axis with angular velocity 1 cos (T t. The
velocity potential for an infinite liquid -is Ep 10-5 0 a e2 (I 1 (2 • 1 2 -- ]2 "Jj1 0% a e cos d) .
00 a2e=Q - - ) [1 + (2 Q.. -. -1 2 ,'] &P - F f=K a e os8)

f PI. (I) Qj (0 sin w cos a (15) 0 ... (24)

in which k' is the virtual inertia coefficient for rotation. Using As the length of the spheroid is increased, with a given breadth,
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THE DAMPING OF HEAVE AND PITCH

both e and k 2 approximate to unity, further, it can be shown we may apply (7) and (8). If 2 1 is the length of the solid, and
that the asymptotic value of the integral in (23) is ,'/15 K0 a e. we take the origin at the centre of the axis, we have
Hence, as one would expect, the ratio (23) approaches -nity for
a sufficiently long narrow spheroid. Under the same cornditions, I
k' approaches unity and the asymptotic value of the integral EH = 0 K-(I + k)2 V 2 .e-

2 Kf (p2 + Q2) dO (2h)

in (24) is 2/105 K0 a e; hence the ratio (24) approaches unity 0
under these limiting conditions. F'P +

For numerical computation we can obtain power series for with P + iQ= S (h)e iKo,,osO dh .e(29
the integrals by substituting the known expression for the square -
of a Bessel function and integrating term-by-term: thus we have Smilarly, for pitching oscillations to the same approximation

JJ 12 (KOaecOsO) sec3 Od 0 Ep I K3(1 +k,)2Q2e-2,lJ (P2 +Q2) d20 (30)
0 (- 1)m(M + l)!(Koae)2m+ 3  

08
±2 -+ (25)

f7c/2M=0(2 m + 1) (2m +- 3)(m!)2("I + 3). with P+-iQ =f hS(h) eiKohcos(dh . (31)

FJ]12 (,0 a e cos 0) sec3 0 d 0
J It may be noted that k and k' are the virtual inertia coefficients

---- 2 • -- l)mr(?n + 2) (K0 a e)2-+ 5  for the solid as a whole; though, under the given condition

m.0(2 m -t 3) (2 m + 5) t:'! (ni + 5)! (26) they both approximate to unity.
7. All the foregoing calculations are for a solid of revolution.

The series can be computed readily for values of K0 a e up to With a view to removing this limitation, expressions were
about 6. For higher values, the integrals were computed by obtained for a general ellipsoidal form.
direct quadrature, using intervals of 5 deg. throughout the range. For an ellipsoid with unequal axes, a > b > c, and with the
Owing to the lack of suitable tables, the Bessel functions had a, b axes horizontal, the dipole distribution is in a horizontal
to be evaluated separately in each case; however K0 a e was not plane and extends over the area enclosed by the elliptic focal
taken larger than 10 as, with the degree of accuracy attempted, conic. Apolication of (7) and (8) leads to expressions for the
there was no appreciable difference then from the asymptotic energy loss.
value. If the larger transverse axis is vertical, c > b, the distribution

6. We may extend the method to give approximate formulae lies in a vertical plane, and within the elliptic focal conic; a
for any long solid of revolution which is completely immersed, simple modification of (7) and (8) gives the required results,.
There is a well-known approximate solution f( the transverse It was decided eventually that it was not worth while carrying
motion of a long solid of revolution in an infinite liquid, in which out computations; the expressions are of the same type as for
the flow is treated as two-dimensional; it consists of taking a a spheroid, though more complicated. It appeared that if the
distribution along the axis of two-dimensional dipoles of transverse axes b, c do not differ greatly, the main difference in
moment S/nr per unit length per unit velocity, where S is the the results as compared with a spheroid is a scale factor arising
cross-sectional area at any point, from the different values of the virtual inertia coefficients.

We have seen in (II) that the transverse motion of a spheroid
is given by a line distribution of three-dimensional dipoles along References
the axis from - a e to + a e, of moment per unit length per
unit velocity (I) WEINBLUM, G., and ST. DENIS, M.: "On the Motions of

1 b2 Ships at Sea," S.N.,4.M.E., 58, p. 84, 1950.
4 -a e-(I + k2)(c1: -- h2) , . (27) (2) ST. DENTS, M.: "On Sustained Sea Speed," S.N.A.M.E..

59, p. 745, 1951.
For a long spheroid, for which e is nearly unity, (27) is approxi- (3) KORVIN-KROUKOVsKY, B. V., and LEwis, E. V.: "Ship

mately (I + k 2) S/4 17; and to the same order we may take the Motions in Regular and Irregular Seas," Intl. Shipb.
distribution as extending over the whole of the axis. This Progress, 2, p. 81, 1955.
suggests that for any elongated solid of revolution we might (4) KORVIN-KROUKOVSKY, B. V.: "Investigation of Ship Motioan
assume a distribution of three-dimensional dipoles along the in Regular Waves," S.N.A.M.E., 63, p. 386, 1955.
axis of moment (I + k) S/4 ir per unit length. Thus for heaving (5) HAVELOCK, T. H.: "The Damping of the Heaving and
oscillations V cos a t of such a solid with its axis at depth f, Pitching Motion of a Ship," Phil. Mag., 33, p. 660, 1942.
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A Note on Wave Resistance Theory:

transverse and diverging waves

Sir Thomas Hlavelock, NVccasth-

I wish to associate myself with this tribute to Professor stage of approximation for the resultant pressure calculation
Weinblum for his distinguished work in Ship Hydrodynamics, than for the wave-energy metlod. [he energy method was
and I shoul,1 like to add also that I am greatly indebted to used at first only for two-dimensional problems, asi for
him personally. This is my excuse for a few remarks on a instance the motion of a subnmcrged circular cylinder; this
certain aspect of wave resistance theory, though I have nothing was because there was available the well-known conncction
new to add; the particular point is no doubt chiefly of theore- between energy transfer and group velocity for straight-
tical interest, but it happens to have conic to my notice again crested plane waves. For three-dimensional problems, such as
recently, a submerged sphere, the resistance was found at first by the

resultant pressure method. Subsequently I gave a theorem
Considering an ideal frictionless liquid, the only resistance for the energy transfer in a ship wave pattern and its appli-

to the motion of a solid is the wave resistance, and it is cation to the calculation of wave resistance (Proc. Roy. Soc. A,
obviously the horizontal resultant of the fluid pressures on the 1932). This was done by considering control planes at great
solid. Another method is to calculate the propagation of distances before and behind the moving solid, and calculat-
energy outwards in the wave motion, and so deduce the cor- ing the rate of work and the transfer of energy across these
responding i,-sistance. These two methods give the same planes. If Ox is in the direction of motion of the solid, 0 being
result, provided the calculations are miade to the same degree a moving origin, we assume that the surface elevation '_ at
of approximation in each case. It may be noted that, in gene- a great distance to the rear approximates to a form which
ral, this involves obtaining the velocity potential to a higher can be expressed by

Schiffstechnik Bd. 4 - 1957 - Heft 20 - 64 -
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diniinishing draft 11ncreases the relali~e importance of the
" sodiverging waves, and vice versa.1: .'(0t)sin f kosec" 0 (x cost if-f- y si n0)l d 0

We may illustrate interference efiects by taking a svsteii
of a source and sink each of numerical strength in. at a depth

-_ f, and at a distance I apart. The total resistance is given hb

+ J' F(0) cos {kn, sec-' i (x cos 4 -+- y sin if) } d1, 2

-R 32 n m2 62 c.2'{ 1 - co ,{ I ns e2 kl [se' t) } e-2 , f ec 0 sec'1 if d 0
2 0

where c is the velocity of the solid, and k= g/c 2
. It was Consider the oscillating part of the integral due to the

shown that the wave resistance is given by factor cos (2k 0 1 sec 0) in the two parts of the range of inte-
gration. Approximately, the last hump on the resistance carve
in eadh case will be near a value of k0 f given by 26k Iscce

R 0'p c' 'f(0) + f- I f)2 F (0)2 + F • 2- } cosJ'U)dO. = T. For the range 0 to P, see it is not much different from
D unity; so the last hump on the transverse wave resistance

The wave pattern can be considered as made up of elemen- curve will be near k0 1 = a/2, or a Froude number F -1 0.56.

tary plane waves travelling in all directions. From our know- On the other hand, on the range I to 90' we may take sect)

ledge'of the ship wave pattern it appears that the transverse as about 2 to give the maximum result; so the last humtp on

waves are made. up of plane waves making angles with Ox the diverging wave resistance curve will le near k(11 I :/4,
or F = 0.78. The interference effects due to the superposition

ranging from zero to a certain angle up , while the remaining of two sets of transverse waves is a familiar idea: it is not
plane waves from (3 to 900 make up the diverging waves. The

angle P3 is given by sin 2 p (3 i , and is about 35r 16'. With so well-known that we may have interference of the diveging

this in mind I suggested (I. N.A., 1934) that one might pus- waves of two systems.

sibly divide up the wave resistance integral similarly; thus In conclusion I may refer to some calculations which have
the value of the integral in the range 0 to P3 would represent been made for simple ship forms on this assumption for
the part due to the transverse waves, and the part from (3 to separating the contributions of the transverse and diverging
90' that due to the diverging waves. Of course this, as it waves.
stands, is no more than a fairly plausible assumption. I have Wigley (I.N.A. 1942) has given numerical results for a
been examining the possibility of putting it on a better basis simple parabolic model with two ratios of length to draft and
by a different analytical approach; however I leave that mean- up to a Froude number of 0.6. Inui (Intl. Conf. Ship Hydro
time with the remark that I think it can be justified as a 1954) refers to some similar unpublished calculations by him-
fairly reasonable assumption, which can be used to give some self, and gives an interesting diagram for water of finite
interesting results. Taking some simple cases, consider a depth: in whidc case there are only diverging waves above a
sphere with its centre at a depth f; the total resistance is critical speed. Finally, I would refer in particular to Lunde

S(S.N.A.M.E., 1951) who gives a diagram of curves of trans-
2 verse and diverging wave resistance for a parabolic model.

R = 4:rgv ko3 a' f sec5 0C2kfsecW t(d . These curves are very interesting, bringing out clearly the
0 hblmps and hollows on the two curves; for instance, the last

We see by inspection that for low speeds the greater part hump on the transverse wave curve is at about F =: 0.45, while
of the integral comes from the range 0 to (3, while for high that for the diverging waves is at some value greater than
speeds the greater part comes from the range (3 to 90" ; a Y -- 0.6, outside the range shown on the diagram. It might be
direct calculation shows that at c / V(g f) z= 2, the diverging of interest to have calculations for other models, to show bow
waves account for about 30 per cept. of the total resistance, the various elements of form affect the relative importance
From another point of view, this illustrates the fact that of the transverse and diverging waves.
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THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH
By PROFESSOR SIR THOMAS H-I. HAVLLOCK, M.A., D.Sc., F.R.S. (Honorary Member and Associate Wtember of Council).

Summary

Calculations are made for the damping coefficient for a specially simple case which may be
taken to correspond approximately to a long narrow plank moving forward with velocity c and
making forced pitching oscillations of frequency p. Curves are given for the variation of the
damping moment with frequency at various speeds, the chief aim being to illustrate the effect
of the critical condition when the parameter p c/g has the value J. The results are discussed in
reference to recent experimental work and the possibility of a steep rise and fall ih the curve
of damping near this critical point.

The damping of the heave or pitch o" a floating solid is mainly Turning to the three-dimensional case of a point source, one
due to the energy lost in the wave motion produced by the might hope that the infinity would disappea.r through integra-
oscillations. If the solid is at rest, apart from the oscillations, tion, but this is not the case; the solution contains integrals
the problem can be formulated satisfactorily as a potential which are finite in general, but they become infinite at the critical
problem with the usual linearized condition at the free surface value of the parameter.
of the water. If the complete solution could be found in any Calculations have been made by Haskind and by I-lanaoka for
given -ase, it could no dot bt be also expressed in terms of some the damping of a Michell-t) pe of model with the source distribu-
source distribution over the immersed surface of the solid. tion assumed to be in the vertical longitudinal plane; this assump-
However, what is usually known as the source method of solution tion is the well-known approximation for wave resistailce, and
is an approximation which begins by assuming some simple although it is of doubtful validity in general as regards the
source distribution and then adding the wave motion due to these heaving or pitching oscillations it gives useful indications for
pulsating sources, the nliethod has obvious limitations on its simplified forms. Although the integrals used by Haskind
application in general, b it it has served to give interesting and become divergent at the critical value of the parameter, his curves
useful results. If, in addition to the oscillations, the solid is do not show any infinity; possibly the range does not include the
moving forward with a constant speed of advance, the formula- critical point. Hanaoka also gives a curvw. for the damping at
tion as a potential problem with the linec..;zed free surface con- various speeds; but the whole curve is explicitly for the value
dition is not satisfactory except in the limiting case wher tie solid p clg =0- 0.6 and so is well beyond the critical point.
is like a thin disc moving in its own plane. However, some pro- Some recent experimental work by GoiovatoO4 ) is of special
gress has been made by the approximate method of assuming interest. A model was made to perform heaving oscillations of
some source distribution, and the calculations then require the given frequency while moving forwardI at some constant speed,
wave motion due to a pulsating source advancing at constant and the forces and moment on the model were measured. In
speed. This problem has been examined by various writers and Fig. 13 of that paper the damping moment is shown in curves
reference may be made in particular to Haskind,O) Brard,(2) and on a b-.._ p (B/g)i for various values of the Fioude number.
Hanaoka.'" If p is the circular frequency of the pulsation and A strik ng feature is the pronounced peaks at low values of the
cthe velocity of advance, it is known that the wave motion changes parameter. Golovato remarks: "The steep rise at low fre-
in character when the parameter p cfg ý ¼. It does not seem quencies appears to coincide with a velocity-wave celhrity ratio
to have been pointed out explicitly that in fact some of the terms of ¼ where the character of the waves generated by the oscillating
in the solution become infinite at this particular point. The body is known to change markedly." This ratio is what we have
object of the present paper is to examine this matter in some denoted here by p clg. It is curious that the curves for heaving
detail for a special case so as to see the effect of this mathematical do not seem to show the same effect, though one would expect
infinity unon the damping for lower and higher value. of the the same cause to be operative for both heaving and pitching.
parameter. Consider for a moment a two-dimensional case, for The present calculations are for a simple line distribution of
instance a submerged circular cylinder making heaving oscilla- pulsating sources, but we can relate them to a possible physical
tions of frh 1uency p and advancing with velocity c. At zero problem. Suppose a long narrow plank, in a vertical plane,
speed, there are two wave trains, one on each side of the cylinder, moving forward and at the same time making small pitching
At speed ., it p cig < 1, it can be shown that there are four wave oscillations. Such a form, with pointed ends. is the most suitable
trains, one in advance and three to the rear, the wave train in for comparing wave resistance theory with experiment, and it
advance being that for which the group velocity is greater than might also be used similarly to test the approximate linear theory
the speed of advance. If the speed is increased, the amplitudes of heaving and pitching. However, even if it is not a practicable
of two of these trains become infinite at the critical point when method experimentally, it is an appropriate form for the present
p c/g = 1; and for higher values of the speed these two trains state of theory. We may separate out the effects of the forward
disappear, leaving only two wave trains both to the, -.ar of the motion and the pitching; and we may assume the latter to be due
cylinder. The behaviour at the critical point clearly arises from to a simple source distribution over the flat submerged base of
a special, and interesting, case of resonance; and, as usual, the the plank, or for small enough beam to a distribution along the
infinity could only be removed from the solution by introducing central linc of the base. As numerical computation is rather
some frictional or other kind of dissipation. lcngthy in any case, we omit the poitted ends and reduce the
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2 THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH

form to a long plank, of length L and beam B, submerged to a infinities would be smoothed down as in other resonance effects;
draught d, moving forward with velocity c and making small and also they are likely to be highly localized and sensitive to
pitching oscillations with angular velocity Q sin p t. small disturbances. Nevertheless they have their effect upon the

The theoretical work is given in the Appendix. It begins with rest of the curve; and with suitably devised experiments one
a different derivation of the fluid motion due to a moving might expect peaks on the damping curves in the region of the
pulsating source. Then by integration of an assumed source critical value of the parameter.
distribution we obtain the velocity potential for the plank. The
fluid pressure is obtained for any point of the base and hence the
moment of this pressure. Dealing only with the moment due to References
the pitching motici, the periodic part will be of the form (I) HASKIND, M. D.: Priklad. Mlat. i Mekh., 10, p. 33 (1946).
M, sin p t + M2 cos p 1. The second term is in phase with the (2) BRARD, R.: Assoc. Tech. Mar. Aero., 47, p. 455 (1949).
angular acceleration and can be considered as giving a~virtual (3) HANAOKA, T.: Journ. Zosen Kyokai, 93, p. 1 (1953).
addition to the moment of inertia. The first term is in phase (4) GOLOVATO, P.: T.M.B. Report 1074 (Washington) (1157).
with the angular velocity and gives the corresponding damping (5) HAVELOCK, T. H.: Quart. Jour. Mech. App. Math., 11, p. 332
coefficient; this is the only term which is examined here, and (1949).
expressions for M, are given in equatio'.s (13), (14), and (15).

For numerical computation we have taken L/B = 20 and Appendix
d/B -- 2. These ratios do not allow any direct comparison with A point source of strength m sinp t is moving with velocity c
the usual models; they were chosen partly to lessen computation at a depth d below the free surface of the water. We take moving
and partly so as to bring out certain points. Fig. 1 shows curves axes with the origin 0 in the free surface immediately above the

travelling source, O x in the direction of motion, 0 y transversely,
I ,.and 0 z vertically upwards. We suppose the motion to have

been started from rest and the solution we require is that to which
10 the motion approximates at a sufficiently long time after the

start. The result can be obtained by integrating the effect of
8 infinitesimal steps in the motion from the start up to the time t.

IO'• MSuppose the motion started at a time u before the present instant,
6 2' //\4 that is at a time t - u; then, using a general result for a variable

0.18 /source,( 5 ) we have for the velocity potential
4-

2 q = - sinp t + 4|(1)

, ,/where
0 2 0 3 0 4 0 5 A6 0 .7 0 .8 4 in g r U

FIG. I.-DAMPING MOMENT FOR PITCHING ON A BASE OF FREQUENCY lim .--- josin o (--u) du
FOR FROUDE NUMBERS 0, 0 "07, 0 "14, 0 '18 FOR SPEED OF ADVANCE u-0-0 ""

- 1:r. 2 0 0•
for the variation of l037 r MI/p g1 Bi L4 Q with the usual |dO | cos [K (x + c :) cos 0] cos (Ky sin 0)
parameter p (B/g)i for certain values of the Froude number F. f0 0

The curves do not need any detailed discussion, but one or X sin (u gi Ki)KI e-•-(d-,)d K (2)
two remarks may be made. The curve F ý- 0 is for zero speed
of advance and is of the usual type. It may be noted that the with rj• _ x2 += y + (z + d) 2 ; r2 X2 +y 2 + (z - d)2

integrals in equation (13) include an oscillating factor and we
might expect humps and hollows on the curve; but they occur at Carrying out the integration with respect to u we obtain
higher values of the frequency where the value of the moment is gi 7T/2 OD

small. These possible oscillations are not interference effects = lim -"- f dOf 0 e-K(d--2)cos (Kysin 0)
connected with the beam, such as have given rise to discussion u- " To 0

in two-,dimensional problems: the latter have been ruled out of
the present calculation by the assumption of small enough beam. [ cos [K ccos 0 -- p - (g K)i]_U
The interference effects here are in length, between bow and ×< [sin (K X cos 0 + p 1) -p
stern; no doubt the rectang:ilar form of the base would tend to I KCCO-P t9K)f

exaggerate any such effects. cos[KccosO p + (g K)i] u 2 (g K)i '
Comparing the curve for zero speed with the other curves, a K- C COS + (gK --- (K _C-COS-0

general effect is like moving the curve towards the lower fre- KV c cos A - p - (g K)I (K c cos 7i-- p) -- g .
quencies with increasing speed, and we can see the interference t sin [ ccos 9 - p -- (g K)t] u
effects coming into evidence. The other main point is the -t cos (K x cosO+pt)[ -- cos--
infinity at the critical value with a steep fall after this point
followed by a small gradual rise. The critical point for F - 0.07 sin (K C COS 9 p 4- (g Kd1 Ul
is atp (Blg)i -- 0-8; it Is not shown in the diagram as the infinity s -__ co_ 0 -p + ___ )_u]
is highly localized and computation would be tedious. The K C COS 0 - P + (' K) J
critical points for Froude numbers 0 14 and 0.18 are at 0.4 and
0.21 respectively. It should be stated that there are ccrtzin - two similar terms with - p for p d K ... (3)
speeds for which M, does not become infinite at the criti.'al
point, though there are still peak values; these speeds are such
that the Bessel Function in the integrals (13) has zero value for Considering the integration with respect to K and the limiting
9 0 when p c/g -: J. value as u ---. c*, we require the positive values of K for which

Naturally, in any experimental results the mathematical the various denominators in equation (3) are zero, and the corre-
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THE EFFECT OF SPEED OF ADVANCE UPON THE DAMPING OF HEAVE AND PITCH 3

sponding positive square roots of these values, There are four the pitching motion can be derived from a source distribution
such zeros in all and they are given by over the flat base of the plank; further, we assume the source

K, K2 o sc 6 [1 + 2 cos 0 + (I + 4 cos, )1] strength per unit area at a distance x from the mid-point is
Kj, K2 -o1/4 times the normal velocity ,!t that point, and for a sufficiently
K 3, K4 = K0 sec2 6 [1 -- 2 cos 6 (1 -4 Cos 0)1] thin plank we take this as equivalent to a line distribution of

amount (B/4 7r) x f sin p t. These are rather drastic simplifyingwhere K = grc2, in p cg, and K3, ) 4 only exist if cos t < 1/49. assumptions, especially for pitching; but perhaps they are notThe integrals in equation (3) asvolving a factor of the form too far amiss under the specified conditions for illustrating theCOS [Uf(K)]lf(K) tend to zero as u --)- vl, interpreting the inte- particular point under consideration. To reduce the computa-grals where necessary as principal value integrals. For the tion we extend the integration only to cover the rectangular partintegrals in equation (3) of the form of the base, omitting the supposed short pointed ends. The
fo velocity potential due to the forward motion could be obtained
F (K) sin [uf (K)]If (K) . dk . . . (5) in the usual way by a source distribution over the curved sides at

0 the two ends of the plank; as this does not enter into the present
where f(K) has simple zeros, the contribution of each such zero, calculation we omit this part of the velocity potential.
say K 1 , to the limiting value is 7r F (Kl)/If' (Ki)l. All the relevant Returning to equation (6) we obtain the required result by sub-
zeros are included in the four values given in equation 14). stituting x - h for x, multiplying by h B/4 7r and integrating

After carrying out these operations, we obtain between the limits + 1 for h, where L == 2 1. All the integrals
can be evaluated explicitly, but to avoid lengthy expressions we

(1 -- r) sinp t write F (x, y, z) for the contribution of the first term in equation
(6). We obtain thus

,..I2 [,. cs~)2g 4

2mj IdOj M sin(Kxcos0 +pt) = (B Q4 7r F(xy,z)sinp t
ir fd~f (K CO p)2- g +.B) _2 co

""'0 0 +gB (13/221r3)JodOf (,K sec 0)1 J j(K Icos 6)
sin.tccos o -Pt 1 Fo)K o 6
si (K c Cos +p)2  g K cos (K y sin 0) K e-K(, z) d K X [(COS (K X C 0-+ pgt)

•t e-•(-,) co (K C COS 6 -p -g ) K
7t2mf Ki e1(d-z) 

COS (Kcc COS + -g - COS (Ky sin 0 ) e-(d- z) d Kmo (I -+4pcos cos (KI x cos 0 +P t) cos (KI y sin 0) dO (K C COS 0 + p)2 - g KI

0 /
77/l2 + ' jKk- z (K ecos )• ' Icos6)sin(K xcosO

- 2m K 2•+ 4  cos (K 2 xcos 0 +p t) cos (K2 y sin 0) dO (27) J 0 +4pcosO
0m+ P t) cos (KI y sin 0) e--K(d-z) dO

- 2m7/K3 e-K3(d-Z) -+ similar terms in K 2 , K 3 , K 4  .  • .. . . .  . (8)
-- 2 n (I -4ficosO)W 0 (K3 x cos 6-- cos (K3 y sin 6) dO where J denotes the ordinary Bessel Function.

101 The pressure on the base is given by

r7i K4 e-t4d-: (• ) (9)

-2mJ(I -,.4 gcosaifcos(K4,xcosO-Pt)cos(K 4 YsinO) dO P =xP (I Z -C x
10 1 . . . . (6)

where and the moment M of the pressure about the axis O y is given by

61- 0if4ft< I M: f pxdxdy (.. (10)
01 Cos-' (i/4 P) if4fP> i (7)

In the last two integrals in equation (6) the integrand becom taken over the base. Or, to the present approxhation,

infinite at the lower limit 6,, but the integrals remain finite in 1(4, Z )
general; however, they become divergent in the limiting case M - xdx(1
when4 p landO6, 0. p BJ xd

The wave pattern at q great distance from the source need not -J
be discussed here; it is obtained by combining the last four with y - 0 and -. d in equation (8).
terms in equation (6) with the suitable contribution from the double On examination of the various terms in equation (8) it is easily
integral in equation (6). Broadly speaking, the pattern at a great seen that the only contribution to the terms in sin p r in equa-
distance in advance is associated with the K4 value while at the tion (II) comes from the last four terms in equation (8). From
rear it comes from the K1, K2 and K3 terms. Finally, it can be the first of these terms, for instance, the contribution to this
verified that for r c 0. the expressions reduce to the known form part of M is found to be
for a stationary pulsating source emitting circular waves at a
great distance. F C Cos p 2

Consider now a long thin plank, of length L and beam B pB 2I3 Llsinpt -I--L4.os #(.Icos8)e-2KdsecCOdO

and with short pointed ends, floating ve;'ically in water and
immersed to a draught d. The plank moves forward with 0 .... (12)
velocity c and makes small pitching oscillations with angular For computation we change from the Bessel Function J to the
vclocity Q sin p t. We assume that the velocity potential due to Spherical Bessel Function given by S (x) - (fr/2 x)t J (x).
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because extensive tables of these functions are available. With n12 1
c/(g L)1 , and with M1 sin p t being the required part of -A4 IN sec 'A dA

the moment, we obtain finally +-- (s-)0& 3/2 ((4 F2 sec 0F e- 4 dF J (13)

w MI/p B* gl L 4 - - (B/L)4 F- 3  with 01 given by equation (7), f = p clg, and

/" _I 2  A,, A2 = 1 + 2 P cos 0 ± (1 + 4 P cos 0)1 4
-A1 BIsec3  2 (A s ) ~dO B1, B 2  (1 + 4Pcos 0)1

[ (1+4PcosB) .4 A 3, A 4  1- 2 f cos 0 ± (I - 4 Pfcos 0)1

/ 422 B3, B4 = 1 ± (1 - 4flcos 0). ..... .. (14)

+ A2 B2 sec 3  ( -2(A sec 0) e-4' ,0,dO If we write q =p (BIg)1, it can be verified that when c = 0,
J + 4 equation (13) reduces to the result for this case which can be

obtained directly, namely
712 ItA 3 B e30 2 A3 dA3•0 L

f 2 Bq

0

I

A
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SUBJECT INDEX

.411 references are to pages in the collected edition.

ATTRACTION due to wavemaking between two
spheres moving parallel ............. 416

BOUNDARY effect on wave resistance, suggested
LAYER approximation to ................... 528

CAPJT TrERY see WAVE PATTERNS ............. 16
WA,.&S

CIRCULAR in infinite perfect fluid, certain math-
CYLINDER ematical ambiguities ............... 81-93

wave resistance of, starting from rest 118
wave resistance of, in steady motion 119-125
wave profile in a stream, second ap-
proximation ....................... 274-280
vertical force on, submerged in a
stream ........................... 297-303
complete solution for, submerged in
stream with accurate boundary condi-
tion ............................. 420-428
wave resistance starting from rest ... 535-544
wave resistance in acceleqationrmotion 545-553

DOUBLETS two dimensional, wave pattern ,n a
stream, axis horizontal ............. 288
three dimensional, wave pattern in a
stream, axis horizontal ............. 290
two dimensional, wave profile in
stream, axis vertical or horizontal.... 265
three dimensional horizontal, wave
resistance ........................ 282
assembly of horizontal doublets in
vertical plane, wave resistance ...... 283
two doublets, with different axes, at
any two points, resistance .......... 285
general distribution of, wave resist-
ance ............................. 371

DRIFTING FORCE of ship among waves ............... 483
comparison with experimental result.. 490

ELLIPSOID submerged, wave resistance of ...... 323-329
(GENERAL)
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ELLIPTIC iift and moment, moving between two
CYLINDER parallel walls, no circulation ........ 455

rolling, waves generated by ......... 462

FLAT PLATES lift and moment, moving between two A

parallel walls, with circulation ...... 439-449
moving between two free surfaces,
with circulation .................... 449-452
moving between one wall and one free
surface, with circulation ............ 452-454

FORCED SURFACE due to assigned distribution of veloc-
WAVES ity over a vertical plane in one or two

dimensions, deep water ............. 304-308
one dimensional distribution in shallow
water ............................. 308-311

FORCES ON moving in, a circular path, due to wave
SUBMERGED motion ............................ 554-562
SPHEROID

FORM FRICTION and tank boundary effect ............ 609

HEAVING AND notes on theory .................... 512
PITCHING oscillations in smooth water compared

with results of experiment .......... 512
oscillations among waves compared
with experiment results ............. 514
resistance of a ship among waves com-
pared with experimental results ...... 515
damping in two and three dimensions
compared ......................... 611
effect of speed on damping .......... 617
damping due to wave motion ......... .. 492
compared with measured values ...... 499
coupling of heave and pitch due to
speed of advance, without wave mo-
tion, for a spheroid ................. 597

MICHELL, J. H. his integral compared with method
using sources ..................... 202

MOVING general, wave resistance, compared
SUBMERGED with approximations, such as that due
SOLID to Bogner ......................... 374

of revolution, wave resistances of t
symmetrical and unsymmetrical bodies

compared .......................... 240
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MOVING moving horizontally, moment on due to
SUBMERGED wave motion ....................... 575
SOLID (Continued)

OSCILLATIONS IN of solid body ...................... 185
A VISCOUS FLUID

PITCHING See HEAVING AND PITCHING

PRESSURE OF against fixed obstable .............. 470
WATER WAVES comparison with wave force on floating

model at rest ...................... 482

ROLLING SHIP waves generated by ................ 462

SHALLOW WATER waves due to impulse moving on ..... 29
variation of wave resistance with
speed for surface pressure disturbance
moving on ......................... 51
effect on wavemaking resistance of
symmetrical surface disturbance ..... 192
resistance of a three dimensional hor-
izontal doublet submerged in ........ 286
forced surface waves on, due to as-
signed one dimensional velocity dis-
tribution .......................... 308
free wave patterns in ............... 380

SHIP AMONG resistance of, waves stationary with
WAVES respect to ship .................... 429

waves left by another moving at same
speed ............................ 432
advancing through free transverse
waves ............................ 435

SHIP VIBRATIONS virtual inertia for, spheroid .......... 583
with rigid boundary transverse to vi-
brations .......................... 586
parallel to vibrations ............... 576
floating spheroid horizontal vibrations
and vertical vibrations .............. 588

SKIN FRICTION and turbulent fluid motion, general dis-
cussion .......................... 158

SINKAGE of a ship at low speed .............. 459

SOURCES general distrihution of, wave resistance 367

623



T. H. HAVELOCK

SPHERES wave resistance of a submerged ..... 125
of two in series ................... 413
two .in parallel, (also of one near wall) 416
two in any position ................ 417
attraction between two moving parallel 416
floating and making heaving oscilla-
tions waves generated by, virtual in-
ertia and damping .................. 602

SPHEROID submerged, prolate, wave resistance
moving parallel to axis ............. 156,317
compared with result from Michell's
Integral ........................... 202
moving at right angles to axis ....... 319
oblate, moving parallel to axis ....... 317
at right angles to axis .............. 319
prolate, moment on when moving hori-
zontally parallel to axis ............ 580
see also under SHIP VIBRATIONS.

STABILITY of fluid motion, viscous fluid, two
dimensions ........................ 196
rectilinear vortices in ring formation., 330

TRIM OF SHIP calculations at high speed, compared
with measured trim ................. 520

TANK BOUNDARY and form friction ................... 609
EFFECT

TURBULENT and Skin friction ................... 158
FLUID MOTION

VERTICAL POSTS wave profiles of ................... 347
infinite draught, full ended .......... 353
wedge shaped ..................... 354
parabolic ......................... 357
general, any waterline .............. 356
wave resistance, infinite draught,
various waterplane sections ......... 204
with insertion of varying length of
parallel body ...................... 214
comparison of symmetrical with un-
symmetrical water lines ............. 245
finite draught, effectof varying draught 2980
see also .......................... 256-261
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VIBRATION see SHIP VIBRATIONS

VISCOUS FLUID some problems solved by use of inte-
MOTION gral equation, examples, plane moving

between two parallel plane bound-
aries, rotating hollow cylinder filled
with fluid ......................... 176

VORTICES rec•iiinear in ring formation, stability
of motion ......................... 330

WAVE PATTERNS initial line disturbance ............. 7
initial disturbance of finite breadth 9
limited train of simple oscillations... 10
initial disturbance on deep u ater... 13
moving line impulse on deep water . 14
capillary waves, limited train of simple
oscillations ....................... 16
moving line impulse ................ 17
combination of capillary and gravity
waves, moving line impulse
initial point elevation in two dimen-
sions ............................. 18
point impulse moving over deep water 20
point impulse moving over water of
finite depth ....................... 29
two-dimensional doublet in stream .... 296
free wave patterns .................. 378
of ship waves, point disturbance and
sphere ............................ 381
vertical post-- of infinite draught ..... 383
effect of finite draught 384

WAVE PROFILES vertical posts of infinite draught,
wedge-shaped waterlines ............ 354
parabolic ......................... 357
full-ended ......................... 353
general for any waterline ............ 356
effect of rounding angles in waterline 360

- WAVE Simple systems of travelling pressure
RESISTANCE disturbance ....................... 34-80

variation with speed compared with

model results deep water ............ 47-51,85
and 72-77

shallow water ..................... 51-5T
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WAVE with ship results ................... 80
RESISTANCE more complicated pressure systems... 94-104
(Continued) moving surface pressure system, start-

ing from rest ....................... 105
circular cylinder, starting from rest... 118
in steady motion ................... 119
of a submerged body equal to that of a
certain travelling pressure distribution 146
sphere ............................ 125
two in series ...................... 413
in parallel ........................ 415
in any relative posdtion ............. 416
general ellipsoid ................... 323
vertical posts, of great draught, vary-
ing waterplane sections ............. 204
with insertion of parallel body ....... 214
of finite draught, effect of varying
draught ............................ 230
of great draught comparisoit of a sym-
metrical with an unsymmetrical
waterline ......................... 245,256
pprabolic waterplane ............... 388
derived from wave patterns .......... 385-389
derived by energy method from wave
pattern deep and shallow water ...... 390-397
of unsymmetrical forms used to esti-
mate wave resistance in a viscous
fluid ............................. 398-407
Mutual action of two bodies ......... 408-418
general theory ..................... 403
two spheres in series ............... 413
in parallel, (also one sphere near wall) 415
in any relative position ............. 417
approximate calculation at high speed 500-511
comparison with complete calculation
and with experimental results for a
form with an algebraic equation ...... 511
Comparison with experiments for two
models of ships .................... 511
Effect of shallow water ............. 192

51-57
three dimensional doublet in shallow
water ............................. 286
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WAVE two dimensional in deep water, hori-
RESISTANCE zontal ........................... 279
(Continued) three dimensional horizontal ......... 282

assembly in vertical plane .......... 283
assembly with axe in any direction in
vertical plane ..................... 284
two doublets, different axes, at any
two points ........................ 285
of general source distribution ........ 367
of general doublet distribution ....... 371
moving solid in general, comparison
with approximate methods, reference

to Hogner's expression ............. 374

WAVES of finite height .................... 132
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